]> git.proxmox.com Git - qemu.git/blob - hw/spapr.c
193398b7a1e3ace946ab2e6f8ea5226a69efc600
[qemu.git] / hw / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/xics.h"
43
44 #include "kvm.h"
45 #include "kvm_ppc.h"
46
47 #include "exec-memory.h"
48
49 #include <libfdt.h>
50
51 #define KERNEL_LOAD_ADDR 0x00000000
52 #define INITRD_LOAD_ADDR 0x02800000
53 #define FDT_MAX_SIZE 0x10000
54 #define RTAS_MAX_SIZE 0x10000
55 #define FW_MAX_SIZE 0x400000
56 #define FW_FILE_NAME "slof.bin"
57
58 #define MIN_RAM_SLOF 512UL
59
60 #define TIMEBASE_FREQ 512000000ULL
61
62 #define MAX_CPUS 256
63 #define XICS_IRQS 1024
64
65 #define PHANDLE_XICP 0x00001111
66
67 sPAPREnvironment *spapr;
68
69 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num)
70 {
71 uint32_t irq;
72 qemu_irq qirq;
73
74 if (hint) {
75 irq = hint;
76 /* FIXME: we should probably check for collisions somehow */
77 } else {
78 irq = spapr->next_irq++;
79 }
80
81 qirq = xics_find_qirq(spapr->icp, irq);
82 if (!qirq) {
83 return NULL;
84 }
85
86 if (irq_num) {
87 *irq_num = irq;
88 }
89
90 return qirq;
91 }
92
93 static void *spapr_create_fdt_skel(const char *cpu_model,
94 target_phys_addr_t rma_size,
95 target_phys_addr_t initrd_base,
96 target_phys_addr_t initrd_size,
97 const char *boot_device,
98 const char *kernel_cmdline,
99 long hash_shift)
100 {
101 void *fdt;
102 CPUState *env;
103 uint64_t mem_reg_property_rma[] = { 0, cpu_to_be64(rma_size) };
104 uint64_t mem_reg_property_nonrma[] = { cpu_to_be64(rma_size),
105 cpu_to_be64(ram_size - rma_size) };
106 uint32_t start_prop = cpu_to_be32(initrd_base);
107 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
108 uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
109 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
110 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
111 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
112 int i;
113 char *modelname;
114 int smt = kvmppc_smt_threads();
115
116 #define _FDT(exp) \
117 do { \
118 int ret = (exp); \
119 if (ret < 0) { \
120 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
121 #exp, fdt_strerror(ret)); \
122 exit(1); \
123 } \
124 } while (0)
125
126 fdt = g_malloc0(FDT_MAX_SIZE);
127 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
128
129 _FDT((fdt_finish_reservemap(fdt)));
130
131 /* Root node */
132 _FDT((fdt_begin_node(fdt, "")));
133 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
134 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
135
136 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
137 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
138
139 /* /chosen */
140 _FDT((fdt_begin_node(fdt, "chosen")));
141
142 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
143 _FDT((fdt_property(fdt, "linux,initrd-start",
144 &start_prop, sizeof(start_prop))));
145 _FDT((fdt_property(fdt, "linux,initrd-end",
146 &end_prop, sizeof(end_prop))));
147 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
148
149 _FDT((fdt_end_node(fdt)));
150
151 /* memory node(s) */
152 _FDT((fdt_begin_node(fdt, "memory@0")));
153
154 _FDT((fdt_property_string(fdt, "device_type", "memory")));
155 _FDT((fdt_property(fdt, "reg", mem_reg_property_rma,
156 sizeof(mem_reg_property_rma))));
157 _FDT((fdt_end_node(fdt)));
158
159 if (ram_size > rma_size) {
160 char mem_name[32];
161
162 sprintf(mem_name, "memory@%" PRIx64, (uint64_t)rma_size);
163 _FDT((fdt_begin_node(fdt, mem_name)));
164 _FDT((fdt_property_string(fdt, "device_type", "memory")));
165 _FDT((fdt_property(fdt, "reg", mem_reg_property_nonrma,
166 sizeof(mem_reg_property_nonrma))));
167 _FDT((fdt_end_node(fdt)));
168 }
169
170 /* cpus */
171 _FDT((fdt_begin_node(fdt, "cpus")));
172
173 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
174 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
175
176 modelname = g_strdup(cpu_model);
177
178 for (i = 0; i < strlen(modelname); i++) {
179 modelname[i] = toupper(modelname[i]);
180 }
181
182 for (env = first_cpu; env != NULL; env = env->next_cpu) {
183 int index = env->cpu_index;
184 uint32_t servers_prop[smp_threads];
185 uint32_t gservers_prop[smp_threads * 2];
186 char *nodename;
187 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
188 0xffffffff, 0xffffffff};
189 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
190 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
191
192 if ((index % smt) != 0) {
193 continue;
194 }
195
196 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
197 fprintf(stderr, "Allocation failure\n");
198 exit(1);
199 }
200
201 _FDT((fdt_begin_node(fdt, nodename)));
202
203 free(nodename);
204
205 _FDT((fdt_property_cell(fdt, "reg", index)));
206 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
207
208 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
209 _FDT((fdt_property_cell(fdt, "dcache-block-size",
210 env->dcache_line_size)));
211 _FDT((fdt_property_cell(fdt, "icache-block-size",
212 env->icache_line_size)));
213 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
214 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
215 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
216 _FDT((fdt_property(fdt, "ibm,pft-size",
217 pft_size_prop, sizeof(pft_size_prop))));
218 _FDT((fdt_property_string(fdt, "status", "okay")));
219 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
220
221 /* Build interrupt servers and gservers properties */
222 for (i = 0; i < smp_threads; i++) {
223 servers_prop[i] = cpu_to_be32(index + i);
224 /* Hack, direct the group queues back to cpu 0 */
225 gservers_prop[i*2] = cpu_to_be32(index + i);
226 gservers_prop[i*2 + 1] = 0;
227 }
228 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
229 servers_prop, sizeof(servers_prop))));
230 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
231 gservers_prop, sizeof(gservers_prop))));
232
233 if (env->mmu_model & POWERPC_MMU_1TSEG) {
234 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
235 segs, sizeof(segs))));
236 }
237
238 _FDT((fdt_end_node(fdt)));
239 }
240
241 g_free(modelname);
242
243 _FDT((fdt_end_node(fdt)));
244
245 /* RTAS */
246 _FDT((fdt_begin_node(fdt, "rtas")));
247
248 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
249 sizeof(hypertas_prop))));
250
251 _FDT((fdt_end_node(fdt)));
252
253 /* interrupt controller */
254 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
255
256 _FDT((fdt_property_string(fdt, "device_type",
257 "PowerPC-External-Interrupt-Presentation")));
258 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
259 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
260 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
261 interrupt_server_ranges_prop,
262 sizeof(interrupt_server_ranges_prop))));
263 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
264 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
265 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
266
267 _FDT((fdt_end_node(fdt)));
268
269 /* vdevice */
270 _FDT((fdt_begin_node(fdt, "vdevice")));
271
272 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
273 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
274 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
275 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
276 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
277 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
278
279 _FDT((fdt_end_node(fdt)));
280
281 _FDT((fdt_end_node(fdt))); /* close root node */
282 _FDT((fdt_finish(fdt)));
283
284 return fdt;
285 }
286
287 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
288 target_phys_addr_t fdt_addr,
289 target_phys_addr_t rtas_addr,
290 target_phys_addr_t rtas_size)
291 {
292 int ret;
293 void *fdt;
294
295 fdt = g_malloc(FDT_MAX_SIZE);
296
297 /* open out the base tree into a temp buffer for the final tweaks */
298 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
299
300 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
301 if (ret < 0) {
302 fprintf(stderr, "couldn't setup vio devices in fdt\n");
303 exit(1);
304 }
305
306 /* RTAS */
307 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
308 if (ret < 0) {
309 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
310 }
311
312 _FDT((fdt_pack(fdt)));
313
314 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
315
316 g_free(fdt);
317 }
318
319 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
320 {
321 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
322 }
323
324 static void emulate_spapr_hypercall(CPUState *env)
325 {
326 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
327 }
328
329 static void spapr_reset(void *opaque)
330 {
331 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
332
333 fprintf(stderr, "sPAPR reset\n");
334
335 /* flush out the hash table */
336 memset(spapr->htab, 0, spapr->htab_size);
337
338 /* Load the fdt */
339 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
340 spapr->rtas_size);
341
342 /* Set up the entry state */
343 first_cpu->gpr[3] = spapr->fdt_addr;
344 first_cpu->gpr[5] = 0;
345 first_cpu->halted = 0;
346 first_cpu->nip = spapr->entry_point;
347
348 }
349
350 /* pSeries LPAR / sPAPR hardware init */
351 static void ppc_spapr_init(ram_addr_t ram_size,
352 const char *boot_device,
353 const char *kernel_filename,
354 const char *kernel_cmdline,
355 const char *initrd_filename,
356 const char *cpu_model)
357 {
358 CPUState *env;
359 int i;
360 MemoryRegion *sysmem = get_system_memory();
361 MemoryRegion *ram = g_new(MemoryRegion, 1);
362 target_phys_addr_t rma_alloc_size, rma_size;
363 uint32_t initrd_base;
364 long kernel_size, initrd_size, fw_size;
365 long pteg_shift = 17;
366 char *filename;
367
368 spapr = g_malloc(sizeof(*spapr));
369 cpu_ppc_hypercall = emulate_spapr_hypercall;
370
371 /* Allocate RMA if necessary */
372 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
373
374 if (rma_alloc_size == -1) {
375 hw_error("qemu: Unable to create RMA\n");
376 exit(1);
377 }
378 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
379 rma_size = rma_alloc_size;
380 } else {
381 rma_size = ram_size;
382 }
383
384 /* We place the device tree just below either the top of the RMA,
385 * or just below 2GB, whichever is lowere, so that it can be
386 * processed with 32-bit real mode code if necessary */
387 spapr->fdt_addr = MIN(rma_size, 0x80000000) - FDT_MAX_SIZE;
388 spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;
389
390 /* init CPUs */
391 if (cpu_model == NULL) {
392 cpu_model = "POWER7";
393 }
394 for (i = 0; i < smp_cpus; i++) {
395 env = cpu_init(cpu_model);
396
397 if (!env) {
398 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
399 exit(1);
400 }
401 /* Set time-base frequency to 512 MHz */
402 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
403 qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
404
405 env->hreset_vector = 0x60;
406 env->hreset_excp_prefix = 0;
407 env->gpr[3] = env->cpu_index;
408 }
409
410 /* allocate RAM */
411 spapr->ram_limit = ram_size;
412 if (spapr->ram_limit > rma_alloc_size) {
413 ram_addr_t nonrma_base = rma_alloc_size;
414 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
415
416 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
417 memory_region_add_subregion(sysmem, nonrma_base, ram);
418 }
419
420 /* allocate hash page table. For now we always make this 16mb,
421 * later we should probably make it scale to the size of guest
422 * RAM */
423 spapr->htab_size = 1ULL << (pteg_shift + 7);
424 spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
425
426 for (env = first_cpu; env != NULL; env = env->next_cpu) {
427 env->external_htab = spapr->htab;
428 env->htab_base = -1;
429 env->htab_mask = spapr->htab_size - 1;
430
431 /* Tell KVM that we're in PAPR mode */
432 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
433 ((pteg_shift + 7) - 18);
434 env->spr[SPR_HIOR] = 0;
435
436 if (kvm_enabled()) {
437 kvmppc_set_papr(env);
438 }
439 }
440
441 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
442 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
443 ram_size - spapr->rtas_addr);
444 if (spapr->rtas_size < 0) {
445 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
446 exit(1);
447 }
448 g_free(filename);
449
450 /* Set up Interrupt Controller */
451 spapr->icp = xics_system_init(XICS_IRQS);
452 spapr->next_irq = 16;
453
454 /* Set up VIO bus */
455 spapr->vio_bus = spapr_vio_bus_init();
456
457 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
458 if (serial_hds[i]) {
459 spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i,
460 serial_hds[i]);
461 }
462 }
463
464 for (i = 0; i < nb_nics; i++) {
465 NICInfo *nd = &nd_table[i];
466
467 if (!nd->model) {
468 nd->model = g_strdup("ibmveth");
469 }
470
471 if (strcmp(nd->model, "ibmveth") == 0) {
472 spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd);
473 } else {
474 fprintf(stderr, "pSeries (sPAPR) platform does not support "
475 "NIC model '%s' (only ibmveth is supported)\n",
476 nd->model);
477 exit(1);
478 }
479 }
480
481 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
482 spapr_vscsi_create(spapr->vio_bus, 0x2000 + i);
483 }
484
485 if (kernel_filename) {
486 uint64_t lowaddr = 0;
487
488 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
489 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
490 if (kernel_size < 0) {
491 kernel_size = load_image_targphys(kernel_filename,
492 KERNEL_LOAD_ADDR,
493 ram_size - KERNEL_LOAD_ADDR);
494 }
495 if (kernel_size < 0) {
496 fprintf(stderr, "qemu: could not load kernel '%s'\n",
497 kernel_filename);
498 exit(1);
499 }
500
501 /* load initrd */
502 if (initrd_filename) {
503 initrd_base = INITRD_LOAD_ADDR;
504 initrd_size = load_image_targphys(initrd_filename, initrd_base,
505 ram_size - initrd_base);
506 if (initrd_size < 0) {
507 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
508 initrd_filename);
509 exit(1);
510 }
511 } else {
512 initrd_base = 0;
513 initrd_size = 0;
514 }
515
516 spapr->entry_point = KERNEL_LOAD_ADDR;
517 } else {
518 if (ram_size < (MIN_RAM_SLOF << 20)) {
519 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
520 "%ldM guest RAM\n", MIN_RAM_SLOF);
521 exit(1);
522 }
523 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
524 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
525 if (fw_size < 0) {
526 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
527 exit(1);
528 }
529 g_free(filename);
530 spapr->entry_point = 0x100;
531 initrd_base = 0;
532 initrd_size = 0;
533
534 /* SLOF will startup the secondary CPUs using RTAS,
535 rather than expecting a kexec() style entry */
536 for (env = first_cpu; env != NULL; env = env->next_cpu) {
537 env->halted = 1;
538 }
539 }
540
541 /* Prepare the device tree */
542 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
543 initrd_base, initrd_size,
544 boot_device, kernel_cmdline,
545 pteg_shift + 7);
546 assert(spapr->fdt_skel != NULL);
547
548 qemu_register_reset(spapr_reset, spapr);
549 }
550
551 static QEMUMachine spapr_machine = {
552 .name = "pseries",
553 .desc = "pSeries Logical Partition (PAPR compliant)",
554 .init = ppc_spapr_init,
555 .max_cpus = MAX_CPUS,
556 .no_vga = 1,
557 .no_parallel = 1,
558 .use_scsi = 1,
559 };
560
561 static void spapr_machine_init(void)
562 {
563 qemu_register_machine(&spapr_machine);
564 }
565
566 machine_init(spapr_machine_init);