]> git.proxmox.com Git - mirror_qemu.git/blob - hw/spapr_pci.c
exec: move include files to include/exec/
[mirror_qemu.git] / hw / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw.h"
26 #include "pci/pci.h"
27 #include "pci/msi.h"
28 #include "pci/msix.h"
29 #include "pci/pci_host.h"
30 #include "hw/spapr.h"
31 #include "hw/spapr_pci.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35
36 #include "hw/pci/pci_bus.h"
37
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN 0
40 #define RTAS_CHANGE_FN 1
41 #define RTAS_RESET_FN 2
42 #define RTAS_CHANGE_MSI_FN 3
43 #define RTAS_CHANGE_MSIX_FN 4
44
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI 1
47 #define RTAS_TYPE_MSIX 2
48
49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50 {
51 sPAPRPHBState *sphb;
52
53 QLIST_FOREACH(sphb, &spapr->phbs, list) {
54 if (sphb->buid != buid) {
55 continue;
56 }
57 return sphb;
58 }
59
60 return NULL;
61 }
62
63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64 uint32_t config_addr)
65 {
66 sPAPRPHBState *sphb = find_phb(spapr, buid);
67 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68 BusState *bus = BUS(phb->bus);
69 BusChild *kid;
70 int devfn = (config_addr >> 8) & 0xFF;
71
72 if (!phb) {
73 return NULL;
74 }
75
76 QTAILQ_FOREACH(kid, &bus->children, sibling) {
77 PCIDevice *dev = (PCIDevice *)kid->child;
78 if (dev->devfn == devfn) {
79 return dev;
80 }
81 }
82
83 return NULL;
84 }
85
86 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
87 {
88 /* This handles the encoding of extended config space addresses */
89 return ((arg >> 20) & 0xf00) | (arg & 0xff);
90 }
91
92 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
93 uint32_t addr, uint32_t size,
94 target_ulong rets)
95 {
96 PCIDevice *pci_dev;
97 uint32_t val;
98
99 if ((size != 1) && (size != 2) && (size != 4)) {
100 /* access must be 1, 2 or 4 bytes */
101 rtas_st(rets, 0, -1);
102 return;
103 }
104
105 pci_dev = find_dev(spapr, buid, addr);
106 addr = rtas_pci_cfgaddr(addr);
107
108 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
109 /* Access must be to a valid device, within bounds and
110 * naturally aligned */
111 rtas_st(rets, 0, -1);
112 return;
113 }
114
115 val = pci_host_config_read_common(pci_dev, addr,
116 pci_config_size(pci_dev), size);
117
118 rtas_st(rets, 0, 0);
119 rtas_st(rets, 1, val);
120 }
121
122 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
123 uint32_t token, uint32_t nargs,
124 target_ulong args,
125 uint32_t nret, target_ulong rets)
126 {
127 uint64_t buid;
128 uint32_t size, addr;
129
130 if ((nargs != 4) || (nret != 2)) {
131 rtas_st(rets, 0, -1);
132 return;
133 }
134
135 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
136 size = rtas_ld(args, 3);
137 addr = rtas_ld(args, 0);
138
139 finish_read_pci_config(spapr, buid, addr, size, rets);
140 }
141
142 static void rtas_read_pci_config(sPAPREnvironment *spapr,
143 uint32_t token, uint32_t nargs,
144 target_ulong args,
145 uint32_t nret, target_ulong rets)
146 {
147 uint32_t size, addr;
148
149 if ((nargs != 2) || (nret != 2)) {
150 rtas_st(rets, 0, -1);
151 return;
152 }
153
154 size = rtas_ld(args, 1);
155 addr = rtas_ld(args, 0);
156
157 finish_read_pci_config(spapr, 0, addr, size, rets);
158 }
159
160 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
161 uint32_t addr, uint32_t size,
162 uint32_t val, target_ulong rets)
163 {
164 PCIDevice *pci_dev;
165
166 if ((size != 1) && (size != 2) && (size != 4)) {
167 /* access must be 1, 2 or 4 bytes */
168 rtas_st(rets, 0, -1);
169 return;
170 }
171
172 pci_dev = find_dev(spapr, buid, addr);
173 addr = rtas_pci_cfgaddr(addr);
174
175 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
176 /* Access must be to a valid device, within bounds and
177 * naturally aligned */
178 rtas_st(rets, 0, -1);
179 return;
180 }
181
182 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
183 val, size);
184
185 rtas_st(rets, 0, 0);
186 }
187
188 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
189 uint32_t token, uint32_t nargs,
190 target_ulong args,
191 uint32_t nret, target_ulong rets)
192 {
193 uint64_t buid;
194 uint32_t val, size, addr;
195
196 if ((nargs != 5) || (nret != 1)) {
197 rtas_st(rets, 0, -1);
198 return;
199 }
200
201 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
202 val = rtas_ld(args, 4);
203 size = rtas_ld(args, 3);
204 addr = rtas_ld(args, 0);
205
206 finish_write_pci_config(spapr, buid, addr, size, val, rets);
207 }
208
209 static void rtas_write_pci_config(sPAPREnvironment *spapr,
210 uint32_t token, uint32_t nargs,
211 target_ulong args,
212 uint32_t nret, target_ulong rets)
213 {
214 uint32_t val, size, addr;
215
216 if ((nargs != 3) || (nret != 1)) {
217 rtas_st(rets, 0, -1);
218 return;
219 }
220
221
222 val = rtas_ld(args, 2);
223 size = rtas_ld(args, 1);
224 addr = rtas_ld(args, 0);
225
226 finish_write_pci_config(spapr, 0, addr, size, val, rets);
227 }
228
229 /*
230 * Find an entry with config_addr or returns the empty one if not found AND
231 * alloc_new is set.
232 * At the moment the msi_table entries are never released so there is
233 * no point to look till the end of the list if we need to find the free entry.
234 */
235 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
236 bool alloc_new)
237 {
238 int i;
239
240 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
241 if (!phb->msi_table[i].nvec) {
242 break;
243 }
244 if (phb->msi_table[i].config_addr == config_addr) {
245 return i;
246 }
247 }
248 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
249 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
250 return i;
251 }
252
253 return -1;
254 }
255
256 /*
257 * Set MSI/MSIX message data.
258 * This is required for msi_notify()/msix_notify() which
259 * will write at the addresses via spapr_msi_write().
260 */
261 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr,
262 bool msix, unsigned req_num)
263 {
264 unsigned i;
265 MSIMessage msg = { .address = addr, .data = 0 };
266
267 if (!msix) {
268 msi_set_message(pdev, msg);
269 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
270 return;
271 }
272
273 for (i = 0; i < req_num; ++i) {
274 msg.address = addr | (i << 2);
275 msix_set_message(pdev, i, msg);
276 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
277 }
278 }
279
280 static void rtas_ibm_change_msi(sPAPREnvironment *spapr,
281 uint32_t token, uint32_t nargs,
282 target_ulong args, uint32_t nret,
283 target_ulong rets)
284 {
285 uint32_t config_addr = rtas_ld(args, 0);
286 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
287 unsigned int func = rtas_ld(args, 3);
288 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
289 unsigned int seq_num = rtas_ld(args, 5);
290 unsigned int ret_intr_type;
291 int ndev, irq;
292 sPAPRPHBState *phb = NULL;
293 PCIDevice *pdev = NULL;
294
295 switch (func) {
296 case RTAS_CHANGE_MSI_FN:
297 case RTAS_CHANGE_FN:
298 ret_intr_type = RTAS_TYPE_MSI;
299 break;
300 case RTAS_CHANGE_MSIX_FN:
301 ret_intr_type = RTAS_TYPE_MSIX;
302 break;
303 default:
304 fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
305 rtas_st(rets, 0, -3); /* Parameter error */
306 return;
307 }
308
309 /* Fins sPAPRPHBState */
310 phb = find_phb(spapr, buid);
311 if (phb) {
312 pdev = find_dev(spapr, buid, config_addr);
313 }
314 if (!phb || !pdev) {
315 rtas_st(rets, 0, -3); /* Parameter error */
316 return;
317 }
318
319 /* Releasing MSIs */
320 if (!req_num) {
321 ndev = spapr_msicfg_find(phb, config_addr, false);
322 if (ndev < 0) {
323 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
324 rtas_st(rets, 0, -1); /* Hardware error */
325 return;
326 }
327 trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
328 rtas_st(rets, 0, 0);
329 rtas_st(rets, 1, 0);
330 return;
331 }
332
333 /* Enabling MSI */
334
335 /* Find a device number in the map to add or reuse the existing one */
336 ndev = spapr_msicfg_find(phb, config_addr, true);
337 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
338 fprintf(stderr, "No free entry for a new MSI device\n");
339 rtas_st(rets, 0, -1); /* Hardware error */
340 return;
341 }
342 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
343
344 /* Check if there is an old config and MSI number has not changed */
345 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
346 /* Unexpected behaviour */
347 fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
348 rtas_st(rets, 0, -1); /* Hardware error */
349 return;
350 }
351
352 /* There is no cached config, allocate MSIs */
353 if (!phb->msi_table[ndev].nvec) {
354 irq = spapr_allocate_irq_block(req_num, false);
355 if (irq < 0) {
356 fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
357 rtas_st(rets, 0, -1); /* Hardware error */
358 return;
359 }
360 phb->msi_table[ndev].irq = irq;
361 phb->msi_table[ndev].nvec = req_num;
362 phb->msi_table[ndev].config_addr = config_addr;
363 }
364
365 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
366 spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
367 ret_intr_type == RTAS_TYPE_MSIX, req_num);
368
369 rtas_st(rets, 0, 0);
370 rtas_st(rets, 1, req_num);
371 rtas_st(rets, 2, ++seq_num);
372 rtas_st(rets, 3, ret_intr_type);
373
374 trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
375 }
376
377 static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr,
378 uint32_t token,
379 uint32_t nargs,
380 target_ulong args,
381 uint32_t nret,
382 target_ulong rets)
383 {
384 uint32_t config_addr = rtas_ld(args, 0);
385 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
386 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
387 int ndev;
388 sPAPRPHBState *phb = NULL;
389
390 /* Fins sPAPRPHBState */
391 phb = find_phb(spapr, buid);
392 if (!phb) {
393 rtas_st(rets, 0, -3); /* Parameter error */
394 return;
395 }
396
397 /* Find device descriptor and start IRQ */
398 ndev = spapr_msicfg_find(phb, config_addr, false);
399 if (ndev < 0) {
400 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
401 rtas_st(rets, 0, -1); /* Hardware error */
402 return;
403 }
404
405 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
406 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
407 intr_src_num);
408
409 rtas_st(rets, 0, 0);
410 rtas_st(rets, 1, intr_src_num);
411 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
412 }
413
414 static int pci_spapr_swizzle(int slot, int pin)
415 {
416 return (slot + pin) % PCI_NUM_PINS;
417 }
418
419 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
420 {
421 /*
422 * Here we need to convert pci_dev + irq_num to some unique value
423 * which is less than number of IRQs on the specific bus (4). We
424 * use standard PCI swizzling, that is (slot number + pin number)
425 * % 4.
426 */
427 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
428 }
429
430 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
431 {
432 /*
433 * Here we use the number returned by pci_spapr_map_irq to find a
434 * corresponding qemu_irq.
435 */
436 sPAPRPHBState *phb = opaque;
437
438 trace_spapr_pci_lsi_set(phb->busname, irq_num, phb->lsi_table[irq_num].irq);
439 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
440 }
441
442 static uint64_t spapr_io_read(void *opaque, hwaddr addr,
443 unsigned size)
444 {
445 switch (size) {
446 case 1:
447 return cpu_inb(addr);
448 case 2:
449 return cpu_inw(addr);
450 case 4:
451 return cpu_inl(addr);
452 }
453 assert(0);
454 }
455
456 static void spapr_io_write(void *opaque, hwaddr addr,
457 uint64_t data, unsigned size)
458 {
459 switch (size) {
460 case 1:
461 cpu_outb(addr, data);
462 return;
463 case 2:
464 cpu_outw(addr, data);
465 return;
466 case 4:
467 cpu_outl(addr, data);
468 return;
469 }
470 assert(0);
471 }
472
473 static const MemoryRegionOps spapr_io_ops = {
474 .endianness = DEVICE_LITTLE_ENDIAN,
475 .read = spapr_io_read,
476 .write = spapr_io_write
477 };
478
479 /*
480 * MSI/MSIX memory region implementation.
481 * The handler handles both MSI and MSIX.
482 * For MSI-X, the vector number is encoded as a part of the address,
483 * data is set to 0.
484 * For MSI, the vector number is encoded in least bits in data.
485 */
486 static void spapr_msi_write(void *opaque, hwaddr addr,
487 uint64_t data, unsigned size)
488 {
489 sPAPRPHBState *phb = opaque;
490 int ndev = addr >> 16;
491 int vec = ((addr & 0xFFFF) >> 2) | data;
492 uint32_t irq = phb->msi_table[ndev].irq + vec;
493
494 trace_spapr_pci_msi_write(addr, data, irq);
495
496 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
497 }
498
499 static const MemoryRegionOps spapr_msi_ops = {
500 /* There is no .read as the read result is undefined by PCI spec */
501 .read = NULL,
502 .write = spapr_msi_write,
503 .endianness = DEVICE_LITTLE_ENDIAN
504 };
505
506 /*
507 * PHB PCI device
508 */
509 static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
510 int devfn)
511 {
512 sPAPRPHBState *phb = opaque;
513
514 return phb->dma;
515 }
516
517 static int spapr_phb_init(SysBusDevice *s)
518 {
519 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
520 PCIHostState *phb = PCI_HOST_BRIDGE(s);
521 char *namebuf;
522 int i;
523 PCIBus *bus;
524
525 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
526 namebuf = alloca(strlen(sphb->dtbusname) + 32);
527
528 /* Initialize memory regions */
529 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
530 memory_region_init(&sphb->memspace, namebuf, INT64_MAX);
531
532 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
533 memory_region_init_alias(&sphb->memwindow, namebuf, &sphb->memspace,
534 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
535 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
536 &sphb->memwindow);
537
538 /* On ppc, we only have MMIO no specific IO space from the CPU
539 * perspective. In theory we ought to be able to embed the PCI IO
540 * memory region direction in the system memory space. However,
541 * if any of the IO BAR subregions use the old_portio mechanism,
542 * that won't be processed properly unless accessed from the
543 * system io address space. This hack to bounce things via
544 * system_io works around the problem until all the users of
545 * old_portion are updated */
546 sprintf(namebuf, "%s.io", sphb->dtbusname);
547 memory_region_init(&sphb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
548 /* FIXME: fix to support multiple PHBs */
549 memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
550
551 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
552 memory_region_init_io(&sphb->iowindow, &spapr_io_ops, sphb,
553 namebuf, SPAPR_PCI_IO_WIN_SIZE);
554 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
555 &sphb->iowindow);
556
557 /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
558 * we need to allocate some memory to catch those writes coming
559 * from msi_notify()/msix_notify() */
560 if (msi_supported) {
561 sprintf(namebuf, "%s.msi", sphb->dtbusname);
562 memory_region_init_io(&sphb->msiwindow, &spapr_msi_ops, sphb,
563 namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
564 memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
565 &sphb->msiwindow);
566 }
567
568 bus = pci_register_bus(DEVICE(s),
569 sphb->busname ? sphb->busname : sphb->dtbusname,
570 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
571 &sphb->memspace, &sphb->iospace,
572 PCI_DEVFN(0, 0), PCI_NUM_PINS);
573 phb->bus = bus;
574
575 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
576 sphb->dma_window_start = 0;
577 sphb->dma_window_size = 0x40000000;
578 sphb->dma = spapr_tce_new_dma_context(sphb->dma_liobn, sphb->dma_window_size);
579 pci_setup_iommu(bus, spapr_pci_dma_context_fn, sphb);
580
581 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
582
583 /* Initialize the LSI table */
584 for (i = 0; i < PCI_NUM_PINS; i++) {
585 uint32_t irq;
586
587 irq = spapr_allocate_lsi(0);
588 if (!irq) {
589 return -1;
590 }
591
592 sphb->lsi_table[i].irq = irq;
593 }
594
595 return 0;
596 }
597
598 static void spapr_phb_reset(DeviceState *qdev)
599 {
600 SysBusDevice *s = sysbus_from_qdev(qdev);
601 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
602
603 /* Reset the IOMMU state */
604 spapr_tce_reset(sphb->dma);
605 }
606
607 static Property spapr_phb_properties[] = {
608 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
609 DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
610 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
611 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
612 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
613 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
614 DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, 0),
615 DEFINE_PROP_END_OF_LIST(),
616 };
617
618 static void spapr_phb_class_init(ObjectClass *klass, void *data)
619 {
620 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
621 DeviceClass *dc = DEVICE_CLASS(klass);
622
623 sdc->init = spapr_phb_init;
624 dc->props = spapr_phb_properties;
625 dc->reset = spapr_phb_reset;
626 }
627
628 static const TypeInfo spapr_phb_info = {
629 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
630 .parent = TYPE_PCI_HOST_BRIDGE,
631 .instance_size = sizeof(sPAPRPHBState),
632 .class_init = spapr_phb_class_init,
633 };
634
635 void spapr_create_phb(sPAPREnvironment *spapr,
636 const char *busname, uint64_t buid,
637 uint64_t mem_win_addr, uint64_t mem_win_size,
638 uint64_t io_win_addr, uint64_t msi_win_addr)
639 {
640 DeviceState *dev;
641
642 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
643
644 if (busname) {
645 qdev_prop_set_string(dev, "busname", g_strdup(busname));
646 }
647 qdev_prop_set_uint64(dev, "buid", buid);
648 qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
649 qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
650 qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
651 qdev_prop_set_uint64(dev, "msi_win_addr", msi_win_addr);
652
653 qdev_init_nofail(dev);
654 }
655
656 /* Macros to operate with address in OF binding to PCI */
657 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
658 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
659 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
660 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
661 #define b_ss(x) b_x((x), 24, 2) /* the space code */
662 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
663 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
664 #define b_fff(x) b_x((x), 8, 3) /* function number */
665 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
666
667 int spapr_populate_pci_dt(sPAPRPHBState *phb,
668 uint32_t xics_phandle,
669 void *fdt)
670 {
671 int bus_off, i, j;
672 char nodename[256];
673 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
674 struct {
675 uint32_t hi;
676 uint64_t child;
677 uint64_t parent;
678 uint64_t size;
679 } QEMU_PACKED ranges[] = {
680 {
681 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
682 cpu_to_be64(phb->io_win_addr),
683 cpu_to_be64(memory_region_size(&phb->iospace)),
684 },
685 {
686 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
687 cpu_to_be64(phb->mem_win_addr),
688 cpu_to_be64(memory_region_size(&phb->memwindow)),
689 },
690 };
691 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
692 uint32_t interrupt_map_mask[] = {
693 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
694 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
695
696 /* Start populating the FDT */
697 sprintf(nodename, "pci@%" PRIx64, phb->buid);
698 bus_off = fdt_add_subnode(fdt, 0, nodename);
699 if (bus_off < 0) {
700 return bus_off;
701 }
702
703 #define _FDT(exp) \
704 do { \
705 int ret = (exp); \
706 if (ret < 0) { \
707 return ret; \
708 } \
709 } while (0)
710
711 /* Write PHB properties */
712 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
713 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
714 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
715 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
716 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
717 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
718 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
719 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
720 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
721 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
722
723 /* Build the interrupt-map, this must matches what is done
724 * in pci_spapr_map_irq
725 */
726 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
727 &interrupt_map_mask, sizeof(interrupt_map_mask)));
728 for (i = 0; i < PCI_SLOT_MAX; i++) {
729 for (j = 0; j < PCI_NUM_PINS; j++) {
730 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
731 int lsi_num = pci_spapr_swizzle(i, j);
732
733 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
734 irqmap[1] = 0;
735 irqmap[2] = 0;
736 irqmap[3] = cpu_to_be32(j+1);
737 irqmap[4] = cpu_to_be32(xics_phandle);
738 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
739 irqmap[6] = cpu_to_be32(0x8);
740 }
741 }
742 /* Write interrupt map */
743 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
744 sizeof(interrupt_map)));
745
746 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
747 phb->dma_liobn, phb->dma_window_start,
748 phb->dma_window_size);
749
750 return 0;
751 }
752
753 void spapr_pci_rtas_init(void)
754 {
755 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
756 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
757 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
758 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
759 if (msi_supported) {
760 spapr_rtas_register("ibm,query-interrupt-source-number",
761 rtas_ibm_query_interrupt_source_number);
762 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
763 }
764 }
765
766 static void spapr_pci_register_types(void)
767 {
768 type_register_static(&spapr_phb_info);
769 }
770
771 type_init(spapr_pci_register_types)