]> git.proxmox.com Git - mirror_qemu.git/blob - hw/spapr_pci.c
8a39f8fe29f8b7c2aa5db0240b18c88c16a14b5e
[mirror_qemu.git] / hw / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw.h"
26 #include "pci.h"
27 #include "pci_host.h"
28 #include "hw/spapr.h"
29 #include "hw/spapr_pci.h"
30 #include "exec-memory.h"
31 #include <libfdt.h>
32
33 #include "hw/pci_internals.h"
34
35 static const uint32_t bars[] = {
36 PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1,
37 PCI_BASE_ADDRESS_2, PCI_BASE_ADDRESS_3,
38 PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5
39 /*, PCI_ROM_ADDRESS*/
40 };
41
42 static PCIDevice *find_dev(sPAPREnvironment *spapr,
43 uint64_t buid, uint32_t config_addr)
44 {
45 DeviceState *qdev;
46 int devfn = (config_addr >> 8) & 0xFF;
47 sPAPRPHBState *phb;
48
49 QLIST_FOREACH(phb, &spapr->phbs, list) {
50 if (phb->buid != buid) {
51 continue;
52 }
53
54 QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
55 PCIDevice *dev = (PCIDevice *)qdev;
56 if (dev->devfn == devfn) {
57 return dev;
58 }
59 }
60 }
61
62 return NULL;
63 }
64
65 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
66 {
67 return ((arg >> 20) & 0xf00) | (arg & 0xff);
68 }
69
70 static uint32_t rtas_read_pci_config_do(PCIDevice *pci_dev, uint32_t addr,
71 uint32_t limit, uint32_t len)
72 {
73 if ((addr + len) <= limit) {
74 return pci_host_config_read_common(pci_dev, addr, limit, len);
75 } else {
76 return ~0x0;
77 }
78 }
79
80 static void rtas_write_pci_config_do(PCIDevice *pci_dev, uint32_t addr,
81 uint32_t limit, uint32_t val,
82 uint32_t len)
83 {
84 if ((addr + len) <= limit) {
85 pci_host_config_write_common(pci_dev, addr, limit, val, len);
86 }
87 }
88
89 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
90 uint32_t token, uint32_t nargs,
91 target_ulong args,
92 uint32_t nret, target_ulong rets)
93 {
94 uint32_t val, size, addr;
95 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
96 PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
97
98 if (!dev) {
99 rtas_st(rets, 0, -1);
100 return;
101 }
102 size = rtas_ld(args, 3);
103 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
104 val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size);
105 rtas_st(rets, 0, 0);
106 rtas_st(rets, 1, val);
107 }
108
109 static void rtas_read_pci_config(sPAPREnvironment *spapr,
110 uint32_t token, uint32_t nargs,
111 target_ulong args,
112 uint32_t nret, target_ulong rets)
113 {
114 uint32_t val, size, addr;
115 PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
116
117 if (!dev) {
118 rtas_st(rets, 0, -1);
119 return;
120 }
121 size = rtas_ld(args, 1);
122 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
123 val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size);
124 rtas_st(rets, 0, 0);
125 rtas_st(rets, 1, val);
126 }
127
128 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
129 uint32_t token, uint32_t nargs,
130 target_ulong args,
131 uint32_t nret, target_ulong rets)
132 {
133 uint32_t val, size, addr;
134 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
135 PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
136
137 if (!dev) {
138 rtas_st(rets, 0, -1);
139 return;
140 }
141 val = rtas_ld(args, 4);
142 size = rtas_ld(args, 3);
143 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
144 rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size);
145 rtas_st(rets, 0, 0);
146 }
147
148 static void rtas_write_pci_config(sPAPREnvironment *spapr,
149 uint32_t token, uint32_t nargs,
150 target_ulong args,
151 uint32_t nret, target_ulong rets)
152 {
153 uint32_t val, size, addr;
154 PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
155
156 if (!dev) {
157 rtas_st(rets, 0, -1);
158 return;
159 }
160 val = rtas_ld(args, 2);
161 size = rtas_ld(args, 1);
162 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
163 rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size);
164 rtas_st(rets, 0, 0);
165 }
166
167 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
168 {
169 /*
170 * Here we need to convert pci_dev + irq_num to some unique value
171 * which is less than number of IRQs on the specific bus (now it
172 * is 16). At the moment irq_num == device_id (number of the
173 * slot?)
174 * FIXME: we should swizzle in fn and irq_num
175 */
176 return (pci_dev->devfn >> 3) % SPAPR_PCI_NUM_LSI;
177 }
178
179 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
180 {
181 /*
182 * Here we use the number returned by pci_spapr_map_irq to find a
183 * corresponding qemu_irq.
184 */
185 sPAPRPHBState *phb = opaque;
186
187 qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
188 }
189
190 static int spapr_phb_init(SysBusDevice *s)
191 {
192 sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
193 int i;
194
195 /* Initialize the LSI table */
196 for (i = 0; i < SPAPR_PCI_NUM_LSI; i++) {
197 qemu_irq qirq;
198 uint32_t num;
199
200 qirq = spapr_allocate_irq(0, &num);
201 if (!qirq) {
202 return -1;
203 }
204
205 phb->lsi_table[i].dt_irq = num;
206 phb->lsi_table[i].qirq = qirq;
207 }
208
209 return 0;
210 }
211
212 static int spapr_main_pci_host_init(PCIDevice *d)
213 {
214 return 0;
215 }
216
217 static void spapr_main_pci_host_class_init(ObjectClass *klass, void *data)
218 {
219 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
220
221 k->init = spapr_main_pci_host_init;
222 }
223
224 static DeviceInfo spapr_main_pci_host_info = {
225 .name = "spapr-pci-host-bridge",
226 .size = sizeof(PCIDevice),
227 .class_init = spapr_main_pci_host_class_init,
228 };
229
230 static void spapr_register_devices(void)
231 {
232 sysbus_register_dev("spapr-pci-host-bridge", sizeof(sPAPRPHBState),
233 spapr_phb_init);
234 pci_qdev_register(&spapr_main_pci_host_info);
235 }
236
237 device_init(spapr_register_devices)
238
239 static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
240 unsigned size)
241 {
242 switch (size) {
243 case 1:
244 return cpu_inb(addr);
245 case 2:
246 return cpu_inw(addr);
247 case 4:
248 return cpu_inl(addr);
249 }
250 assert(0);
251 }
252
253 static void spapr_io_write(void *opaque, target_phys_addr_t addr,
254 uint64_t data, unsigned size)
255 {
256 switch (size) {
257 case 1:
258 cpu_outb(addr, data);
259 return;
260 case 2:
261 cpu_outw(addr, data);
262 return;
263 case 4:
264 cpu_outl(addr, data);
265 return;
266 }
267 assert(0);
268 }
269
270 static MemoryRegionOps spapr_io_ops = {
271 .endianness = DEVICE_LITTLE_ENDIAN,
272 .read = spapr_io_read,
273 .write = spapr_io_write
274 };
275
276 void spapr_create_phb(sPAPREnvironment *spapr,
277 const char *busname, uint64_t buid,
278 uint64_t mem_win_addr, uint64_t mem_win_size,
279 uint64_t io_win_addr)
280 {
281 DeviceState *dev;
282 SysBusDevice *s;
283 sPAPRPHBState *phb;
284 PCIBus *bus;
285 char namebuf[strlen(busname)+11];
286
287 dev = qdev_create(NULL, "spapr-pci-host-bridge");
288 qdev_init_nofail(dev);
289 s = sysbus_from_qdev(dev);
290 phb = FROM_SYSBUS(sPAPRPHBState, s);
291
292 phb->mem_win_addr = mem_win_addr;
293
294 sprintf(namebuf, "%s-mem", busname);
295 memory_region_init(&phb->memspace, namebuf, INT64_MAX);
296
297 sprintf(namebuf, "%s-memwindow", busname);
298 memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
299 SPAPR_PCI_MEM_WIN_BUS_OFFSET, mem_win_size);
300 memory_region_add_subregion(get_system_memory(), mem_win_addr,
301 &phb->memwindow);
302
303 phb->io_win_addr = io_win_addr;
304
305 /* On ppc, we only have MMIO no specific IO space from the CPU
306 * perspective. In theory we ought to be able to embed the PCI IO
307 * memory region direction in the system memory space. However,
308 * if any of the IO BAR subregions use the old_portio mechanism,
309 * that won't be processed properly unless accessed from the
310 * system io address space. This hack to bounce things via
311 * system_io works around the problem until all the users of
312 * old_portion are updated */
313 sprintf(namebuf, "%s-io", busname);
314 memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
315 /* FIXME: fix to support multiple PHBs */
316 memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
317
318 sprintf(namebuf, "%s-iowindow", busname);
319 memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
320 namebuf, SPAPR_PCI_IO_WIN_SIZE);
321 memory_region_add_subregion(get_system_memory(), io_win_addr,
322 &phb->iowindow);
323
324 phb->host_state.bus = bus = pci_register_bus(&phb->busdev.qdev, busname,
325 pci_spapr_set_irq,
326 pci_spapr_map_irq,
327 phb,
328 &phb->memspace, &phb->iospace,
329 PCI_DEVFN(0, 0),
330 SPAPR_PCI_NUM_LSI);
331
332 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
333 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
334 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
335 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
336
337 QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
338
339 /* pci_bus_set_mem_base(bus, mem_va_start - SPAPR_PCI_MEM_BAR_START); */
340 }
341
342 /* Macros to operate with address in OF binding to PCI */
343 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
344 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
345 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
346 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
347 #define b_ss(x) b_x((x), 24, 2) /* the space code */
348 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
349 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
350 #define b_fff(x) b_x((x), 8, 3) /* function number */
351 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
352
353 int spapr_populate_pci_devices(sPAPRPHBState *phb,
354 uint32_t xics_phandle,
355 void *fdt)
356 {
357 PCIBus *bus = phb->host_state.bus;
358 int bus_off, i;
359 char nodename[256];
360 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
361 struct {
362 uint32_t hi;
363 uint64_t child;
364 uint64_t parent;
365 uint64_t size;
366 } __attribute__((packed)) ranges[] = {
367 {
368 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
369 cpu_to_be64(phb->io_win_addr),
370 cpu_to_be64(memory_region_size(&phb->iospace)),
371 },
372 {
373 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
374 cpu_to_be64(phb->mem_win_addr),
375 cpu_to_be64(memory_region_size(&phb->memwindow)),
376 },
377 };
378 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
379 uint32_t interrupt_map_mask[] = {
380 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, 0x0};
381 uint32_t interrupt_map[bus->nirq][7];
382
383 /* Start populating the FDT */
384 sprintf(nodename, "pci@%" PRIx64, phb->buid);
385 bus_off = fdt_add_subnode(fdt, 0, nodename);
386 if (bus_off < 0) {
387 return bus_off;
388 }
389
390 #define _FDT(exp) \
391 do { \
392 int ret = (exp); \
393 if (ret < 0) { \
394 return ret; \
395 } \
396 } while (0)
397
398 /* Write PHB properties */
399 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
400 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
401 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
402 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
403 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
404 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
405 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
406 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
407 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
408 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
409
410 /* Build the interrupt-map, this must matches what is done
411 * in pci_spapr_map_irq
412 */
413 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
414 &interrupt_map_mask, sizeof(interrupt_map_mask)));
415 for (i = 0; i < 7; i++) {
416 uint32_t *irqmap = interrupt_map[i];
417 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
418 irqmap[1] = 0;
419 irqmap[2] = 0;
420 irqmap[3] = 0;
421 irqmap[4] = cpu_to_be32(xics_phandle);
422 irqmap[5] = cpu_to_be32(phb->lsi_table[i % SPAPR_PCI_NUM_LSI].dt_irq);
423 irqmap[6] = cpu_to_be32(0x8);
424 }
425 /* Write interrupt map */
426 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
427 7 * sizeof(interrupt_map[0])));
428
429 return 0;
430 }