]> git.proxmox.com Git - qemu.git/blob - hw/spapr.c
a61c71e9316e41dd6e6d97b0b23d9964a12e1f07
[qemu.git] / hw / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44 #include "hw/pci/msi.h"
45
46 #include "sysemu/kvm.h"
47 #include "kvm_ppc.h"
48 #include "pci/pci.h"
49
50 #include "exec/address-spaces.h"
51 #include "hw/usb.h"
52 #include "qemu/config-file.h"
53
54 #include <libfdt.h>
55
56 /* SLOF memory layout:
57 *
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
60 *
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
62 * and more
63 *
64 * We load our kernel at 4M, leaving space for SLOF initial image
65 */
66 #define FDT_MAX_SIZE 0x10000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
72
73 #define MIN_RMA_SLOF 128UL
74
75 #define TIMEBASE_FREQ 512000000ULL
76
77 #define MAX_CPUS 256
78 #define XICS_IRQS 1024
79
80 #define SPAPR_PCI_BUID 0x800000020000001ULL
81 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
82 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
83 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
84 #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
85
86 #define PHANDLE_XICP 0x00001111
87
88 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89
90 sPAPREnvironment *spapr;
91
92 int spapr_allocate_irq(int hint, bool lsi)
93 {
94 int irq;
95
96 if (hint) {
97 irq = hint;
98 /* FIXME: we should probably check for collisions somehow */
99 } else {
100 irq = spapr->next_irq++;
101 }
102
103 /* Configure irq type */
104 if (!xics_get_qirq(spapr->icp, irq)) {
105 return 0;
106 }
107
108 xics_set_irq_type(spapr->icp, irq, lsi);
109
110 return irq;
111 }
112
113 /* Allocate block of consequtive IRQs, returns a number of the first */
114 int spapr_allocate_irq_block(int num, bool lsi)
115 {
116 int first = -1;
117 int i;
118
119 for (i = 0; i < num; ++i) {
120 int irq;
121
122 irq = spapr_allocate_irq(0, lsi);
123 if (!irq) {
124 return -1;
125 }
126
127 if (0 == i) {
128 first = irq;
129 }
130
131 /* If the above doesn't create a consecutive block then that's
132 * an internal bug */
133 assert(irq == (first + i));
134 }
135
136 return first;
137 }
138
139 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
140 {
141 int ret = 0, offset;
142 CPUPPCState *env;
143 CPUState *cpu;
144 char cpu_model[32];
145 int smt = kvmppc_smt_threads();
146 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
147
148 assert(spapr->cpu_model);
149
150 for (env = first_cpu; env != NULL; env = env->next_cpu) {
151 cpu = ENV_GET_CPU(env);
152 uint32_t associativity[] = {cpu_to_be32(0x5),
153 cpu_to_be32(0x0),
154 cpu_to_be32(0x0),
155 cpu_to_be32(0x0),
156 cpu_to_be32(cpu->numa_node),
157 cpu_to_be32(env->cpu_index)};
158
159 if ((env->cpu_index % smt) != 0) {
160 continue;
161 }
162
163 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
164 env->cpu_index);
165
166 offset = fdt_path_offset(fdt, cpu_model);
167 if (offset < 0) {
168 return offset;
169 }
170
171 if (nb_numa_nodes > 1) {
172 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
173 sizeof(associativity));
174 if (ret < 0) {
175 return ret;
176 }
177 }
178
179 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
180 pft_size_prop, sizeof(pft_size_prop));
181 if (ret < 0) {
182 return ret;
183 }
184 }
185 return ret;
186 }
187
188
189 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
190 size_t maxsize)
191 {
192 size_t maxcells = maxsize / sizeof(uint32_t);
193 int i, j, count;
194 uint32_t *p = prop;
195
196 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
197 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
198
199 if (!sps->page_shift) {
200 break;
201 }
202 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
203 if (sps->enc[count].page_shift == 0) {
204 break;
205 }
206 }
207 if ((p - prop) >= (maxcells - 3 - count * 2)) {
208 break;
209 }
210 *(p++) = cpu_to_be32(sps->page_shift);
211 *(p++) = cpu_to_be32(sps->slb_enc);
212 *(p++) = cpu_to_be32(count);
213 for (j = 0; j < count; j++) {
214 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
215 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
216 }
217 }
218
219 return (p - prop) * sizeof(uint32_t);
220 }
221
222 #define _FDT(exp) \
223 do { \
224 int ret = (exp); \
225 if (ret < 0) { \
226 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
227 #exp, fdt_strerror(ret)); \
228 exit(1); \
229 } \
230 } while (0)
231
232
233 static void *spapr_create_fdt_skel(const char *cpu_model,
234 hwaddr initrd_base,
235 hwaddr initrd_size,
236 hwaddr kernel_size,
237 const char *boot_device,
238 const char *kernel_cmdline,
239 uint32_t epow_irq)
240 {
241 void *fdt;
242 CPUPPCState *env;
243 uint32_t start_prop = cpu_to_be32(initrd_base);
244 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
245 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
246 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
247 char qemu_hypertas_prop[] = "hcall-memop1";
248 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
249 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
250 char *modelname;
251 int i, smt = kvmppc_smt_threads();
252 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
253
254 fdt = g_malloc0(FDT_MAX_SIZE);
255 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
256
257 if (kernel_size) {
258 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
259 }
260 if (initrd_size) {
261 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
262 }
263 _FDT((fdt_finish_reservemap(fdt)));
264
265 /* Root node */
266 _FDT((fdt_begin_node(fdt, "")));
267 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
268 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
269
270 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
271 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
272
273 /* /chosen */
274 _FDT((fdt_begin_node(fdt, "chosen")));
275
276 /* Set Form1_affinity */
277 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
278
279 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
280 _FDT((fdt_property(fdt, "linux,initrd-start",
281 &start_prop, sizeof(start_prop))));
282 _FDT((fdt_property(fdt, "linux,initrd-end",
283 &end_prop, sizeof(end_prop))));
284 if (kernel_size) {
285 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
286 cpu_to_be64(kernel_size) };
287
288 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
289 }
290 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
291 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
292 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
293 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
294
295 _FDT((fdt_end_node(fdt)));
296
297 /* cpus */
298 _FDT((fdt_begin_node(fdt, "cpus")));
299
300 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
301 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
302
303 modelname = g_strdup(cpu_model);
304
305 for (i = 0; i < strlen(modelname); i++) {
306 modelname[i] = toupper(modelname[i]);
307 }
308
309 /* This is needed during FDT finalization */
310 spapr->cpu_model = g_strdup(modelname);
311
312 for (env = first_cpu; env != NULL; env = env->next_cpu) {
313 int index = env->cpu_index;
314 uint32_t servers_prop[smp_threads];
315 uint32_t gservers_prop[smp_threads * 2];
316 char *nodename;
317 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
318 0xffffffff, 0xffffffff};
319 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
320 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
321 uint32_t page_sizes_prop[64];
322 size_t page_sizes_prop_size;
323
324 if ((index % smt) != 0) {
325 continue;
326 }
327
328 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
329 fprintf(stderr, "Allocation failure\n");
330 exit(1);
331 }
332
333 _FDT((fdt_begin_node(fdt, nodename)));
334
335 free(nodename);
336
337 _FDT((fdt_property_cell(fdt, "reg", index)));
338 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
339
340 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
341 _FDT((fdt_property_cell(fdt, "dcache-block-size",
342 env->dcache_line_size)));
343 _FDT((fdt_property_cell(fdt, "icache-block-size",
344 env->icache_line_size)));
345 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
346 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
347 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
348 _FDT((fdt_property_string(fdt, "status", "okay")));
349 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
350
351 /* Build interrupt servers and gservers properties */
352 for (i = 0; i < smp_threads; i++) {
353 servers_prop[i] = cpu_to_be32(index + i);
354 /* Hack, direct the group queues back to cpu 0 */
355 gservers_prop[i*2] = cpu_to_be32(index + i);
356 gservers_prop[i*2 + 1] = 0;
357 }
358 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
359 servers_prop, sizeof(servers_prop))));
360 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
361 gservers_prop, sizeof(gservers_prop))));
362
363 if (env->mmu_model & POWERPC_MMU_1TSEG) {
364 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
365 segs, sizeof(segs))));
366 }
367
368 /* Advertise VMX/VSX (vector extensions) if available
369 * 0 / no property == no vector extensions
370 * 1 == VMX / Altivec available
371 * 2 == VSX available */
372 if (env->insns_flags & PPC_ALTIVEC) {
373 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
374
375 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
376 }
377
378 /* Advertise DFP (Decimal Floating Point) if available
379 * 0 / no property == no DFP
380 * 1 == DFP available */
381 if (env->insns_flags2 & PPC2_DFP) {
382 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
383 }
384
385 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
386 sizeof(page_sizes_prop));
387 if (page_sizes_prop_size) {
388 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
389 page_sizes_prop, page_sizes_prop_size)));
390 }
391
392 _FDT((fdt_end_node(fdt)));
393 }
394
395 g_free(modelname);
396
397 _FDT((fdt_end_node(fdt)));
398
399 /* RTAS */
400 _FDT((fdt_begin_node(fdt, "rtas")));
401
402 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
403 sizeof(hypertas_prop))));
404 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
405 sizeof(qemu_hypertas_prop))));
406
407 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
408 refpoints, sizeof(refpoints))));
409
410 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
411
412 _FDT((fdt_end_node(fdt)));
413
414 /* interrupt controller */
415 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
416
417 _FDT((fdt_property_string(fdt, "device_type",
418 "PowerPC-External-Interrupt-Presentation")));
419 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
420 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
421 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
422 interrupt_server_ranges_prop,
423 sizeof(interrupt_server_ranges_prop))));
424 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
425 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
426 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
427
428 _FDT((fdt_end_node(fdt)));
429
430 /* vdevice */
431 _FDT((fdt_begin_node(fdt, "vdevice")));
432
433 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
434 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
435 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
436 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
437 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
438 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
439
440 _FDT((fdt_end_node(fdt)));
441
442 /* event-sources */
443 spapr_events_fdt_skel(fdt, epow_irq);
444
445 _FDT((fdt_end_node(fdt))); /* close root node */
446 _FDT((fdt_finish(fdt)));
447
448 return fdt;
449 }
450
451 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
452 {
453 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
454 cpu_to_be32(0x0), cpu_to_be32(0x0),
455 cpu_to_be32(0x0)};
456 char mem_name[32];
457 hwaddr node0_size, mem_start;
458 uint64_t mem_reg_property[2];
459 int i, off;
460
461 /* memory node(s) */
462 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
463 if (spapr->rma_size > node0_size) {
464 spapr->rma_size = node0_size;
465 }
466
467 /* RMA */
468 mem_reg_property[0] = 0;
469 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
470 off = fdt_add_subnode(fdt, 0, "memory@0");
471 _FDT(off);
472 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
473 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
474 sizeof(mem_reg_property))));
475 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
476 sizeof(associativity))));
477
478 /* RAM: Node 0 */
479 if (node0_size > spapr->rma_size) {
480 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
481 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
482
483 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
484 off = fdt_add_subnode(fdt, 0, mem_name);
485 _FDT(off);
486 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
487 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
488 sizeof(mem_reg_property))));
489 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
490 sizeof(associativity))));
491 }
492
493 /* RAM: Node 1 and beyond */
494 mem_start = node0_size;
495 for (i = 1; i < nb_numa_nodes; i++) {
496 mem_reg_property[0] = cpu_to_be64(mem_start);
497 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
498 associativity[3] = associativity[4] = cpu_to_be32(i);
499 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
500 off = fdt_add_subnode(fdt, 0, mem_name);
501 _FDT(off);
502 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
503 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
504 sizeof(mem_reg_property))));
505 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
506 sizeof(associativity))));
507 mem_start += node_mem[i];
508 }
509
510 return 0;
511 }
512
513 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
514 hwaddr fdt_addr,
515 hwaddr rtas_addr,
516 hwaddr rtas_size)
517 {
518 int ret;
519 void *fdt;
520 sPAPRPHBState *phb;
521
522 fdt = g_malloc(FDT_MAX_SIZE);
523
524 /* open out the base tree into a temp buffer for the final tweaks */
525 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
526
527 ret = spapr_populate_memory(spapr, fdt);
528 if (ret < 0) {
529 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
530 exit(1);
531 }
532
533 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
534 if (ret < 0) {
535 fprintf(stderr, "couldn't setup vio devices in fdt\n");
536 exit(1);
537 }
538
539 QLIST_FOREACH(phb, &spapr->phbs, list) {
540 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
541 }
542
543 if (ret < 0) {
544 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
545 exit(1);
546 }
547
548 /* RTAS */
549 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
550 if (ret < 0) {
551 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
552 }
553
554 /* Advertise NUMA via ibm,associativity */
555 ret = spapr_fixup_cpu_dt(fdt, spapr);
556 if (ret < 0) {
557 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
558 }
559
560 if (!spapr->has_graphics) {
561 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
562 }
563
564 _FDT((fdt_pack(fdt)));
565
566 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
567 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
568 fdt_totalsize(fdt), FDT_MAX_SIZE);
569 exit(1);
570 }
571
572 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
573
574 g_free(fdt);
575 }
576
577 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
578 {
579 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
580 }
581
582 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
583 {
584 CPUPPCState *env = &cpu->env;
585
586 if (msr_pr) {
587 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
588 env->gpr[3] = H_PRIVILEGE;
589 } else {
590 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
591 }
592 }
593
594 static void spapr_reset_htab(sPAPREnvironment *spapr)
595 {
596 long shift;
597
598 /* allocate hash page table. For now we always make this 16mb,
599 * later we should probably make it scale to the size of guest
600 * RAM */
601
602 shift = kvmppc_reset_htab(spapr->htab_shift);
603
604 if (shift > 0) {
605 /* Kernel handles htab, we don't need to allocate one */
606 spapr->htab_shift = shift;
607 } else {
608 if (!spapr->htab) {
609 /* Allocate an htab if we don't yet have one */
610 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
611 }
612
613 /* And clear it */
614 memset(spapr->htab, 0, HTAB_SIZE(spapr));
615 }
616
617 /* Update the RMA size if necessary */
618 if (spapr->vrma_adjust) {
619 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
620 }
621 }
622
623 static void ppc_spapr_reset(void)
624 {
625 /* Reset the hash table & recalc the RMA */
626 spapr_reset_htab(spapr);
627
628 qemu_devices_reset();
629
630 /* Load the fdt */
631 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
632 spapr->rtas_size);
633
634 /* Set up the entry state */
635 first_cpu->gpr[3] = spapr->fdt_addr;
636 first_cpu->gpr[5] = 0;
637 first_cpu->halted = 0;
638 first_cpu->nip = spapr->entry_point;
639
640 }
641
642 static void spapr_cpu_reset(void *opaque)
643 {
644 PowerPCCPU *cpu = opaque;
645 CPUPPCState *env = &cpu->env;
646
647 cpu_reset(CPU(cpu));
648
649 /* All CPUs start halted. CPU0 is unhalted from the machine level
650 * reset code and the rest are explicitly started up by the guest
651 * using an RTAS call */
652 env->halted = 1;
653
654 env->spr[SPR_HIOR] = 0;
655
656 env->external_htab = spapr->htab;
657 env->htab_base = -1;
658 env->htab_mask = HTAB_SIZE(spapr) - 1;
659 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
660 (spapr->htab_shift - 18);
661 }
662
663 static void spapr_create_nvram(sPAPREnvironment *spapr)
664 {
665 QemuOpts *machine_opts;
666 DeviceState *dev;
667
668 dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
669
670 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
671 if (machine_opts) {
672 const char *drivename;
673
674 drivename = qemu_opt_get(machine_opts, "nvram");
675 if (drivename) {
676 BlockDriverState *bs;
677
678 bs = bdrv_find(drivename);
679 if (!bs) {
680 fprintf(stderr, "No such block device \"%s\" for nvram\n",
681 drivename);
682 exit(1);
683 }
684 qdev_prop_set_drive_nofail(dev, "drive", bs);
685 }
686 }
687
688 qdev_init_nofail(dev);
689
690 spapr->nvram = (struct sPAPRNVRAM *)dev;
691 }
692
693 /* Returns whether we want to use VGA or not */
694 static int spapr_vga_init(PCIBus *pci_bus)
695 {
696 switch (vga_interface_type) {
697 case VGA_NONE:
698 case VGA_STD:
699 return pci_vga_init(pci_bus) != NULL;
700 default:
701 fprintf(stderr, "This vga model is not supported,"
702 "currently it only supports -vga std\n");
703 exit(0);
704 break;
705 }
706 }
707
708 /* pSeries LPAR / sPAPR hardware init */
709 static void ppc_spapr_init(QEMUMachineInitArgs *args)
710 {
711 ram_addr_t ram_size = args->ram_size;
712 const char *cpu_model = args->cpu_model;
713 const char *kernel_filename = args->kernel_filename;
714 const char *kernel_cmdline = args->kernel_cmdline;
715 const char *initrd_filename = args->initrd_filename;
716 const char *boot_device = args->boot_device;
717 PowerPCCPU *cpu;
718 CPUPPCState *env;
719 PCIHostState *phb;
720 int i;
721 MemoryRegion *sysmem = get_system_memory();
722 MemoryRegion *ram = g_new(MemoryRegion, 1);
723 hwaddr rma_alloc_size;
724 uint32_t initrd_base = 0;
725 long kernel_size = 0, initrd_size = 0;
726 long load_limit, rtas_limit, fw_size;
727 char *filename;
728
729 msi_supported = true;
730
731 spapr = g_malloc0(sizeof(*spapr));
732 QLIST_INIT(&spapr->phbs);
733
734 cpu_ppc_hypercall = emulate_spapr_hypercall;
735
736 /* Allocate RMA if necessary */
737 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
738
739 if (rma_alloc_size == -1) {
740 hw_error("qemu: Unable to create RMA\n");
741 exit(1);
742 }
743
744 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
745 spapr->rma_size = rma_alloc_size;
746 } else {
747 spapr->rma_size = ram_size;
748
749 /* With KVM, we don't actually know whether KVM supports an
750 * unbounded RMA (PR KVM) or is limited by the hash table size
751 * (HV KVM using VRMA), so we always assume the latter
752 *
753 * In that case, we also limit the initial allocations for RTAS
754 * etc... to 256M since we have no way to know what the VRMA size
755 * is going to be as it depends on the size of the hash table
756 * isn't determined yet.
757 */
758 if (kvm_enabled()) {
759 spapr->vrma_adjust = 1;
760 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
761 }
762 }
763
764 /* We place the device tree and RTAS just below either the top of the RMA,
765 * or just below 2GB, whichever is lowere, so that it can be
766 * processed with 32-bit real mode code if necessary */
767 rtas_limit = MIN(spapr->rma_size, 0x80000000);
768 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
769 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
770 load_limit = spapr->fdt_addr - FW_OVERHEAD;
771
772 /* We aim for a hash table of size 1/128 the size of RAM. The
773 * normal rule of thumb is 1/64 the size of RAM, but that's much
774 * more than needed for the Linux guests we support. */
775 spapr->htab_shift = 18; /* Minimum architected size */
776 while (spapr->htab_shift <= 46) {
777 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
778 break;
779 }
780 spapr->htab_shift++;
781 }
782
783 /* init CPUs */
784 if (cpu_model == NULL) {
785 cpu_model = kvm_enabled() ? "host" : "POWER7";
786 }
787 for (i = 0; i < smp_cpus; i++) {
788 cpu = cpu_ppc_init(cpu_model);
789 if (cpu == NULL) {
790 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
791 exit(1);
792 }
793 env = &cpu->env;
794
795 /* Set time-base frequency to 512 MHz */
796 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
797
798 /* PAPR always has exception vectors in RAM not ROM */
799 env->hreset_excp_prefix = 0;
800
801 /* Tell KVM that we're in PAPR mode */
802 if (kvm_enabled()) {
803 kvmppc_set_papr(cpu);
804 }
805
806 qemu_register_reset(spapr_cpu_reset, cpu);
807 }
808
809 /* allocate RAM */
810 spapr->ram_limit = ram_size;
811 if (spapr->ram_limit > rma_alloc_size) {
812 ram_addr_t nonrma_base = rma_alloc_size;
813 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
814
815 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
816 vmstate_register_ram_global(ram);
817 memory_region_add_subregion(sysmem, nonrma_base, ram);
818 }
819
820 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
821 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
822 rtas_limit - spapr->rtas_addr);
823 if (spapr->rtas_size < 0) {
824 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
825 exit(1);
826 }
827 if (spapr->rtas_size > RTAS_MAX_SIZE) {
828 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
829 spapr->rtas_size, RTAS_MAX_SIZE);
830 exit(1);
831 }
832 g_free(filename);
833
834
835 /* Set up Interrupt Controller */
836 spapr->icp = xics_system_init(XICS_IRQS);
837 spapr->next_irq = XICS_IRQ_BASE;
838
839 /* Set up EPOW events infrastructure */
840 spapr_events_init(spapr);
841
842 /* Set up IOMMU */
843 spapr_iommu_init();
844
845 /* Set up VIO bus */
846 spapr->vio_bus = spapr_vio_bus_init();
847
848 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
849 if (serial_hds[i]) {
850 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
851 }
852 }
853
854 /* We always have at least the nvram device on VIO */
855 spapr_create_nvram(spapr);
856
857 /* Set up PCI */
858 spapr_pci_rtas_init();
859
860 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
861 SPAPR_PCI_MEM_WIN_ADDR,
862 SPAPR_PCI_MEM_WIN_SIZE,
863 SPAPR_PCI_IO_WIN_ADDR,
864 SPAPR_PCI_MSI_WIN_ADDR);
865 phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
866
867 for (i = 0; i < nb_nics; i++) {
868 NICInfo *nd = &nd_table[i];
869
870 if (!nd->model) {
871 nd->model = g_strdup("ibmveth");
872 }
873
874 if (strcmp(nd->model, "ibmveth") == 0) {
875 spapr_vlan_create(spapr->vio_bus, nd);
876 } else {
877 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
878 }
879 }
880
881 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
882 spapr_vscsi_create(spapr->vio_bus);
883 }
884
885 /* Graphics */
886 if (spapr_vga_init(phb->bus)) {
887 spapr->has_graphics = true;
888 }
889
890 if (usb_enabled(spapr->has_graphics)) {
891 pci_create_simple(phb->bus, -1, "pci-ohci");
892 if (spapr->has_graphics) {
893 usbdevice_create("keyboard");
894 usbdevice_create("mouse");
895 }
896 }
897
898 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
899 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
900 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
901 exit(1);
902 }
903
904 if (kernel_filename) {
905 uint64_t lowaddr = 0;
906
907 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
908 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
909 if (kernel_size < 0) {
910 kernel_size = load_image_targphys(kernel_filename,
911 KERNEL_LOAD_ADDR,
912 load_limit - KERNEL_LOAD_ADDR);
913 }
914 if (kernel_size < 0) {
915 fprintf(stderr, "qemu: could not load kernel '%s'\n",
916 kernel_filename);
917 exit(1);
918 }
919
920 /* load initrd */
921 if (initrd_filename) {
922 /* Try to locate the initrd in the gap between the kernel
923 * and the firmware. Add a bit of space just in case
924 */
925 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
926 initrd_size = load_image_targphys(initrd_filename, initrd_base,
927 load_limit - initrd_base);
928 if (initrd_size < 0) {
929 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
930 initrd_filename);
931 exit(1);
932 }
933 } else {
934 initrd_base = 0;
935 initrd_size = 0;
936 }
937 }
938
939 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
940 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
941 if (fw_size < 0) {
942 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
943 exit(1);
944 }
945 g_free(filename);
946
947 spapr->entry_point = 0x100;
948
949 /* Prepare the device tree */
950 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
951 initrd_base, initrd_size,
952 kernel_size,
953 boot_device, kernel_cmdline,
954 spapr->epow_irq);
955 assert(spapr->fdt_skel != NULL);
956 }
957
958 static QEMUMachine spapr_machine = {
959 .name = "pseries",
960 .desc = "pSeries Logical Partition (PAPR compliant)",
961 .init = ppc_spapr_init,
962 .reset = ppc_spapr_reset,
963 .block_default_type = IF_SCSI,
964 .max_cpus = MAX_CPUS,
965 .no_parallel = 1,
966 };
967
968 static void spapr_machine_init(void)
969 {
970 qemu_register_machine(&spapr_machine);
971 }
972
973 machine_init(spapr_machine_init);