]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sparc/sun4m.c
hw/sparc/sun4m: Move each sun4m_hwdef definition in its class_init
[mirror_qemu.git] / hw / sparc / sun4m.c
1 /*
2 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "qemu/datadir.h"
29 #include "qemu-common.h"
30 #include "cpu.h"
31 #include "hw/sysbus.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "hw/sparc/sun4m_iommu.h"
35 #include "hw/rtc/m48t59.h"
36 #include "migration/vmstate.h"
37 #include "hw/sparc/sparc32_dma.h"
38 #include "hw/block/fdc.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "sysemu/sysemu.h"
42 #include "net/net.h"
43 #include "hw/boards.h"
44 #include "hw/scsi/esp.h"
45 #include "hw/nvram/sun_nvram.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/nvram/chrp_nvram.h"
48 #include "hw/nvram/fw_cfg.h"
49 #include "hw/char/escc.h"
50 #include "hw/misc/empty_slot.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/irq.h"
53 #include "hw/or-irq.h"
54 #include "hw/loader.h"
55 #include "elf.h"
56 #include "trace.h"
57 #include "qom/object.h"
58
59 /*
60 * Sun4m architecture was used in the following machines:
61 *
62 * SPARCserver 6xxMP/xx
63 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
64 * SPARCclassic X (4/10)
65 * SPARCstation LX/ZX (4/30)
66 * SPARCstation Voyager
67 * SPARCstation 10/xx, SPARCserver 10/xx
68 * SPARCstation 5, SPARCserver 5
69 * SPARCstation 20/xx, SPARCserver 20
70 * SPARCstation 4
71 *
72 * See for example: http://www.sunhelp.org/faq/sunref1.html
73 */
74
75 #define KERNEL_LOAD_ADDR 0x00004000
76 #define CMDLINE_ADDR 0x007ff000
77 #define INITRD_LOAD_ADDR 0x00800000
78 #define PROM_SIZE_MAX (1 * MiB)
79 #define PROM_VADDR 0xffd00000
80 #define PROM_FILENAME "openbios-sparc32"
81 #define CFG_ADDR 0xd00000510ULL
82 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
83 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
84 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
85
86 #define MAX_CPUS 16
87 #define MAX_PILS 16
88 #define MAX_VSIMMS 4
89
90 #define ESCC_CLOCK 4915200
91
92 struct sun4m_hwdef {
93 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
94 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
95 hwaddr serial_base, fd_base;
96 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
97 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
98 hwaddr bpp_base, dbri_base, sx_base;
99 struct {
100 hwaddr reg_base, vram_base;
101 } vsimm[MAX_VSIMMS];
102 hwaddr ecc_base;
103 uint64_t max_mem;
104 uint32_t ecc_version;
105 uint32_t iommu_version;
106 uint16_t machine_id;
107 uint8_t nvram_machine_id;
108 };
109
110 struct Sun4mMachineClass {
111 /*< private >*/
112 MachineClass parent_obj;
113 /*< public >*/
114 const struct sun4m_hwdef *hwdef;
115 };
116 typedef struct Sun4mMachineClass Sun4mMachineClass;
117
118 #define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
119 DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
120
121 const char *fw_cfg_arch_key_name(uint16_t key)
122 {
123 static const struct {
124 uint16_t key;
125 const char *name;
126 } fw_cfg_arch_wellknown_keys[] = {
127 {FW_CFG_SUN4M_DEPTH, "depth"},
128 {FW_CFG_SUN4M_WIDTH, "width"},
129 {FW_CFG_SUN4M_HEIGHT, "height"},
130 };
131
132 for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
133 if (fw_cfg_arch_wellknown_keys[i].key == key) {
134 return fw_cfg_arch_wellknown_keys[i].name;
135 }
136 }
137 return NULL;
138 }
139
140 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
141 Error **errp)
142 {
143 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
144 }
145
146 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
147 const char *cmdline, const char *boot_devices,
148 ram_addr_t RAM_size, uint32_t kernel_size,
149 int width, int height, int depth,
150 int nvram_machine_id, const char *arch)
151 {
152 unsigned int i;
153 int sysp_end;
154 uint8_t image[0x1ff0];
155 NvramClass *k = NVRAM_GET_CLASS(nvram);
156
157 memset(image, '\0', sizeof(image));
158
159 /* OpenBIOS nvram variables partition */
160 sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
161
162 /* Free space partition */
163 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
164
165 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
166 nvram_machine_id);
167
168 for (i = 0; i < sizeof(image); i++) {
169 (k->write)(nvram, i, image[i]);
170 }
171 }
172
173 void cpu_check_irqs(CPUSPARCState *env)
174 {
175 CPUState *cs;
176
177 /* We should be holding the BQL before we mess with IRQs */
178 g_assert(qemu_mutex_iothread_locked());
179
180 if (env->pil_in && (env->interrupt_index == 0 ||
181 (env->interrupt_index & ~15) == TT_EXTINT)) {
182 unsigned int i;
183
184 for (i = 15; i > 0; i--) {
185 if (env->pil_in & (1 << i)) {
186 int old_interrupt = env->interrupt_index;
187
188 env->interrupt_index = TT_EXTINT | i;
189 if (old_interrupt != env->interrupt_index) {
190 cs = env_cpu(env);
191 trace_sun4m_cpu_interrupt(i);
192 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
193 }
194 break;
195 }
196 }
197 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
198 cs = env_cpu(env);
199 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
200 env->interrupt_index = 0;
201 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
202 }
203 }
204
205 static void cpu_kick_irq(SPARCCPU *cpu)
206 {
207 CPUSPARCState *env = &cpu->env;
208 CPUState *cs = CPU(cpu);
209
210 cs->halted = 0;
211 cpu_check_irqs(env);
212 qemu_cpu_kick(cs);
213 }
214
215 static void cpu_set_irq(void *opaque, int irq, int level)
216 {
217 SPARCCPU *cpu = opaque;
218 CPUSPARCState *env = &cpu->env;
219
220 if (level) {
221 trace_sun4m_cpu_set_irq_raise(irq);
222 env->pil_in |= 1 << irq;
223 cpu_kick_irq(cpu);
224 } else {
225 trace_sun4m_cpu_set_irq_lower(irq);
226 env->pil_in &= ~(1 << irq);
227 cpu_check_irqs(env);
228 }
229 }
230
231 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
232 {
233 }
234
235 static void sun4m_cpu_reset(void *opaque)
236 {
237 SPARCCPU *cpu = opaque;
238 CPUState *cs = CPU(cpu);
239
240 cpu_reset(cs);
241 }
242
243 static void cpu_halt_signal(void *opaque, int irq, int level)
244 {
245 if (level && current_cpu) {
246 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
247 }
248 }
249
250 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
251 {
252 return addr - 0xf0000000ULL;
253 }
254
255 static unsigned long sun4m_load_kernel(const char *kernel_filename,
256 const char *initrd_filename,
257 ram_addr_t RAM_size,
258 uint32_t *initrd_size)
259 {
260 int linux_boot;
261 unsigned int i;
262 long kernel_size;
263 uint8_t *ptr;
264
265 linux_boot = (kernel_filename != NULL);
266
267 kernel_size = 0;
268 if (linux_boot) {
269 int bswap_needed;
270
271 #ifdef BSWAP_NEEDED
272 bswap_needed = 1;
273 #else
274 bswap_needed = 0;
275 #endif
276 kernel_size = load_elf(kernel_filename, NULL,
277 translate_kernel_address, NULL,
278 NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
279 if (kernel_size < 0)
280 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
281 RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
282 TARGET_PAGE_SIZE);
283 if (kernel_size < 0)
284 kernel_size = load_image_targphys(kernel_filename,
285 KERNEL_LOAD_ADDR,
286 RAM_size - KERNEL_LOAD_ADDR);
287 if (kernel_size < 0) {
288 error_report("could not load kernel '%s'", kernel_filename);
289 exit(1);
290 }
291
292 /* load initrd */
293 *initrd_size = 0;
294 if (initrd_filename) {
295 *initrd_size = load_image_targphys(initrd_filename,
296 INITRD_LOAD_ADDR,
297 RAM_size - INITRD_LOAD_ADDR);
298 if ((int)*initrd_size < 0) {
299 error_report("could not load initial ram disk '%s'",
300 initrd_filename);
301 exit(1);
302 }
303 }
304 if (*initrd_size > 0) {
305 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
306 ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
307 if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
308 stl_p(ptr + 16, INITRD_LOAD_ADDR);
309 stl_p(ptr + 20, *initrd_size);
310 break;
311 }
312 }
313 }
314 }
315 return kernel_size;
316 }
317
318 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
319 {
320 DeviceState *dev;
321 SysBusDevice *s;
322
323 dev = qdev_new(TYPE_SUN4M_IOMMU);
324 qdev_prop_set_uint32(dev, "version", version);
325 s = SYS_BUS_DEVICE(dev);
326 sysbus_realize_and_unref(s, &error_fatal);
327 sysbus_connect_irq(s, 0, irq);
328 sysbus_mmio_map(s, 0, addr);
329
330 return s;
331 }
332
333 static void *sparc32_dma_init(hwaddr dma_base,
334 hwaddr esp_base, qemu_irq espdma_irq,
335 hwaddr le_base, qemu_irq ledma_irq, NICInfo *nd)
336 {
337 DeviceState *dma;
338 ESPDMADeviceState *espdma;
339 LEDMADeviceState *ledma;
340 SysBusESPState *esp;
341 SysBusPCNetState *lance;
342
343 dma = qdev_new(TYPE_SPARC32_DMA);
344 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
345 OBJECT(dma), "espdma"));
346 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
347
348 esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
349
350 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
351 OBJECT(dma), "ledma"));
352 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
353
354 lance = SYSBUS_PCNET(object_resolve_path_component(
355 OBJECT(ledma), "lance"));
356 qdev_set_nic_properties(DEVICE(lance), nd);
357
358 sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
359 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
360
361 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
362 scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
363
364 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
365
366 return dma;
367 }
368
369 static DeviceState *slavio_intctl_init(hwaddr addr,
370 hwaddr addrg,
371 qemu_irq **parent_irq)
372 {
373 DeviceState *dev;
374 SysBusDevice *s;
375 unsigned int i, j;
376
377 dev = qdev_new("slavio_intctl");
378
379 s = SYS_BUS_DEVICE(dev);
380 sysbus_realize_and_unref(s, &error_fatal);
381
382 for (i = 0; i < MAX_CPUS; i++) {
383 for (j = 0; j < MAX_PILS; j++) {
384 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
385 }
386 }
387 sysbus_mmio_map(s, 0, addrg);
388 for (i = 0; i < MAX_CPUS; i++) {
389 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
390 }
391
392 return dev;
393 }
394
395 #define SYS_TIMER_OFFSET 0x10000ULL
396 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
397
398 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
399 qemu_irq *cpu_irqs, unsigned int num_cpus)
400 {
401 DeviceState *dev;
402 SysBusDevice *s;
403 unsigned int i;
404
405 dev = qdev_new("slavio_timer");
406 qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
407 s = SYS_BUS_DEVICE(dev);
408 sysbus_realize_and_unref(s, &error_fatal);
409 sysbus_connect_irq(s, 0, master_irq);
410 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
411
412 for (i = 0; i < MAX_CPUS; i++) {
413 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
414 sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
415 }
416 }
417
418 static qemu_irq slavio_system_powerdown;
419
420 static void slavio_powerdown_req(Notifier *n, void *opaque)
421 {
422 qemu_irq_raise(slavio_system_powerdown);
423 }
424
425 static Notifier slavio_system_powerdown_notifier = {
426 .notify = slavio_powerdown_req
427 };
428
429 #define MISC_LEDS 0x01600000
430 #define MISC_CFG 0x01800000
431 #define MISC_DIAG 0x01a00000
432 #define MISC_MDM 0x01b00000
433 #define MISC_SYS 0x01f00000
434
435 static void slavio_misc_init(hwaddr base,
436 hwaddr aux1_base,
437 hwaddr aux2_base, qemu_irq irq,
438 qemu_irq fdc_tc)
439 {
440 DeviceState *dev;
441 SysBusDevice *s;
442
443 dev = qdev_new("slavio_misc");
444 s = SYS_BUS_DEVICE(dev);
445 sysbus_realize_and_unref(s, &error_fatal);
446 if (base) {
447 /* 8 bit registers */
448 /* Slavio control */
449 sysbus_mmio_map(s, 0, base + MISC_CFG);
450 /* Diagnostics */
451 sysbus_mmio_map(s, 1, base + MISC_DIAG);
452 /* Modem control */
453 sysbus_mmio_map(s, 2, base + MISC_MDM);
454 /* 16 bit registers */
455 /* ss600mp diag LEDs */
456 sysbus_mmio_map(s, 3, base + MISC_LEDS);
457 /* 32 bit registers */
458 /* System control */
459 sysbus_mmio_map(s, 4, base + MISC_SYS);
460 }
461 if (aux1_base) {
462 /* AUX 1 (Misc System Functions) */
463 sysbus_mmio_map(s, 5, aux1_base);
464 }
465 if (aux2_base) {
466 /* AUX 2 (Software Powerdown Control) */
467 sysbus_mmio_map(s, 6, aux2_base);
468 }
469 sysbus_connect_irq(s, 0, irq);
470 sysbus_connect_irq(s, 1, fdc_tc);
471 slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
472 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
473 }
474
475 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
476 {
477 DeviceState *dev;
478 SysBusDevice *s;
479
480 dev = qdev_new("eccmemctl");
481 qdev_prop_set_uint32(dev, "version", version);
482 s = SYS_BUS_DEVICE(dev);
483 sysbus_realize_and_unref(s, &error_fatal);
484 sysbus_connect_irq(s, 0, irq);
485 sysbus_mmio_map(s, 0, base);
486 if (version == 0) { // SS-600MP only
487 sysbus_mmio_map(s, 1, base + 0x1000);
488 }
489 }
490
491 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
492 {
493 DeviceState *dev;
494 SysBusDevice *s;
495
496 dev = qdev_new("apc");
497 s = SYS_BUS_DEVICE(dev);
498 sysbus_realize_and_unref(s, &error_fatal);
499 /* Power management (APC) XXX: not a Slavio device */
500 sysbus_mmio_map(s, 0, power_base);
501 sysbus_connect_irq(s, 0, cpu_halt);
502 }
503
504 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
505 int height, int depth)
506 {
507 DeviceState *dev;
508 SysBusDevice *s;
509
510 dev = qdev_new("sun-tcx");
511 qdev_prop_set_uint32(dev, "vram_size", vram_size);
512 qdev_prop_set_uint16(dev, "width", width);
513 qdev_prop_set_uint16(dev, "height", height);
514 qdev_prop_set_uint16(dev, "depth", depth);
515 s = SYS_BUS_DEVICE(dev);
516 sysbus_realize_and_unref(s, &error_fatal);
517
518 /* 10/ROM : FCode ROM */
519 sysbus_mmio_map(s, 0, addr);
520 /* 2/STIP : Stipple */
521 sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
522 /* 3/BLIT : Blitter */
523 sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
524 /* 5/RSTIP : Raw Stipple */
525 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
526 /* 6/RBLIT : Raw Blitter */
527 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
528 /* 7/TEC : Transform Engine */
529 sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
530 /* 8/CMAP : DAC */
531 sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
532 /* 9/THC : */
533 if (depth == 8) {
534 sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
535 } else {
536 sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
537 }
538 /* 11/DHC : */
539 sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
540 /* 12/ALT : */
541 sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
542 /* 0/DFB8 : 8-bit plane */
543 sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
544 /* 1/DFB24 : 24bit plane */
545 sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
546 /* 4/RDFB32: Raw framebuffer. Control plane */
547 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
548 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
549 if (depth == 8) {
550 sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
551 }
552
553 sysbus_connect_irq(s, 0, irq);
554 }
555
556 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
557 int height, int depth)
558 {
559 DeviceState *dev;
560 SysBusDevice *s;
561
562 dev = qdev_new("cgthree");
563 qdev_prop_set_uint32(dev, "vram-size", vram_size);
564 qdev_prop_set_uint16(dev, "width", width);
565 qdev_prop_set_uint16(dev, "height", height);
566 qdev_prop_set_uint16(dev, "depth", depth);
567 s = SYS_BUS_DEVICE(dev);
568 sysbus_realize_and_unref(s, &error_fatal);
569
570 /* FCode ROM */
571 sysbus_mmio_map(s, 0, addr);
572 /* DAC */
573 sysbus_mmio_map(s, 1, addr + 0x400000ULL);
574 /* 8-bit plane */
575 sysbus_mmio_map(s, 2, addr + 0x800000ULL);
576
577 sysbus_connect_irq(s, 0, irq);
578 }
579
580 /* NCR89C100/MACIO Internal ID register */
581
582 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
583
584 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
585
586 static void idreg_init(hwaddr addr)
587 {
588 DeviceState *dev;
589 SysBusDevice *s;
590
591 dev = qdev_new(TYPE_MACIO_ID_REGISTER);
592 s = SYS_BUS_DEVICE(dev);
593 sysbus_realize_and_unref(s, &error_fatal);
594
595 sysbus_mmio_map(s, 0, addr);
596 address_space_write_rom(&address_space_memory, addr,
597 MEMTXATTRS_UNSPECIFIED,
598 idreg_data, sizeof(idreg_data));
599 }
600
601 OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
602
603 struct IDRegState {
604 SysBusDevice parent_obj;
605
606 MemoryRegion mem;
607 };
608
609 static void idreg_realize(DeviceState *ds, Error **errp)
610 {
611 IDRegState *s = MACIO_ID_REGISTER(ds);
612 SysBusDevice *dev = SYS_BUS_DEVICE(ds);
613 Error *local_err = NULL;
614
615 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
616 sizeof(idreg_data), &local_err);
617 if (local_err) {
618 error_propagate(errp, local_err);
619 return;
620 }
621
622 vmstate_register_ram_global(&s->mem);
623 memory_region_set_readonly(&s->mem, true);
624 sysbus_init_mmio(dev, &s->mem);
625 }
626
627 static void idreg_class_init(ObjectClass *oc, void *data)
628 {
629 DeviceClass *dc = DEVICE_CLASS(oc);
630
631 dc->realize = idreg_realize;
632 }
633
634 static const TypeInfo idreg_info = {
635 .name = TYPE_MACIO_ID_REGISTER,
636 .parent = TYPE_SYS_BUS_DEVICE,
637 .instance_size = sizeof(IDRegState),
638 .class_init = idreg_class_init,
639 };
640
641 #define TYPE_TCX_AFX "tcx_afx"
642 OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
643
644 struct AFXState {
645 SysBusDevice parent_obj;
646
647 MemoryRegion mem;
648 };
649
650 /* SS-5 TCX AFX register */
651 static void afx_init(hwaddr addr)
652 {
653 DeviceState *dev;
654 SysBusDevice *s;
655
656 dev = qdev_new(TYPE_TCX_AFX);
657 s = SYS_BUS_DEVICE(dev);
658 sysbus_realize_and_unref(s, &error_fatal);
659
660 sysbus_mmio_map(s, 0, addr);
661 }
662
663 static void afx_realize(DeviceState *ds, Error **errp)
664 {
665 AFXState *s = TCX_AFX(ds);
666 SysBusDevice *dev = SYS_BUS_DEVICE(ds);
667 Error *local_err = NULL;
668
669 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
670 &local_err);
671 if (local_err) {
672 error_propagate(errp, local_err);
673 return;
674 }
675
676 vmstate_register_ram_global(&s->mem);
677 sysbus_init_mmio(dev, &s->mem);
678 }
679
680 static void afx_class_init(ObjectClass *oc, void *data)
681 {
682 DeviceClass *dc = DEVICE_CLASS(oc);
683
684 dc->realize = afx_realize;
685 }
686
687 static const TypeInfo afx_info = {
688 .name = TYPE_TCX_AFX,
689 .parent = TYPE_SYS_BUS_DEVICE,
690 .instance_size = sizeof(AFXState),
691 .class_init = afx_class_init,
692 };
693
694 #define TYPE_OPENPROM "openprom"
695 typedef struct PROMState PROMState;
696 DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
697 TYPE_OPENPROM)
698
699 struct PROMState {
700 SysBusDevice parent_obj;
701
702 MemoryRegion prom;
703 };
704
705 /* Boot PROM (OpenBIOS) */
706 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
707 {
708 hwaddr *base_addr = (hwaddr *)opaque;
709 return addr + *base_addr - PROM_VADDR;
710 }
711
712 static void prom_init(hwaddr addr, const char *bios_name)
713 {
714 DeviceState *dev;
715 SysBusDevice *s;
716 char *filename;
717 int ret;
718
719 dev = qdev_new(TYPE_OPENPROM);
720 s = SYS_BUS_DEVICE(dev);
721 sysbus_realize_and_unref(s, &error_fatal);
722
723 sysbus_mmio_map(s, 0, addr);
724
725 /* load boot prom */
726 if (bios_name == NULL) {
727 bios_name = PROM_FILENAME;
728 }
729 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
730 if (filename) {
731 ret = load_elf(filename, NULL,
732 translate_prom_address, &addr, NULL,
733 NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
734 if (ret < 0 || ret > PROM_SIZE_MAX) {
735 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
736 }
737 g_free(filename);
738 } else {
739 ret = -1;
740 }
741 if (ret < 0 || ret > PROM_SIZE_MAX) {
742 error_report("could not load prom '%s'", bios_name);
743 exit(1);
744 }
745 }
746
747 static void prom_realize(DeviceState *ds, Error **errp)
748 {
749 PROMState *s = OPENPROM(ds);
750 SysBusDevice *dev = SYS_BUS_DEVICE(ds);
751 Error *local_err = NULL;
752
753 memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
754 PROM_SIZE_MAX, &local_err);
755 if (local_err) {
756 error_propagate(errp, local_err);
757 return;
758 }
759
760 vmstate_register_ram_global(&s->prom);
761 memory_region_set_readonly(&s->prom, true);
762 sysbus_init_mmio(dev, &s->prom);
763 }
764
765 static Property prom_properties[] = {
766 {/* end of property list */},
767 };
768
769 static void prom_class_init(ObjectClass *klass, void *data)
770 {
771 DeviceClass *dc = DEVICE_CLASS(klass);
772
773 device_class_set_props(dc, prom_properties);
774 dc->realize = prom_realize;
775 }
776
777 static const TypeInfo prom_info = {
778 .name = TYPE_OPENPROM,
779 .parent = TYPE_SYS_BUS_DEVICE,
780 .instance_size = sizeof(PROMState),
781 .class_init = prom_class_init,
782 };
783
784 #define TYPE_SUN4M_MEMORY "memory"
785 typedef struct RamDevice RamDevice;
786 DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
787 TYPE_SUN4M_MEMORY)
788
789 struct RamDevice {
790 SysBusDevice parent_obj;
791 HostMemoryBackend *memdev;
792 };
793
794 /* System RAM */
795 static void ram_realize(DeviceState *dev, Error **errp)
796 {
797 RamDevice *d = SUN4M_RAM(dev);
798 MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
799
800 sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
801 }
802
803 static void ram_initfn(Object *obj)
804 {
805 RamDevice *d = SUN4M_RAM(obj);
806 object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
807 (Object **)&d->memdev,
808 object_property_allow_set_link,
809 OBJ_PROP_LINK_STRONG);
810 object_property_set_description(obj, "memdev", "Set RAM backend"
811 "Valid value is ID of a hostmem backend");
812 }
813
814 static void ram_class_init(ObjectClass *klass, void *data)
815 {
816 DeviceClass *dc = DEVICE_CLASS(klass);
817
818 dc->realize = ram_realize;
819 }
820
821 static const TypeInfo ram_info = {
822 .name = TYPE_SUN4M_MEMORY,
823 .parent = TYPE_SYS_BUS_DEVICE,
824 .instance_size = sizeof(RamDevice),
825 .instance_init = ram_initfn,
826 .class_init = ram_class_init,
827 };
828
829 static void cpu_devinit(const char *cpu_type, unsigned int id,
830 uint64_t prom_addr, qemu_irq **cpu_irqs)
831 {
832 SPARCCPU *cpu;
833 CPUSPARCState *env;
834
835 cpu = SPARC_CPU(object_new(cpu_type));
836 env = &cpu->env;
837
838 cpu_sparc_set_id(env, id);
839 qemu_register_reset(sun4m_cpu_reset, cpu);
840 object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
841 &error_fatal);
842 qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
843 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
844 env->prom_addr = prom_addr;
845 }
846
847 static void dummy_fdc_tc(void *opaque, int irq, int level)
848 {
849 }
850
851 static void sun4m_hw_init(MachineState *machine)
852 {
853 const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
854 DeviceState *slavio_intctl;
855 unsigned int i;
856 Nvram *nvram;
857 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
858 qemu_irq fdc_tc;
859 unsigned long kernel_size;
860 uint32_t initrd_size;
861 DriveInfo *fd[MAX_FD];
862 FWCfgState *fw_cfg;
863 DeviceState *dev, *ms_kb_orgate, *serial_orgate;
864 SysBusDevice *s;
865 unsigned int smp_cpus = machine->smp.cpus;
866 unsigned int max_cpus = machine->smp.max_cpus;
867 Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id,
868 TYPE_MEMORY_BACKEND, NULL);
869 NICInfo *nd = &nd_table[0];
870
871 if (machine->ram_size > hwdef->max_mem) {
872 error_report("Too much memory for this machine: %" PRId64 ","
873 " maximum %" PRId64,
874 machine->ram_size / MiB, hwdef->max_mem / MiB);
875 exit(1);
876 }
877
878 /* init CPUs */
879 for(i = 0; i < smp_cpus; i++) {
880 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
881 }
882
883 for (i = smp_cpus; i < MAX_CPUS; i++)
884 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
885
886 /* Create and map RAM frontend */
887 dev = qdev_new("memory");
888 object_property_set_link(OBJECT(dev), "memdev", ram_memdev, &error_fatal);
889 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
890 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
891
892 /* models without ECC don't trap when missing ram is accessed */
893 if (!hwdef->ecc_base) {
894 empty_slot_init("ecc", machine->ram_size,
895 hwdef->max_mem - machine->ram_size);
896 }
897
898 prom_init(hwdef->slavio_base, machine->firmware);
899
900 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
901 hwdef->intctl_base + 0x10000ULL,
902 cpu_irqs);
903
904 for (i = 0; i < 32; i++) {
905 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
906 }
907 for (i = 0; i < MAX_CPUS; i++) {
908 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
909 }
910
911 if (hwdef->idreg_base) {
912 idreg_init(hwdef->idreg_base);
913 }
914
915 if (hwdef->afx_base) {
916 afx_init(hwdef->afx_base);
917 }
918
919 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
920
921 if (hwdef->iommu_pad_base) {
922 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
923 Software shouldn't use aliased addresses, neither should it crash
924 when does. Using empty_slot instead of aliasing can help with
925 debugging such accesses */
926 empty_slot_init("iommu.alias",
927 hwdef->iommu_pad_base, hwdef->iommu_pad_len);
928 }
929
930 qemu_check_nic_model(nd, TYPE_LANCE);
931 sparc32_dma_init(hwdef->dma_base,
932 hwdef->esp_base, slavio_irq[18],
933 hwdef->le_base, slavio_irq[16], nd);
934
935 if (graphic_depth != 8 && graphic_depth != 24) {
936 error_report("Unsupported depth: %d", graphic_depth);
937 exit (1);
938 }
939 if (vga_interface_type != VGA_NONE) {
940 if (vga_interface_type == VGA_CG3) {
941 if (graphic_depth != 8) {
942 error_report("Unsupported depth: %d", graphic_depth);
943 exit(1);
944 }
945
946 if (!(graphic_width == 1024 && graphic_height == 768) &&
947 !(graphic_width == 1152 && graphic_height == 900)) {
948 error_report("Unsupported resolution: %d x %d", graphic_width,
949 graphic_height);
950 exit(1);
951 }
952
953 /* sbus irq 5 */
954 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
955 graphic_width, graphic_height, graphic_depth);
956 } else {
957 /* If no display specified, default to TCX */
958 if (graphic_depth != 8 && graphic_depth != 24) {
959 error_report("Unsupported depth: %d", graphic_depth);
960 exit(1);
961 }
962
963 if (!(graphic_width == 1024 && graphic_height == 768)) {
964 error_report("Unsupported resolution: %d x %d",
965 graphic_width, graphic_height);
966 exit(1);
967 }
968
969 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
970 graphic_width, graphic_height, graphic_depth);
971 }
972 }
973
974 for (i = 0; i < MAX_VSIMMS; i++) {
975 /* vsimm registers probed by OBP */
976 if (hwdef->vsimm[i].reg_base) {
977 char *name = g_strdup_printf("vsimm[%d]", i);
978 empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
979 g_free(name);
980 }
981 }
982
983 if (hwdef->sx_base) {
984 create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
985 }
986
987 dev = qdev_new("sysbus-m48t08");
988 qdev_prop_set_int32(dev, "base-year", 1968);
989 s = SYS_BUS_DEVICE(dev);
990 sysbus_realize_and_unref(s, &error_fatal);
991 sysbus_connect_irq(s, 0, slavio_irq[0]);
992 sysbus_mmio_map(s, 0, hwdef->nvram_base);
993 nvram = NVRAM(dev);
994
995 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
996
997 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
998 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
999 dev = qdev_new(TYPE_ESCC);
1000 qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
1001 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
1002 qdev_prop_set_uint32(dev, "it_shift", 1);
1003 qdev_prop_set_chr(dev, "chrB", NULL);
1004 qdev_prop_set_chr(dev, "chrA", NULL);
1005 qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
1006 qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
1007 s = SYS_BUS_DEVICE(dev);
1008 sysbus_realize_and_unref(s, &error_fatal);
1009 sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
1010
1011 /* Logically OR both its IRQs together */
1012 ms_kb_orgate = DEVICE(object_new(TYPE_OR_IRQ));
1013 object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
1014 qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
1015 sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
1016 sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
1017 qdev_connect_gpio_out(DEVICE(ms_kb_orgate), 0, slavio_irq[14]);
1018
1019 dev = qdev_new(TYPE_ESCC);
1020 qdev_prop_set_uint32(dev, "disabled", 0);
1021 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
1022 qdev_prop_set_uint32(dev, "it_shift", 1);
1023 qdev_prop_set_chr(dev, "chrB", serial_hd(1));
1024 qdev_prop_set_chr(dev, "chrA", serial_hd(0));
1025 qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
1026 qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
1027
1028 s = SYS_BUS_DEVICE(dev);
1029 sysbus_realize_and_unref(s, &error_fatal);
1030 sysbus_mmio_map(s, 0, hwdef->serial_base);
1031
1032 /* Logically OR both its IRQs together */
1033 serial_orgate = DEVICE(object_new(TYPE_OR_IRQ));
1034 object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
1035 &error_fatal);
1036 qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
1037 sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
1038 sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
1039 qdev_connect_gpio_out(DEVICE(serial_orgate), 0, slavio_irq[15]);
1040
1041 if (hwdef->apc_base) {
1042 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
1043 }
1044
1045 if (hwdef->fd_base) {
1046 /* there is zero or one floppy drive */
1047 memset(fd, 0, sizeof(fd));
1048 fd[0] = drive_get(IF_FLOPPY, 0, 0);
1049 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
1050 &fdc_tc);
1051 } else {
1052 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
1053 }
1054
1055 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
1056 slavio_irq[30], fdc_tc);
1057
1058 if (hwdef->cs_base) {
1059 sysbus_create_simple("sun-CS4231", hwdef->cs_base,
1060 slavio_irq[5]);
1061 }
1062
1063 if (hwdef->dbri_base) {
1064 /* ISDN chip with attached CS4215 audio codec */
1065 /* prom space */
1066 create_unimplemented_device("sun-DBRI.prom",
1067 hwdef->dbri_base + 0x1000, 0x30);
1068 /* reg space */
1069 create_unimplemented_device("sun-DBRI",
1070 hwdef->dbri_base + 0x10000, 0x100);
1071 }
1072
1073 if (hwdef->bpp_base) {
1074 /* parallel port */
1075 create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
1076 }
1077
1078 initrd_size = 0;
1079 kernel_size = sun4m_load_kernel(machine->kernel_filename,
1080 machine->initrd_filename,
1081 machine->ram_size, &initrd_size);
1082
1083 nvram_init(nvram, (uint8_t *)&nd->macaddr, machine->kernel_cmdline,
1084 machine->boot_order, machine->ram_size, kernel_size,
1085 graphic_width, graphic_height, graphic_depth,
1086 hwdef->nvram_machine_id, "Sun4m");
1087
1088 if (hwdef->ecc_base)
1089 ecc_init(hwdef->ecc_base, slavio_irq[28],
1090 hwdef->ecc_version);
1091
1092 dev = qdev_new(TYPE_FW_CFG_MEM);
1093 fw_cfg = FW_CFG(dev);
1094 qdev_prop_set_uint32(dev, "data_width", 1);
1095 qdev_prop_set_bit(dev, "dma_enabled", false);
1096 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1097 OBJECT(fw_cfg));
1098 s = SYS_BUS_DEVICE(dev);
1099 sysbus_realize_and_unref(s, &error_fatal);
1100 sysbus_mmio_map(s, 0, CFG_ADDR);
1101 sysbus_mmio_map(s, 1, CFG_ADDR + 2);
1102
1103 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1104 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1105 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
1106 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1107 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1108 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1109 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1110 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1111 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1112 if (machine->kernel_cmdline) {
1113 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1114 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1115 machine->kernel_cmdline);
1116 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1117 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1118 strlen(machine->kernel_cmdline) + 1);
1119 } else {
1120 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1121 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1122 }
1123 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1124 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1125 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1126 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1127 }
1128
1129 enum {
1130 ss5_id = 32,
1131 vger_id,
1132 lx_id,
1133 ss4_id,
1134 scls_id,
1135 sbook_id,
1136 ss10_id = 64,
1137 ss20_id,
1138 ss600mp_id,
1139 };
1140
1141 static void sun4m_machine_class_init(ObjectClass *oc, void *data)
1142 {
1143 MachineClass *mc = MACHINE_CLASS(oc);
1144
1145 mc->init = sun4m_hw_init;
1146 mc->block_default_type = IF_SCSI;
1147 mc->default_boot_order = "c";
1148 mc->default_display = "tcx";
1149 mc->default_ram_id = "sun4m.ram";
1150 }
1151
1152 static void ss5_class_init(ObjectClass *oc, void *data)
1153 {
1154 MachineClass *mc = MACHINE_CLASS(oc);
1155 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1156 static const struct sun4m_hwdef ss5_hwdef = {
1157 .iommu_base = 0x10000000,
1158 .iommu_pad_base = 0x10004000,
1159 .iommu_pad_len = 0x0fffb000,
1160 .tcx_base = 0x50000000,
1161 .cs_base = 0x6c000000,
1162 .slavio_base = 0x70000000,
1163 .ms_kb_base = 0x71000000,
1164 .serial_base = 0x71100000,
1165 .nvram_base = 0x71200000,
1166 .fd_base = 0x71400000,
1167 .counter_base = 0x71d00000,
1168 .intctl_base = 0x71e00000,
1169 .idreg_base = 0x78000000,
1170 .dma_base = 0x78400000,
1171 .esp_base = 0x78800000,
1172 .le_base = 0x78c00000,
1173 .apc_base = 0x6a000000,
1174 .afx_base = 0x6e000000,
1175 .aux1_base = 0x71900000,
1176 .aux2_base = 0x71910000,
1177 .nvram_machine_id = 0x80,
1178 .machine_id = ss5_id,
1179 .iommu_version = 0x05000000,
1180 .max_mem = 0x10000000,
1181 };
1182
1183 mc->desc = "Sun4m platform, SPARCstation 5";
1184 mc->is_default = true;
1185 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1186 smc->hwdef = &ss5_hwdef;
1187 }
1188
1189 static void ss10_class_init(ObjectClass *oc, void *data)
1190 {
1191 MachineClass *mc = MACHINE_CLASS(oc);
1192 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1193 static const struct sun4m_hwdef ss10_hwdef = {
1194 .iommu_base = 0xfe0000000ULL,
1195 .tcx_base = 0xe20000000ULL,
1196 .slavio_base = 0xff0000000ULL,
1197 .ms_kb_base = 0xff1000000ULL,
1198 .serial_base = 0xff1100000ULL,
1199 .nvram_base = 0xff1200000ULL,
1200 .fd_base = 0xff1700000ULL,
1201 .counter_base = 0xff1300000ULL,
1202 .intctl_base = 0xff1400000ULL,
1203 .idreg_base = 0xef0000000ULL,
1204 .dma_base = 0xef0400000ULL,
1205 .esp_base = 0xef0800000ULL,
1206 .le_base = 0xef0c00000ULL,
1207 .apc_base = 0xefa000000ULL, /* XXX should not exist */
1208 .aux1_base = 0xff1800000ULL,
1209 .aux2_base = 0xff1a01000ULL,
1210 .ecc_base = 0xf00000000ULL,
1211 .ecc_version = 0x10000000, /* version 0, implementation 1 */
1212 .nvram_machine_id = 0x72,
1213 .machine_id = ss10_id,
1214 .iommu_version = 0x03000000,
1215 .max_mem = 0xf00000000ULL,
1216 };
1217
1218 mc->desc = "Sun4m platform, SPARCstation 10";
1219 mc->max_cpus = 4;
1220 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1221 smc->hwdef = &ss10_hwdef;
1222 }
1223
1224 static void ss600mp_class_init(ObjectClass *oc, void *data)
1225 {
1226 MachineClass *mc = MACHINE_CLASS(oc);
1227 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1228 static const struct sun4m_hwdef ss600mp_hwdef = {
1229 .iommu_base = 0xfe0000000ULL,
1230 .tcx_base = 0xe20000000ULL,
1231 .slavio_base = 0xff0000000ULL,
1232 .ms_kb_base = 0xff1000000ULL,
1233 .serial_base = 0xff1100000ULL,
1234 .nvram_base = 0xff1200000ULL,
1235 .counter_base = 0xff1300000ULL,
1236 .intctl_base = 0xff1400000ULL,
1237 .dma_base = 0xef0081000ULL,
1238 .esp_base = 0xef0080000ULL,
1239 .le_base = 0xef0060000ULL,
1240 .apc_base = 0xefa000000ULL, /* XXX should not exist */
1241 .aux1_base = 0xff1800000ULL,
1242 .aux2_base = 0xff1a01000ULL, /* XXX should not exist */
1243 .ecc_base = 0xf00000000ULL,
1244 .ecc_version = 0x00000000, /* version 0, implementation 0 */
1245 .nvram_machine_id = 0x71,
1246 .machine_id = ss600mp_id,
1247 .iommu_version = 0x01000000,
1248 .max_mem = 0xf00000000ULL,
1249 };
1250
1251 mc->desc = "Sun4m platform, SPARCserver 600MP";
1252 mc->max_cpus = 4;
1253 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1254 smc->hwdef = &ss600mp_hwdef;
1255 }
1256
1257 static void ss20_class_init(ObjectClass *oc, void *data)
1258 {
1259 MachineClass *mc = MACHINE_CLASS(oc);
1260 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1261 static const struct sun4m_hwdef ss20_hwdef = {
1262 .iommu_base = 0xfe0000000ULL,
1263 .tcx_base = 0xe20000000ULL,
1264 .slavio_base = 0xff0000000ULL,
1265 .ms_kb_base = 0xff1000000ULL,
1266 .serial_base = 0xff1100000ULL,
1267 .nvram_base = 0xff1200000ULL,
1268 .fd_base = 0xff1700000ULL,
1269 .counter_base = 0xff1300000ULL,
1270 .intctl_base = 0xff1400000ULL,
1271 .idreg_base = 0xef0000000ULL,
1272 .dma_base = 0xef0400000ULL,
1273 .esp_base = 0xef0800000ULL,
1274 .le_base = 0xef0c00000ULL,
1275 .bpp_base = 0xef4800000ULL,
1276 .apc_base = 0xefa000000ULL, /* XXX should not exist */
1277 .aux1_base = 0xff1800000ULL,
1278 .aux2_base = 0xff1a01000ULL,
1279 .dbri_base = 0xee0000000ULL,
1280 .sx_base = 0xf80000000ULL,
1281 .vsimm = {
1282 {
1283 .reg_base = 0x9c000000ULL,
1284 .vram_base = 0xfc000000ULL
1285 }, {
1286 .reg_base = 0x90000000ULL,
1287 .vram_base = 0xf0000000ULL
1288 }, {
1289 .reg_base = 0x94000000ULL
1290 }, {
1291 .reg_base = 0x98000000ULL
1292 }
1293 },
1294 .ecc_base = 0xf00000000ULL,
1295 .ecc_version = 0x20000000, /* version 0, implementation 2 */
1296 .nvram_machine_id = 0x72,
1297 .machine_id = ss20_id,
1298 .iommu_version = 0x13000000,
1299 .max_mem = 0xf00000000ULL,
1300 };
1301
1302 mc->desc = "Sun4m platform, SPARCstation 20";
1303 mc->max_cpus = 4;
1304 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1305 smc->hwdef = &ss20_hwdef;
1306 }
1307
1308 static void voyager_class_init(ObjectClass *oc, void *data)
1309 {
1310 MachineClass *mc = MACHINE_CLASS(oc);
1311 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1312 static const struct sun4m_hwdef voyager_hwdef = {
1313 .iommu_base = 0x10000000,
1314 .tcx_base = 0x50000000,
1315 .slavio_base = 0x70000000,
1316 .ms_kb_base = 0x71000000,
1317 .serial_base = 0x71100000,
1318 .nvram_base = 0x71200000,
1319 .fd_base = 0x71400000,
1320 .counter_base = 0x71d00000,
1321 .intctl_base = 0x71e00000,
1322 .idreg_base = 0x78000000,
1323 .dma_base = 0x78400000,
1324 .esp_base = 0x78800000,
1325 .le_base = 0x78c00000,
1326 .apc_base = 0x71300000, /* pmc */
1327 .aux1_base = 0x71900000,
1328 .aux2_base = 0x71910000,
1329 .nvram_machine_id = 0x80,
1330 .machine_id = vger_id,
1331 .iommu_version = 0x05000000,
1332 .max_mem = 0x10000000,
1333 };
1334
1335 mc->desc = "Sun4m platform, SPARCstation Voyager";
1336 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1337 smc->hwdef = &voyager_hwdef;
1338 }
1339
1340 static void ss_lx_class_init(ObjectClass *oc, void *data)
1341 {
1342 MachineClass *mc = MACHINE_CLASS(oc);
1343 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1344 static const struct sun4m_hwdef ss_lx_hwdef = {
1345 .iommu_base = 0x10000000,
1346 .iommu_pad_base = 0x10004000,
1347 .iommu_pad_len = 0x0fffb000,
1348 .tcx_base = 0x50000000,
1349 .slavio_base = 0x70000000,
1350 .ms_kb_base = 0x71000000,
1351 .serial_base = 0x71100000,
1352 .nvram_base = 0x71200000,
1353 .fd_base = 0x71400000,
1354 .counter_base = 0x71d00000,
1355 .intctl_base = 0x71e00000,
1356 .idreg_base = 0x78000000,
1357 .dma_base = 0x78400000,
1358 .esp_base = 0x78800000,
1359 .le_base = 0x78c00000,
1360 .aux1_base = 0x71900000,
1361 .aux2_base = 0x71910000,
1362 .nvram_machine_id = 0x80,
1363 .machine_id = lx_id,
1364 .iommu_version = 0x04000000,
1365 .max_mem = 0x10000000,
1366 };
1367
1368 mc->desc = "Sun4m platform, SPARCstation LX";
1369 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1370 smc->hwdef = &ss_lx_hwdef;
1371 }
1372
1373 static void ss4_class_init(ObjectClass *oc, void *data)
1374 {
1375 MachineClass *mc = MACHINE_CLASS(oc);
1376 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1377 static const struct sun4m_hwdef ss4_hwdef = {
1378 .iommu_base = 0x10000000,
1379 .tcx_base = 0x50000000,
1380 .cs_base = 0x6c000000,
1381 .slavio_base = 0x70000000,
1382 .ms_kb_base = 0x71000000,
1383 .serial_base = 0x71100000,
1384 .nvram_base = 0x71200000,
1385 .fd_base = 0x71400000,
1386 .counter_base = 0x71d00000,
1387 .intctl_base = 0x71e00000,
1388 .idreg_base = 0x78000000,
1389 .dma_base = 0x78400000,
1390 .esp_base = 0x78800000,
1391 .le_base = 0x78c00000,
1392 .apc_base = 0x6a000000,
1393 .aux1_base = 0x71900000,
1394 .aux2_base = 0x71910000,
1395 .nvram_machine_id = 0x80,
1396 .machine_id = ss4_id,
1397 .iommu_version = 0x05000000,
1398 .max_mem = 0x10000000,
1399 };
1400
1401 mc->desc = "Sun4m platform, SPARCstation 4";
1402 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1403 smc->hwdef = &ss4_hwdef;
1404 }
1405
1406 static void scls_class_init(ObjectClass *oc, void *data)
1407 {
1408 MachineClass *mc = MACHINE_CLASS(oc);
1409 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1410 static const struct sun4m_hwdef scls_hwdef = {
1411 .iommu_base = 0x10000000,
1412 .tcx_base = 0x50000000,
1413 .slavio_base = 0x70000000,
1414 .ms_kb_base = 0x71000000,
1415 .serial_base = 0x71100000,
1416 .nvram_base = 0x71200000,
1417 .fd_base = 0x71400000,
1418 .counter_base = 0x71d00000,
1419 .intctl_base = 0x71e00000,
1420 .idreg_base = 0x78000000,
1421 .dma_base = 0x78400000,
1422 .esp_base = 0x78800000,
1423 .le_base = 0x78c00000,
1424 .apc_base = 0x6a000000,
1425 .aux1_base = 0x71900000,
1426 .aux2_base = 0x71910000,
1427 .nvram_machine_id = 0x80,
1428 .machine_id = scls_id,
1429 .iommu_version = 0x05000000,
1430 .max_mem = 0x10000000,
1431 };
1432
1433 mc->desc = "Sun4m platform, SPARCClassic";
1434 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1435 smc->hwdef = &scls_hwdef;
1436 }
1437
1438 static void sbook_class_init(ObjectClass *oc, void *data)
1439 {
1440 MachineClass *mc = MACHINE_CLASS(oc);
1441 Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
1442 static const struct sun4m_hwdef sbook_hwdef = {
1443 .iommu_base = 0x10000000,
1444 .tcx_base = 0x50000000, /* XXX */
1445 .slavio_base = 0x70000000,
1446 .ms_kb_base = 0x71000000,
1447 .serial_base = 0x71100000,
1448 .nvram_base = 0x71200000,
1449 .fd_base = 0x71400000,
1450 .counter_base = 0x71d00000,
1451 .intctl_base = 0x71e00000,
1452 .idreg_base = 0x78000000,
1453 .dma_base = 0x78400000,
1454 .esp_base = 0x78800000,
1455 .le_base = 0x78c00000,
1456 .apc_base = 0x6a000000,
1457 .aux1_base = 0x71900000,
1458 .aux2_base = 0x71910000,
1459 .nvram_machine_id = 0x80,
1460 .machine_id = sbook_id,
1461 .iommu_version = 0x05000000,
1462 .max_mem = 0x10000000,
1463 };
1464
1465 mc->desc = "Sun4m platform, SPARCbook";
1466 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1467 smc->hwdef = &sbook_hwdef;
1468 }
1469
1470 static const TypeInfo sun4m_machine_types[] = {
1471 {
1472 .name = MACHINE_TYPE_NAME("SS-5"),
1473 .parent = TYPE_SUN4M_MACHINE,
1474 .class_init = ss5_class_init,
1475 }, {
1476 .name = MACHINE_TYPE_NAME("SS-10"),
1477 .parent = TYPE_SUN4M_MACHINE,
1478 .class_init = ss10_class_init,
1479 }, {
1480 .name = MACHINE_TYPE_NAME("SS-600MP"),
1481 .parent = TYPE_SUN4M_MACHINE,
1482 .class_init = ss600mp_class_init,
1483 }, {
1484 .name = MACHINE_TYPE_NAME("SS-20"),
1485 .parent = TYPE_SUN4M_MACHINE,
1486 .class_init = ss20_class_init,
1487 }, {
1488 .name = MACHINE_TYPE_NAME("Voyager"),
1489 .parent = TYPE_SUN4M_MACHINE,
1490 .class_init = voyager_class_init,
1491 }, {
1492 .name = MACHINE_TYPE_NAME("LX"),
1493 .parent = TYPE_SUN4M_MACHINE,
1494 .class_init = ss_lx_class_init,
1495 }, {
1496 .name = MACHINE_TYPE_NAME("SS-4"),
1497 .parent = TYPE_SUN4M_MACHINE,
1498 .class_init = ss4_class_init,
1499 }, {
1500 .name = MACHINE_TYPE_NAME("SPARCClassic"),
1501 .parent = TYPE_SUN4M_MACHINE,
1502 .class_init = scls_class_init,
1503 }, {
1504 .name = MACHINE_TYPE_NAME("SPARCbook"),
1505 .parent = TYPE_SUN4M_MACHINE,
1506 .class_init = sbook_class_init,
1507 }, {
1508 .name = TYPE_SUN4M_MACHINE,
1509 .parent = TYPE_MACHINE,
1510 .class_size = sizeof(Sun4mMachineClass),
1511 .class_init = sun4m_machine_class_init,
1512 .abstract = true,
1513 }
1514 };
1515
1516 DEFINE_TYPES(sun4m_machine_types)
1517
1518 static void sun4m_register_types(void)
1519 {
1520 type_register_static(&idreg_info);
1521 type_register_static(&afx_info);
1522 type_register_static(&prom_info);
1523 type_register_static(&ram_info);
1524 }
1525
1526 type_init(sun4m_register_types)