]> git.proxmox.com Git - qemu.git/blob - hw/slavio_timer.c
412f331369be61784b0e1ba1d6e4ac8ca1e72e6c
[qemu.git] / hw / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "qemu-timer.h"
27
28 //#define DEBUG_TIMER
29
30 #ifdef DEBUG_TIMER
31 #define DPRINTF(fmt, args...) \
32 do { printf("TIMER: " fmt , ##args); } while (0)
33 #else
34 #define DPRINTF(fmt, args...)
35 #endif
36
37 /*
38 * Registers of hardware timer in sun4m.
39 *
40 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41 * produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43 *
44 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45 * are zero. Bit 31 is 1 when count has been reached.
46 *
47 * Per-CPU timers interrupt local CPU, system timer uses normal
48 * interrupt routing.
49 *
50 */
51
52 #define MAX_CPUS 16
53
54 typedef struct SLAVIO_TIMERState {
55 qemu_irq irq;
56 ptimer_state *timer;
57 uint32_t count, counthigh, reached;
58 uint64_t limit;
59 // processor only
60 int running;
61 struct SLAVIO_TIMERState *master;
62 int slave_index;
63 // system only
64 unsigned int num_slaves;
65 struct SLAVIO_TIMERState *slave[MAX_CPUS];
66 uint32_t slave_mode;
67 } SLAVIO_TIMERState;
68
69 #define TIMER_MAXADDR 0x1f
70 #define SYS_TIMER_SIZE 0x14
71 #define CPU_TIMER_SIZE 0x10
72
73 #define SYS_TIMER_OFFSET 0x10000ULL
74 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
75
76 #define TIMER_LIMIT 0
77 #define TIMER_COUNTER 1
78 #define TIMER_COUNTER_NORST 2
79 #define TIMER_STATUS 3
80 #define TIMER_MODE 4
81
82 #define TIMER_COUNT_MASK32 0xfffffe00
83 #define TIMER_LIMIT_MASK32 0x7fffffff
84 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
85 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
86 #define TIMER_REACHED 0x80000000
87 #define TIMER_PERIOD 500ULL // 500ns
88 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
89 #define PERIODS_TO_LIMIT(l) ((l) << 9)
90
91 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
92 {
93 return s->master && (s->master->slave_mode & (1 << s->slave_index));
94 }
95
96 // Update count, set irq, update expire_time
97 // Convert from ptimer countdown units
98 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
99 {
100 uint64_t count, limit;
101
102 if (s->limit == 0) /* free-run processor or system counter */
103 limit = TIMER_MAX_COUNT32;
104 else
105 limit = s->limit;
106
107 if (s->timer)
108 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
109 else
110 count = 0;
111
112 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
113 s->counthigh, s->count);
114 s->count = count & TIMER_COUNT_MASK32;
115 s->counthigh = count >> 32;
116 }
117
118 // timer callback
119 static void slavio_timer_irq(void *opaque)
120 {
121 SLAVIO_TIMERState *s = opaque;
122
123 slavio_timer_get_out(s);
124 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
125 s->reached = TIMER_REACHED;
126 if (!slavio_timer_is_user(s))
127 qemu_irq_raise(s->irq);
128 }
129
130 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
131 {
132 SLAVIO_TIMERState *s = opaque;
133 uint32_t saddr, ret;
134
135 saddr = (addr & TIMER_MAXADDR) >> 2;
136 switch (saddr) {
137 case TIMER_LIMIT:
138 // read limit (system counter mode) or read most signifying
139 // part of counter (user mode)
140 if (slavio_timer_is_user(s)) {
141 // read user timer MSW
142 slavio_timer_get_out(s);
143 ret = s->counthigh | s->reached;
144 } else {
145 // read limit
146 // clear irq
147 qemu_irq_lower(s->irq);
148 s->reached = 0;
149 ret = s->limit & TIMER_LIMIT_MASK32;
150 }
151 break;
152 case TIMER_COUNTER:
153 // read counter and reached bit (system mode) or read lsbits
154 // of counter (user mode)
155 slavio_timer_get_out(s);
156 if (slavio_timer_is_user(s)) // read user timer LSW
157 ret = s->count & TIMER_MAX_COUNT64;
158 else // read limit
159 ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
160 break;
161 case TIMER_STATUS:
162 // only available in processor counter/timer
163 // read start/stop status
164 ret = s->running;
165 break;
166 case TIMER_MODE:
167 // only available in system counter
168 // read user/system mode
169 ret = s->slave_mode;
170 break;
171 default:
172 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
173 ret = 0;
174 break;
175 }
176 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
177
178 return ret;
179 }
180
181 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
182 uint32_t val)
183 {
184 SLAVIO_TIMERState *s = opaque;
185 uint32_t saddr;
186
187 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
188 saddr = (addr & TIMER_MAXADDR) >> 2;
189 switch (saddr) {
190 case TIMER_LIMIT:
191 if (slavio_timer_is_user(s)) {
192 uint64_t count;
193
194 // set user counter MSW, reset counter
195 qemu_irq_lower(s->irq);
196 s->limit = TIMER_MAX_COUNT64;
197 s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
198 s->reached = 0;
199 count = ((uint64_t)s->counthigh << 32) | s->count;
200 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
201 count);
202 if (s->timer) {
203 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
204 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
205 }
206 } else {
207 // set limit, reset counter
208 qemu_irq_lower(s->irq);
209 s->limit = val & TIMER_MAX_COUNT32;
210 if (s->timer) {
211 if (s->limit == 0) /* free-run */
212 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
213 else
214 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
215 }
216 }
217 break;
218 case TIMER_COUNTER:
219 if (slavio_timer_is_user(s)) {
220 uint64_t count;
221
222 // set user counter LSW, reset counter
223 qemu_irq_lower(s->irq);
224 s->limit = TIMER_MAX_COUNT64;
225 s->count = val & TIMER_MAX_COUNT64;
226 s->reached = 0;
227 count = ((uint64_t)s->counthigh) << 32 | s->count;
228 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
229 count);
230 if (s->timer) {
231 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
232 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
233 }
234 } else
235 DPRINTF("not user timer\n");
236 break;
237 case TIMER_COUNTER_NORST:
238 // set limit without resetting counter
239 s->limit = val & TIMER_MAX_COUNT32;
240 if (s->timer) {
241 if (s->limit == 0) /* free-run */
242 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
243 else
244 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
245 }
246 break;
247 case TIMER_STATUS:
248 if (slavio_timer_is_user(s)) {
249 // start/stop user counter
250 if ((val & 1) && !s->running) {
251 DPRINTF("processor %d user timer started\n", s->slave_index);
252 if (s->timer)
253 ptimer_run(s->timer, 0);
254 s->running = 1;
255 } else if (!(val & 1) && s->running) {
256 DPRINTF("processor %d user timer stopped\n", s->slave_index);
257 if (s->timer)
258 ptimer_stop(s->timer);
259 s->running = 0;
260 }
261 }
262 break;
263 case TIMER_MODE:
264 if (s->master == NULL) {
265 unsigned int i;
266
267 for (i = 0; i < s->num_slaves; i++) {
268 if (val & (1 << i)) {
269 qemu_irq_lower(s->slave[i]->irq);
270 s->slave[i]->limit = -1ULL;
271 } else {
272 ptimer_stop(s->slave[i]->timer);
273 }
274 if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
275 ptimer_stop(s->slave[i]->timer);
276 ptimer_set_limit(s->slave[i]->timer,
277 LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
278 DPRINTF("processor %d timer changed\n",
279 s->slave[i]->slave_index);
280 ptimer_run(s->slave[i]->timer, 0);
281 }
282 }
283 s->slave_mode = val & ((1 << s->num_slaves) - 1);
284 } else
285 DPRINTF("not system timer\n");
286 break;
287 default:
288 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
289 break;
290 }
291 }
292
293 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
294 NULL,
295 NULL,
296 slavio_timer_mem_readl,
297 };
298
299 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
300 NULL,
301 NULL,
302 slavio_timer_mem_writel,
303 };
304
305 static void slavio_timer_save(QEMUFile *f, void *opaque)
306 {
307 SLAVIO_TIMERState *s = opaque;
308
309 qemu_put_be64s(f, &s->limit);
310 qemu_put_be32s(f, &s->count);
311 qemu_put_be32s(f, &s->counthigh);
312 qemu_put_be32s(f, &s->reached);
313 qemu_put_be32s(f, &s->running);
314 if (s->timer)
315 qemu_put_ptimer(f, s->timer);
316 }
317
318 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
319 {
320 SLAVIO_TIMERState *s = opaque;
321
322 if (version_id != 3)
323 return -EINVAL;
324
325 qemu_get_be64s(f, &s->limit);
326 qemu_get_be32s(f, &s->count);
327 qemu_get_be32s(f, &s->counthigh);
328 qemu_get_be32s(f, &s->reached);
329 qemu_get_be32s(f, &s->running);
330 if (s->timer)
331 qemu_get_ptimer(f, s->timer);
332
333 return 0;
334 }
335
336 static void slavio_timer_reset(void *opaque)
337 {
338 SLAVIO_TIMERState *s = opaque;
339
340 s->limit = 0;
341 s->count = 0;
342 s->reached = 0;
343 s->slave_mode = 0;
344 if (!s->master || s->slave_index < s->master->num_slaves) {
345 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
346 ptimer_run(s->timer, 0);
347 }
348 s->running = 1;
349 qemu_irq_lower(s->irq);
350 }
351
352 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
353 qemu_irq irq,
354 SLAVIO_TIMERState *master,
355 int slave_index)
356 {
357 int slavio_timer_io_memory;
358 SLAVIO_TIMERState *s;
359 QEMUBH *bh;
360
361 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
362 if (!s)
363 return s;
364 s->irq = irq;
365 s->master = master;
366 s->slave_index = slave_index;
367 if (!master || slave_index < master->num_slaves) {
368 bh = qemu_bh_new(slavio_timer_irq, s);
369 s->timer = ptimer_init(bh);
370 ptimer_set_period(s->timer, TIMER_PERIOD);
371 }
372
373 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
374 slavio_timer_mem_write, s);
375 if (master)
376 cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
377 slavio_timer_io_memory);
378 else
379 cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
380 slavio_timer_io_memory);
381 register_savevm("slavio_timer", addr, 3, slavio_timer_save,
382 slavio_timer_load, s);
383 qemu_register_reset(slavio_timer_reset, s);
384 slavio_timer_reset(s);
385
386 return s;
387 }
388
389 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
390 qemu_irq *cpu_irqs, unsigned int num_cpus)
391 {
392 SLAVIO_TIMERState *master;
393 unsigned int i;
394
395 master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
396
397 master->num_slaves = num_cpus;
398
399 for (i = 0; i < MAX_CPUS; i++) {
400 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
401 CPU_TIMER_OFFSET(i),
402 cpu_irqs[i], master, i);
403 }
404 }