]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sparc/sun4m.c
hw: explicitly include qemu-common.h and cpu.h
[mirror_qemu.git] / hw / sparc / sun4m.c
1 /*
2 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/sysbus.h"
29 #include "qemu/error-report.h"
30 #include "qemu/timer.h"
31 #include "hw/sparc/sun4m.h"
32 #include "hw/timer/m48t59.h"
33 #include "hw/sparc/sparc32_dma.h"
34 #include "hw/block/fdc.h"
35 #include "sysemu/sysemu.h"
36 #include "net/net.h"
37 #include "hw/boards.h"
38 #include "hw/nvram/openbios_firmware_abi.h"
39 #include "hw/scsi/esp.h"
40 #include "hw/i386/pc.h"
41 #include "hw/isa/isa.h"
42 #include "hw/nvram/fw_cfg.h"
43 #include "hw/char/escc.h"
44 #include "hw/empty_slot.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "sysemu/block-backend.h"
48 #include "trace.h"
49
50 /*
51 * Sun4m architecture was used in the following machines:
52 *
53 * SPARCserver 6xxMP/xx
54 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
55 * SPARCclassic X (4/10)
56 * SPARCstation LX/ZX (4/30)
57 * SPARCstation Voyager
58 * SPARCstation 10/xx, SPARCserver 10/xx
59 * SPARCstation 5, SPARCserver 5
60 * SPARCstation 20/xx, SPARCserver 20
61 * SPARCstation 4
62 *
63 * See for example: http://www.sunhelp.org/faq/sunref1.html
64 */
65
66 #define KERNEL_LOAD_ADDR 0x00004000
67 #define CMDLINE_ADDR 0x007ff000
68 #define INITRD_LOAD_ADDR 0x00800000
69 #define PROM_SIZE_MAX (1024 * 1024)
70 #define PROM_VADDR 0xffd00000
71 #define PROM_FILENAME "openbios-sparc32"
72 #define CFG_ADDR 0xd00000510ULL
73 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
74 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
75 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
76
77 #define MAX_CPUS 16
78 #define MAX_PILS 16
79 #define MAX_VSIMMS 4
80
81 #define ESCC_CLOCK 4915200
82
83 struct sun4m_hwdef {
84 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
85 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
86 hwaddr serial_base, fd_base;
87 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
88 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
89 hwaddr bpp_base, dbri_base, sx_base;
90 struct {
91 hwaddr reg_base, vram_base;
92 } vsimm[MAX_VSIMMS];
93 hwaddr ecc_base;
94 uint64_t max_mem;
95 const char * const default_cpu_model;
96 uint32_t ecc_version;
97 uint32_t iommu_version;
98 uint16_t machine_id;
99 uint8_t nvram_machine_id;
100 };
101
102 void DMA_init(ISABus *bus, int high_page_enable)
103 {
104 }
105
106 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
107 Error **errp)
108 {
109 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
110 }
111
112 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
113 const char *cmdline, const char *boot_devices,
114 ram_addr_t RAM_size, uint32_t kernel_size,
115 int width, int height, int depth,
116 int nvram_machine_id, const char *arch)
117 {
118 unsigned int i;
119 uint32_t start, end;
120 uint8_t image[0x1ff0];
121 struct OpenBIOS_nvpart_v1 *part_header;
122 NvramClass *k = NVRAM_GET_CLASS(nvram);
123
124 memset(image, '\0', sizeof(image));
125
126 start = 0;
127
128 // OpenBIOS nvram variables
129 // Variable partition
130 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
131 part_header->signature = OPENBIOS_PART_SYSTEM;
132 pstrcpy(part_header->name, sizeof(part_header->name), "system");
133
134 end = start + sizeof(struct OpenBIOS_nvpart_v1);
135 for (i = 0; i < nb_prom_envs; i++)
136 end = OpenBIOS_set_var(image, end, prom_envs[i]);
137
138 // End marker
139 image[end++] = '\0';
140
141 end = start + ((end - start + 15) & ~15);
142 OpenBIOS_finish_partition(part_header, end - start);
143
144 // free partition
145 start = end;
146 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
147 part_header->signature = OPENBIOS_PART_FREE;
148 pstrcpy(part_header->name, sizeof(part_header->name), "free");
149
150 end = 0x1fd0;
151 OpenBIOS_finish_partition(part_header, end - start);
152
153 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
154 nvram_machine_id);
155
156 for (i = 0; i < sizeof(image); i++) {
157 (k->write)(nvram, i, image[i]);
158 }
159 }
160
161 static DeviceState *slavio_intctl;
162
163 void sun4m_hmp_info_pic(Monitor *mon, const QDict *qdict)
164 {
165 if (slavio_intctl)
166 slavio_pic_info(mon, slavio_intctl);
167 }
168
169 void sun4m_hmp_info_irq(Monitor *mon, const QDict *qdict)
170 {
171 if (slavio_intctl)
172 slavio_irq_info(mon, slavio_intctl);
173 }
174
175 void cpu_check_irqs(CPUSPARCState *env)
176 {
177 CPUState *cs;
178
179 if (env->pil_in && (env->interrupt_index == 0 ||
180 (env->interrupt_index & ~15) == TT_EXTINT)) {
181 unsigned int i;
182
183 for (i = 15; i > 0; i--) {
184 if (env->pil_in & (1 << i)) {
185 int old_interrupt = env->interrupt_index;
186
187 env->interrupt_index = TT_EXTINT | i;
188 if (old_interrupt != env->interrupt_index) {
189 cs = CPU(sparc_env_get_cpu(env));
190 trace_sun4m_cpu_interrupt(i);
191 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192 }
193 break;
194 }
195 }
196 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
197 cs = CPU(sparc_env_get_cpu(env));
198 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
199 env->interrupt_index = 0;
200 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
201 }
202 }
203
204 static void cpu_kick_irq(SPARCCPU *cpu)
205 {
206 CPUSPARCState *env = &cpu->env;
207 CPUState *cs = CPU(cpu);
208
209 cs->halted = 0;
210 cpu_check_irqs(env);
211 qemu_cpu_kick(cs);
212 }
213
214 static void cpu_set_irq(void *opaque, int irq, int level)
215 {
216 SPARCCPU *cpu = opaque;
217 CPUSPARCState *env = &cpu->env;
218
219 if (level) {
220 trace_sun4m_cpu_set_irq_raise(irq);
221 env->pil_in |= 1 << irq;
222 cpu_kick_irq(cpu);
223 } else {
224 trace_sun4m_cpu_set_irq_lower(irq);
225 env->pil_in &= ~(1 << irq);
226 cpu_check_irqs(env);
227 }
228 }
229
230 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
231 {
232 }
233
234 static void main_cpu_reset(void *opaque)
235 {
236 SPARCCPU *cpu = opaque;
237 CPUState *cs = CPU(cpu);
238
239 cpu_reset(cs);
240 cs->halted = 0;
241 }
242
243 static void secondary_cpu_reset(void *opaque)
244 {
245 SPARCCPU *cpu = opaque;
246 CPUState *cs = CPU(cpu);
247
248 cpu_reset(cs);
249 cs->halted = 1;
250 }
251
252 static void cpu_halt_signal(void *opaque, int irq, int level)
253 {
254 if (level && current_cpu) {
255 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
256 }
257 }
258
259 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
260 {
261 return addr - 0xf0000000ULL;
262 }
263
264 static unsigned long sun4m_load_kernel(const char *kernel_filename,
265 const char *initrd_filename,
266 ram_addr_t RAM_size)
267 {
268 int linux_boot;
269 unsigned int i;
270 long initrd_size, kernel_size;
271 uint8_t *ptr;
272
273 linux_boot = (kernel_filename != NULL);
274
275 kernel_size = 0;
276 if (linux_boot) {
277 int bswap_needed;
278
279 #ifdef BSWAP_NEEDED
280 bswap_needed = 1;
281 #else
282 bswap_needed = 0;
283 #endif
284 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
285 NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
286 if (kernel_size < 0)
287 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
288 RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
289 TARGET_PAGE_SIZE);
290 if (kernel_size < 0)
291 kernel_size = load_image_targphys(kernel_filename,
292 KERNEL_LOAD_ADDR,
293 RAM_size - KERNEL_LOAD_ADDR);
294 if (kernel_size < 0) {
295 fprintf(stderr, "qemu: could not load kernel '%s'\n",
296 kernel_filename);
297 exit(1);
298 }
299
300 /* load initrd */
301 initrd_size = 0;
302 if (initrd_filename) {
303 initrd_size = load_image_targphys(initrd_filename,
304 INITRD_LOAD_ADDR,
305 RAM_size - INITRD_LOAD_ADDR);
306 if (initrd_size < 0) {
307 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
308 initrd_filename);
309 exit(1);
310 }
311 }
312 if (initrd_size > 0) {
313 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
314 ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
315 if (ldl_p(ptr) == 0x48647253) { // HdrS
316 stl_p(ptr + 16, INITRD_LOAD_ADDR);
317 stl_p(ptr + 20, initrd_size);
318 break;
319 }
320 }
321 }
322 }
323 return kernel_size;
324 }
325
326 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
327 {
328 DeviceState *dev;
329 SysBusDevice *s;
330
331 dev = qdev_create(NULL, "iommu");
332 qdev_prop_set_uint32(dev, "version", version);
333 qdev_init_nofail(dev);
334 s = SYS_BUS_DEVICE(dev);
335 sysbus_connect_irq(s, 0, irq);
336 sysbus_mmio_map(s, 0, addr);
337
338 return s;
339 }
340
341 static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq,
342 void *iommu, qemu_irq *dev_irq, int is_ledma)
343 {
344 DeviceState *dev;
345 SysBusDevice *s;
346
347 dev = qdev_create(NULL, "sparc32_dma");
348 qdev_prop_set_ptr(dev, "iommu_opaque", iommu);
349 qdev_prop_set_uint32(dev, "is_ledma", is_ledma);
350 qdev_init_nofail(dev);
351 s = SYS_BUS_DEVICE(dev);
352 sysbus_connect_irq(s, 0, parent_irq);
353 *dev_irq = qdev_get_gpio_in(dev, 0);
354 sysbus_mmio_map(s, 0, daddr);
355
356 return s;
357 }
358
359 static void lance_init(NICInfo *nd, hwaddr leaddr,
360 void *dma_opaque, qemu_irq irq)
361 {
362 DeviceState *dev;
363 SysBusDevice *s;
364 qemu_irq reset;
365
366 qemu_check_nic_model(&nd_table[0], "lance");
367
368 dev = qdev_create(NULL, "lance");
369 qdev_set_nic_properties(dev, nd);
370 qdev_prop_set_ptr(dev, "dma", dma_opaque);
371 qdev_init_nofail(dev);
372 s = SYS_BUS_DEVICE(dev);
373 sysbus_mmio_map(s, 0, leaddr);
374 sysbus_connect_irq(s, 0, irq);
375 reset = qdev_get_gpio_in(dev, 0);
376 qdev_connect_gpio_out(dma_opaque, 0, reset);
377 }
378
379 static DeviceState *slavio_intctl_init(hwaddr addr,
380 hwaddr addrg,
381 qemu_irq **parent_irq)
382 {
383 DeviceState *dev;
384 SysBusDevice *s;
385 unsigned int i, j;
386
387 dev = qdev_create(NULL, "slavio_intctl");
388 qdev_init_nofail(dev);
389
390 s = SYS_BUS_DEVICE(dev);
391
392 for (i = 0; i < MAX_CPUS; i++) {
393 for (j = 0; j < MAX_PILS; j++) {
394 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
395 }
396 }
397 sysbus_mmio_map(s, 0, addrg);
398 for (i = 0; i < MAX_CPUS; i++) {
399 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
400 }
401
402 return dev;
403 }
404
405 #define SYS_TIMER_OFFSET 0x10000ULL
406 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
407
408 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
409 qemu_irq *cpu_irqs, unsigned int num_cpus)
410 {
411 DeviceState *dev;
412 SysBusDevice *s;
413 unsigned int i;
414
415 dev = qdev_create(NULL, "slavio_timer");
416 qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
417 qdev_init_nofail(dev);
418 s = SYS_BUS_DEVICE(dev);
419 sysbus_connect_irq(s, 0, master_irq);
420 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
421
422 for (i = 0; i < MAX_CPUS; i++) {
423 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
424 sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
425 }
426 }
427
428 static qemu_irq slavio_system_powerdown;
429
430 static void slavio_powerdown_req(Notifier *n, void *opaque)
431 {
432 qemu_irq_raise(slavio_system_powerdown);
433 }
434
435 static Notifier slavio_system_powerdown_notifier = {
436 .notify = slavio_powerdown_req
437 };
438
439 #define MISC_LEDS 0x01600000
440 #define MISC_CFG 0x01800000
441 #define MISC_DIAG 0x01a00000
442 #define MISC_MDM 0x01b00000
443 #define MISC_SYS 0x01f00000
444
445 static void slavio_misc_init(hwaddr base,
446 hwaddr aux1_base,
447 hwaddr aux2_base, qemu_irq irq,
448 qemu_irq fdc_tc)
449 {
450 DeviceState *dev;
451 SysBusDevice *s;
452
453 dev = qdev_create(NULL, "slavio_misc");
454 qdev_init_nofail(dev);
455 s = SYS_BUS_DEVICE(dev);
456 if (base) {
457 /* 8 bit registers */
458 /* Slavio control */
459 sysbus_mmio_map(s, 0, base + MISC_CFG);
460 /* Diagnostics */
461 sysbus_mmio_map(s, 1, base + MISC_DIAG);
462 /* Modem control */
463 sysbus_mmio_map(s, 2, base + MISC_MDM);
464 /* 16 bit registers */
465 /* ss600mp diag LEDs */
466 sysbus_mmio_map(s, 3, base + MISC_LEDS);
467 /* 32 bit registers */
468 /* System control */
469 sysbus_mmio_map(s, 4, base + MISC_SYS);
470 }
471 if (aux1_base) {
472 /* AUX 1 (Misc System Functions) */
473 sysbus_mmio_map(s, 5, aux1_base);
474 }
475 if (aux2_base) {
476 /* AUX 2 (Software Powerdown Control) */
477 sysbus_mmio_map(s, 6, aux2_base);
478 }
479 sysbus_connect_irq(s, 0, irq);
480 sysbus_connect_irq(s, 1, fdc_tc);
481 slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
482 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
483 }
484
485 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
486 {
487 DeviceState *dev;
488 SysBusDevice *s;
489
490 dev = qdev_create(NULL, "eccmemctl");
491 qdev_prop_set_uint32(dev, "version", version);
492 qdev_init_nofail(dev);
493 s = SYS_BUS_DEVICE(dev);
494 sysbus_connect_irq(s, 0, irq);
495 sysbus_mmio_map(s, 0, base);
496 if (version == 0) { // SS-600MP only
497 sysbus_mmio_map(s, 1, base + 0x1000);
498 }
499 }
500
501 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
502 {
503 DeviceState *dev;
504 SysBusDevice *s;
505
506 dev = qdev_create(NULL, "apc");
507 qdev_init_nofail(dev);
508 s = SYS_BUS_DEVICE(dev);
509 /* Power management (APC) XXX: not a Slavio device */
510 sysbus_mmio_map(s, 0, power_base);
511 sysbus_connect_irq(s, 0, cpu_halt);
512 }
513
514 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
515 int height, int depth)
516 {
517 DeviceState *dev;
518 SysBusDevice *s;
519
520 dev = qdev_create(NULL, "SUNW,tcx");
521 qdev_prop_set_uint32(dev, "vram_size", vram_size);
522 qdev_prop_set_uint16(dev, "width", width);
523 qdev_prop_set_uint16(dev, "height", height);
524 qdev_prop_set_uint16(dev, "depth", depth);
525 qdev_prop_set_uint64(dev, "prom_addr", addr);
526 qdev_init_nofail(dev);
527 s = SYS_BUS_DEVICE(dev);
528
529 /* 10/ROM : FCode ROM */
530 sysbus_mmio_map(s, 0, addr);
531 /* 2/STIP : Stipple */
532 sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
533 /* 3/BLIT : Blitter */
534 sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
535 /* 5/RSTIP : Raw Stipple */
536 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
537 /* 6/RBLIT : Raw Blitter */
538 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
539 /* 7/TEC : Transform Engine */
540 sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
541 /* 8/CMAP : DAC */
542 sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
543 /* 9/THC : */
544 if (depth == 8) {
545 sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
546 } else {
547 sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
548 }
549 /* 11/DHC : */
550 sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
551 /* 12/ALT : */
552 sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
553 /* 0/DFB8 : 8-bit plane */
554 sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
555 /* 1/DFB24 : 24bit plane */
556 sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
557 /* 4/RDFB32: Raw framebuffer. Control plane */
558 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
559 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
560 if (depth == 8) {
561 sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
562 }
563
564 sysbus_connect_irq(s, 0, irq);
565 }
566
567 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
568 int height, int depth)
569 {
570 DeviceState *dev;
571 SysBusDevice *s;
572
573 dev = qdev_create(NULL, "cgthree");
574 qdev_prop_set_uint32(dev, "vram-size", vram_size);
575 qdev_prop_set_uint16(dev, "width", width);
576 qdev_prop_set_uint16(dev, "height", height);
577 qdev_prop_set_uint16(dev, "depth", depth);
578 qdev_prop_set_uint64(dev, "prom-addr", addr);
579 qdev_init_nofail(dev);
580 s = SYS_BUS_DEVICE(dev);
581
582 /* FCode ROM */
583 sysbus_mmio_map(s, 0, addr);
584 /* DAC */
585 sysbus_mmio_map(s, 1, addr + 0x400000ULL);
586 /* 8-bit plane */
587 sysbus_mmio_map(s, 2, addr + 0x800000ULL);
588
589 sysbus_connect_irq(s, 0, irq);
590 }
591
592 /* NCR89C100/MACIO Internal ID register */
593
594 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
595
596 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
597
598 static void idreg_init(hwaddr addr)
599 {
600 DeviceState *dev;
601 SysBusDevice *s;
602
603 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
604 qdev_init_nofail(dev);
605 s = SYS_BUS_DEVICE(dev);
606
607 sysbus_mmio_map(s, 0, addr);
608 cpu_physical_memory_write_rom(&address_space_memory,
609 addr, idreg_data, sizeof(idreg_data));
610 }
611
612 #define MACIO_ID_REGISTER(obj) \
613 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
614
615 typedef struct IDRegState {
616 SysBusDevice parent_obj;
617
618 MemoryRegion mem;
619 } IDRegState;
620
621 static int idreg_init1(SysBusDevice *dev)
622 {
623 IDRegState *s = MACIO_ID_REGISTER(dev);
624
625 memory_region_init_ram(&s->mem, OBJECT(s),
626 "sun4m.idreg", sizeof(idreg_data), &error_fatal);
627 vmstate_register_ram_global(&s->mem);
628 memory_region_set_readonly(&s->mem, true);
629 sysbus_init_mmio(dev, &s->mem);
630 return 0;
631 }
632
633 static void idreg_class_init(ObjectClass *klass, void *data)
634 {
635 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
636
637 k->init = idreg_init1;
638 }
639
640 static const TypeInfo idreg_info = {
641 .name = TYPE_MACIO_ID_REGISTER,
642 .parent = TYPE_SYS_BUS_DEVICE,
643 .instance_size = sizeof(IDRegState),
644 .class_init = idreg_class_init,
645 };
646
647 #define TYPE_TCX_AFX "tcx_afx"
648 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
649
650 typedef struct AFXState {
651 SysBusDevice parent_obj;
652
653 MemoryRegion mem;
654 } AFXState;
655
656 /* SS-5 TCX AFX register */
657 static void afx_init(hwaddr addr)
658 {
659 DeviceState *dev;
660 SysBusDevice *s;
661
662 dev = qdev_create(NULL, TYPE_TCX_AFX);
663 qdev_init_nofail(dev);
664 s = SYS_BUS_DEVICE(dev);
665
666 sysbus_mmio_map(s, 0, addr);
667 }
668
669 static int afx_init1(SysBusDevice *dev)
670 {
671 AFXState *s = TCX_AFX(dev);
672
673 memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4, &error_fatal);
674 vmstate_register_ram_global(&s->mem);
675 sysbus_init_mmio(dev, &s->mem);
676 return 0;
677 }
678
679 static void afx_class_init(ObjectClass *klass, void *data)
680 {
681 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
682
683 k->init = afx_init1;
684 }
685
686 static const TypeInfo afx_info = {
687 .name = TYPE_TCX_AFX,
688 .parent = TYPE_SYS_BUS_DEVICE,
689 .instance_size = sizeof(AFXState),
690 .class_init = afx_class_init,
691 };
692
693 #define TYPE_OPENPROM "openprom"
694 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
695
696 typedef struct PROMState {
697 SysBusDevice parent_obj;
698
699 MemoryRegion prom;
700 } PROMState;
701
702 /* Boot PROM (OpenBIOS) */
703 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
704 {
705 hwaddr *base_addr = (hwaddr *)opaque;
706 return addr + *base_addr - PROM_VADDR;
707 }
708
709 static void prom_init(hwaddr addr, const char *bios_name)
710 {
711 DeviceState *dev;
712 SysBusDevice *s;
713 char *filename;
714 int ret;
715
716 dev = qdev_create(NULL, TYPE_OPENPROM);
717 qdev_init_nofail(dev);
718 s = SYS_BUS_DEVICE(dev);
719
720 sysbus_mmio_map(s, 0, addr);
721
722 /* load boot prom */
723 if (bios_name == NULL) {
724 bios_name = PROM_FILENAME;
725 }
726 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
727 if (filename) {
728 ret = load_elf(filename, translate_prom_address, &addr, NULL,
729 NULL, NULL, 1, EM_SPARC, 0, 0);
730 if (ret < 0 || ret > PROM_SIZE_MAX) {
731 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
732 }
733 g_free(filename);
734 } else {
735 ret = -1;
736 }
737 if (ret < 0 || ret > PROM_SIZE_MAX) {
738 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
739 exit(1);
740 }
741 }
742
743 static int prom_init1(SysBusDevice *dev)
744 {
745 PROMState *s = OPENPROM(dev);
746
747 memory_region_init_ram(&s->prom, OBJECT(s), "sun4m.prom", PROM_SIZE_MAX,
748 &error_fatal);
749 vmstate_register_ram_global(&s->prom);
750 memory_region_set_readonly(&s->prom, true);
751 sysbus_init_mmio(dev, &s->prom);
752 return 0;
753 }
754
755 static Property prom_properties[] = {
756 {/* end of property list */},
757 };
758
759 static void prom_class_init(ObjectClass *klass, void *data)
760 {
761 DeviceClass *dc = DEVICE_CLASS(klass);
762 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
763
764 k->init = prom_init1;
765 dc->props = prom_properties;
766 }
767
768 static const TypeInfo prom_info = {
769 .name = TYPE_OPENPROM,
770 .parent = TYPE_SYS_BUS_DEVICE,
771 .instance_size = sizeof(PROMState),
772 .class_init = prom_class_init,
773 };
774
775 #define TYPE_SUN4M_MEMORY "memory"
776 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
777
778 typedef struct RamDevice {
779 SysBusDevice parent_obj;
780
781 MemoryRegion ram;
782 uint64_t size;
783 } RamDevice;
784
785 /* System RAM */
786 static int ram_init1(SysBusDevice *dev)
787 {
788 RamDevice *d = SUN4M_RAM(dev);
789
790 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
791 d->size);
792 sysbus_init_mmio(dev, &d->ram);
793 return 0;
794 }
795
796 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
797 uint64_t max_mem)
798 {
799 DeviceState *dev;
800 SysBusDevice *s;
801 RamDevice *d;
802
803 /* allocate RAM */
804 if ((uint64_t)RAM_size > max_mem) {
805 fprintf(stderr,
806 "qemu: Too much memory for this machine: %d, maximum %d\n",
807 (unsigned int)(RAM_size / (1024 * 1024)),
808 (unsigned int)(max_mem / (1024 * 1024)));
809 exit(1);
810 }
811 dev = qdev_create(NULL, "memory");
812 s = SYS_BUS_DEVICE(dev);
813
814 d = SUN4M_RAM(dev);
815 d->size = RAM_size;
816 qdev_init_nofail(dev);
817
818 sysbus_mmio_map(s, 0, addr);
819 }
820
821 static Property ram_properties[] = {
822 DEFINE_PROP_UINT64("size", RamDevice, size, 0),
823 DEFINE_PROP_END_OF_LIST(),
824 };
825
826 static void ram_class_init(ObjectClass *klass, void *data)
827 {
828 DeviceClass *dc = DEVICE_CLASS(klass);
829 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
830
831 k->init = ram_init1;
832 dc->props = ram_properties;
833 }
834
835 static const TypeInfo ram_info = {
836 .name = TYPE_SUN4M_MEMORY,
837 .parent = TYPE_SYS_BUS_DEVICE,
838 .instance_size = sizeof(RamDevice),
839 .class_init = ram_class_init,
840 };
841
842 static void cpu_devinit(const char *cpu_model, unsigned int id,
843 uint64_t prom_addr, qemu_irq **cpu_irqs)
844 {
845 CPUState *cs;
846 SPARCCPU *cpu;
847 CPUSPARCState *env;
848
849 cpu = cpu_sparc_init(cpu_model);
850 if (cpu == NULL) {
851 fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
852 exit(1);
853 }
854 env = &cpu->env;
855
856 cpu_sparc_set_id(env, id);
857 if (id == 0) {
858 qemu_register_reset(main_cpu_reset, cpu);
859 } else {
860 qemu_register_reset(secondary_cpu_reset, cpu);
861 cs = CPU(cpu);
862 cs->halted = 1;
863 }
864 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
865 env->prom_addr = prom_addr;
866 }
867
868 static void dummy_fdc_tc(void *opaque, int irq, int level)
869 {
870 }
871
872 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
873 MachineState *machine)
874 {
875 const char *cpu_model = machine->cpu_model;
876 unsigned int i;
877 void *iommu, *espdma, *ledma, *nvram;
878 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS],
879 espdma_irq, ledma_irq;
880 qemu_irq esp_reset, dma_enable;
881 qemu_irq fdc_tc;
882 unsigned long kernel_size;
883 DriveInfo *fd[MAX_FD];
884 FWCfgState *fw_cfg;
885 unsigned int num_vsimms;
886
887 /* init CPUs */
888 if (!cpu_model)
889 cpu_model = hwdef->default_cpu_model;
890
891 for(i = 0; i < smp_cpus; i++) {
892 cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]);
893 }
894
895 for (i = smp_cpus; i < MAX_CPUS; i++)
896 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
897
898
899 /* set up devices */
900 ram_init(0, machine->ram_size, hwdef->max_mem);
901 /* models without ECC don't trap when missing ram is accessed */
902 if (!hwdef->ecc_base) {
903 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
904 }
905
906 prom_init(hwdef->slavio_base, bios_name);
907
908 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
909 hwdef->intctl_base + 0x10000ULL,
910 cpu_irqs);
911
912 for (i = 0; i < 32; i++) {
913 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
914 }
915 for (i = 0; i < MAX_CPUS; i++) {
916 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
917 }
918
919 if (hwdef->idreg_base) {
920 idreg_init(hwdef->idreg_base);
921 }
922
923 if (hwdef->afx_base) {
924 afx_init(hwdef->afx_base);
925 }
926
927 iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
928 slavio_irq[30]);
929
930 if (hwdef->iommu_pad_base) {
931 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
932 Software shouldn't use aliased addresses, neither should it crash
933 when does. Using empty_slot instead of aliasing can help with
934 debugging such accesses */
935 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
936 }
937
938 espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18],
939 iommu, &espdma_irq, 0);
940
941 ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
942 slavio_irq[16], iommu, &ledma_irq, 1);
943
944 if (graphic_depth != 8 && graphic_depth != 24) {
945 error_report("Unsupported depth: %d", graphic_depth);
946 exit (1);
947 }
948 num_vsimms = 0;
949 if (num_vsimms == 0) {
950 if (vga_interface_type == VGA_CG3) {
951 if (graphic_depth != 8) {
952 error_report("Unsupported depth: %d", graphic_depth);
953 exit(1);
954 }
955
956 if (!(graphic_width == 1024 && graphic_height == 768) &&
957 !(graphic_width == 1152 && graphic_height == 900)) {
958 error_report("Unsupported resolution: %d x %d", graphic_width,
959 graphic_height);
960 exit(1);
961 }
962
963 /* sbus irq 5 */
964 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
965 graphic_width, graphic_height, graphic_depth);
966 } else {
967 /* If no display specified, default to TCX */
968 if (graphic_depth != 8 && graphic_depth != 24) {
969 error_report("Unsupported depth: %d", graphic_depth);
970 exit(1);
971 }
972
973 if (!(graphic_width == 1024 && graphic_height == 768)) {
974 error_report("Unsupported resolution: %d x %d",
975 graphic_width, graphic_height);
976 exit(1);
977 }
978
979 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
980 graphic_width, graphic_height, graphic_depth);
981 }
982 }
983
984 for (i = num_vsimms; i < MAX_VSIMMS; i++) {
985 /* vsimm registers probed by OBP */
986 if (hwdef->vsimm[i].reg_base) {
987 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
988 }
989 }
990
991 if (hwdef->sx_base) {
992 empty_slot_init(hwdef->sx_base, 0x2000);
993 }
994
995 lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
996
997 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
998
999 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
1000
1001 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
1002 display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
1003 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
1004 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
1005 escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
1006 serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
1007
1008 if (hwdef->apc_base) {
1009 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
1010 }
1011
1012 if (hwdef->fd_base) {
1013 /* there is zero or one floppy drive */
1014 memset(fd, 0, sizeof(fd));
1015 fd[0] = drive_get(IF_FLOPPY, 0, 0);
1016 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
1017 &fdc_tc);
1018 } else {
1019 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
1020 }
1021
1022 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
1023 slavio_irq[30], fdc_tc);
1024
1025 if (drive_get_max_bus(IF_SCSI) > 0) {
1026 fprintf(stderr, "qemu: too many SCSI bus\n");
1027 exit(1);
1028 }
1029
1030 esp_init(hwdef->esp_base, 2,
1031 espdma_memory_read, espdma_memory_write,
1032 espdma, espdma_irq, &esp_reset, &dma_enable);
1033
1034 qdev_connect_gpio_out(espdma, 0, esp_reset);
1035 qdev_connect_gpio_out(espdma, 1, dma_enable);
1036
1037 if (hwdef->cs_base) {
1038 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
1039 slavio_irq[5]);
1040 }
1041
1042 if (hwdef->dbri_base) {
1043 /* ISDN chip with attached CS4215 audio codec */
1044 /* prom space */
1045 empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
1046 /* reg space */
1047 empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
1048 }
1049
1050 if (hwdef->bpp_base) {
1051 /* parallel port */
1052 empty_slot_init(hwdef->bpp_base, 0x20);
1053 }
1054
1055 kernel_size = sun4m_load_kernel(machine->kernel_filename,
1056 machine->initrd_filename,
1057 machine->ram_size);
1058
1059 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
1060 machine->boot_order, machine->ram_size, kernel_size,
1061 graphic_width, graphic_height, graphic_depth,
1062 hwdef->nvram_machine_id, "Sun4m");
1063
1064 if (hwdef->ecc_base)
1065 ecc_init(hwdef->ecc_base, slavio_irq[28],
1066 hwdef->ecc_version);
1067
1068 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2);
1069 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1070 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1071 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1072 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1073 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1074 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1075 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1076 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1077 if (machine->kernel_cmdline) {
1078 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1079 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1080 machine->kernel_cmdline);
1081 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1082 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1083 strlen(machine->kernel_cmdline) + 1);
1084 } else {
1085 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1086 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1087 }
1088 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1089 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
1090 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1091 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1092 }
1093
1094 enum {
1095 ss5_id = 32,
1096 vger_id,
1097 lx_id,
1098 ss4_id,
1099 scls_id,
1100 sbook_id,
1101 ss10_id = 64,
1102 ss20_id,
1103 ss600mp_id,
1104 };
1105
1106 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1107 /* SS-5 */
1108 {
1109 .iommu_base = 0x10000000,
1110 .iommu_pad_base = 0x10004000,
1111 .iommu_pad_len = 0x0fffb000,
1112 .tcx_base = 0x50000000,
1113 .cs_base = 0x6c000000,
1114 .slavio_base = 0x70000000,
1115 .ms_kb_base = 0x71000000,
1116 .serial_base = 0x71100000,
1117 .nvram_base = 0x71200000,
1118 .fd_base = 0x71400000,
1119 .counter_base = 0x71d00000,
1120 .intctl_base = 0x71e00000,
1121 .idreg_base = 0x78000000,
1122 .dma_base = 0x78400000,
1123 .esp_base = 0x78800000,
1124 .le_base = 0x78c00000,
1125 .apc_base = 0x6a000000,
1126 .afx_base = 0x6e000000,
1127 .aux1_base = 0x71900000,
1128 .aux2_base = 0x71910000,
1129 .nvram_machine_id = 0x80,
1130 .machine_id = ss5_id,
1131 .iommu_version = 0x05000000,
1132 .max_mem = 0x10000000,
1133 .default_cpu_model = "Fujitsu MB86904",
1134 },
1135 /* SS-10 */
1136 {
1137 .iommu_base = 0xfe0000000ULL,
1138 .tcx_base = 0xe20000000ULL,
1139 .slavio_base = 0xff0000000ULL,
1140 .ms_kb_base = 0xff1000000ULL,
1141 .serial_base = 0xff1100000ULL,
1142 .nvram_base = 0xff1200000ULL,
1143 .fd_base = 0xff1700000ULL,
1144 .counter_base = 0xff1300000ULL,
1145 .intctl_base = 0xff1400000ULL,
1146 .idreg_base = 0xef0000000ULL,
1147 .dma_base = 0xef0400000ULL,
1148 .esp_base = 0xef0800000ULL,
1149 .le_base = 0xef0c00000ULL,
1150 .apc_base = 0xefa000000ULL, // XXX should not exist
1151 .aux1_base = 0xff1800000ULL,
1152 .aux2_base = 0xff1a01000ULL,
1153 .ecc_base = 0xf00000000ULL,
1154 .ecc_version = 0x10000000, // version 0, implementation 1
1155 .nvram_machine_id = 0x72,
1156 .machine_id = ss10_id,
1157 .iommu_version = 0x03000000,
1158 .max_mem = 0xf00000000ULL,
1159 .default_cpu_model = "TI SuperSparc II",
1160 },
1161 /* SS-600MP */
1162 {
1163 .iommu_base = 0xfe0000000ULL,
1164 .tcx_base = 0xe20000000ULL,
1165 .slavio_base = 0xff0000000ULL,
1166 .ms_kb_base = 0xff1000000ULL,
1167 .serial_base = 0xff1100000ULL,
1168 .nvram_base = 0xff1200000ULL,
1169 .counter_base = 0xff1300000ULL,
1170 .intctl_base = 0xff1400000ULL,
1171 .dma_base = 0xef0081000ULL,
1172 .esp_base = 0xef0080000ULL,
1173 .le_base = 0xef0060000ULL,
1174 .apc_base = 0xefa000000ULL, // XXX should not exist
1175 .aux1_base = 0xff1800000ULL,
1176 .aux2_base = 0xff1a01000ULL, // XXX should not exist
1177 .ecc_base = 0xf00000000ULL,
1178 .ecc_version = 0x00000000, // version 0, implementation 0
1179 .nvram_machine_id = 0x71,
1180 .machine_id = ss600mp_id,
1181 .iommu_version = 0x01000000,
1182 .max_mem = 0xf00000000ULL,
1183 .default_cpu_model = "TI SuperSparc II",
1184 },
1185 /* SS-20 */
1186 {
1187 .iommu_base = 0xfe0000000ULL,
1188 .tcx_base = 0xe20000000ULL,
1189 .slavio_base = 0xff0000000ULL,
1190 .ms_kb_base = 0xff1000000ULL,
1191 .serial_base = 0xff1100000ULL,
1192 .nvram_base = 0xff1200000ULL,
1193 .fd_base = 0xff1700000ULL,
1194 .counter_base = 0xff1300000ULL,
1195 .intctl_base = 0xff1400000ULL,
1196 .idreg_base = 0xef0000000ULL,
1197 .dma_base = 0xef0400000ULL,
1198 .esp_base = 0xef0800000ULL,
1199 .le_base = 0xef0c00000ULL,
1200 .bpp_base = 0xef4800000ULL,
1201 .apc_base = 0xefa000000ULL, // XXX should not exist
1202 .aux1_base = 0xff1800000ULL,
1203 .aux2_base = 0xff1a01000ULL,
1204 .dbri_base = 0xee0000000ULL,
1205 .sx_base = 0xf80000000ULL,
1206 .vsimm = {
1207 {
1208 .reg_base = 0x9c000000ULL,
1209 .vram_base = 0xfc000000ULL
1210 }, {
1211 .reg_base = 0x90000000ULL,
1212 .vram_base = 0xf0000000ULL
1213 }, {
1214 .reg_base = 0x94000000ULL
1215 }, {
1216 .reg_base = 0x98000000ULL
1217 }
1218 },
1219 .ecc_base = 0xf00000000ULL,
1220 .ecc_version = 0x20000000, // version 0, implementation 2
1221 .nvram_machine_id = 0x72,
1222 .machine_id = ss20_id,
1223 .iommu_version = 0x13000000,
1224 .max_mem = 0xf00000000ULL,
1225 .default_cpu_model = "TI SuperSparc II",
1226 },
1227 /* Voyager */
1228 {
1229 .iommu_base = 0x10000000,
1230 .tcx_base = 0x50000000,
1231 .slavio_base = 0x70000000,
1232 .ms_kb_base = 0x71000000,
1233 .serial_base = 0x71100000,
1234 .nvram_base = 0x71200000,
1235 .fd_base = 0x71400000,
1236 .counter_base = 0x71d00000,
1237 .intctl_base = 0x71e00000,
1238 .idreg_base = 0x78000000,
1239 .dma_base = 0x78400000,
1240 .esp_base = 0x78800000,
1241 .le_base = 0x78c00000,
1242 .apc_base = 0x71300000, // pmc
1243 .aux1_base = 0x71900000,
1244 .aux2_base = 0x71910000,
1245 .nvram_machine_id = 0x80,
1246 .machine_id = vger_id,
1247 .iommu_version = 0x05000000,
1248 .max_mem = 0x10000000,
1249 .default_cpu_model = "Fujitsu MB86904",
1250 },
1251 /* LX */
1252 {
1253 .iommu_base = 0x10000000,
1254 .iommu_pad_base = 0x10004000,
1255 .iommu_pad_len = 0x0fffb000,
1256 .tcx_base = 0x50000000,
1257 .slavio_base = 0x70000000,
1258 .ms_kb_base = 0x71000000,
1259 .serial_base = 0x71100000,
1260 .nvram_base = 0x71200000,
1261 .fd_base = 0x71400000,
1262 .counter_base = 0x71d00000,
1263 .intctl_base = 0x71e00000,
1264 .idreg_base = 0x78000000,
1265 .dma_base = 0x78400000,
1266 .esp_base = 0x78800000,
1267 .le_base = 0x78c00000,
1268 .aux1_base = 0x71900000,
1269 .aux2_base = 0x71910000,
1270 .nvram_machine_id = 0x80,
1271 .machine_id = lx_id,
1272 .iommu_version = 0x04000000,
1273 .max_mem = 0x10000000,
1274 .default_cpu_model = "TI MicroSparc I",
1275 },
1276 /* SS-4 */
1277 {
1278 .iommu_base = 0x10000000,
1279 .tcx_base = 0x50000000,
1280 .cs_base = 0x6c000000,
1281 .slavio_base = 0x70000000,
1282 .ms_kb_base = 0x71000000,
1283 .serial_base = 0x71100000,
1284 .nvram_base = 0x71200000,
1285 .fd_base = 0x71400000,
1286 .counter_base = 0x71d00000,
1287 .intctl_base = 0x71e00000,
1288 .idreg_base = 0x78000000,
1289 .dma_base = 0x78400000,
1290 .esp_base = 0x78800000,
1291 .le_base = 0x78c00000,
1292 .apc_base = 0x6a000000,
1293 .aux1_base = 0x71900000,
1294 .aux2_base = 0x71910000,
1295 .nvram_machine_id = 0x80,
1296 .machine_id = ss4_id,
1297 .iommu_version = 0x05000000,
1298 .max_mem = 0x10000000,
1299 .default_cpu_model = "Fujitsu MB86904",
1300 },
1301 /* SPARCClassic */
1302 {
1303 .iommu_base = 0x10000000,
1304 .tcx_base = 0x50000000,
1305 .slavio_base = 0x70000000,
1306 .ms_kb_base = 0x71000000,
1307 .serial_base = 0x71100000,
1308 .nvram_base = 0x71200000,
1309 .fd_base = 0x71400000,
1310 .counter_base = 0x71d00000,
1311 .intctl_base = 0x71e00000,
1312 .idreg_base = 0x78000000,
1313 .dma_base = 0x78400000,
1314 .esp_base = 0x78800000,
1315 .le_base = 0x78c00000,
1316 .apc_base = 0x6a000000,
1317 .aux1_base = 0x71900000,
1318 .aux2_base = 0x71910000,
1319 .nvram_machine_id = 0x80,
1320 .machine_id = scls_id,
1321 .iommu_version = 0x05000000,
1322 .max_mem = 0x10000000,
1323 .default_cpu_model = "TI MicroSparc I",
1324 },
1325 /* SPARCbook */
1326 {
1327 .iommu_base = 0x10000000,
1328 .tcx_base = 0x50000000, // XXX
1329 .slavio_base = 0x70000000,
1330 .ms_kb_base = 0x71000000,
1331 .serial_base = 0x71100000,
1332 .nvram_base = 0x71200000,
1333 .fd_base = 0x71400000,
1334 .counter_base = 0x71d00000,
1335 .intctl_base = 0x71e00000,
1336 .idreg_base = 0x78000000,
1337 .dma_base = 0x78400000,
1338 .esp_base = 0x78800000,
1339 .le_base = 0x78c00000,
1340 .apc_base = 0x6a000000,
1341 .aux1_base = 0x71900000,
1342 .aux2_base = 0x71910000,
1343 .nvram_machine_id = 0x80,
1344 .machine_id = sbook_id,
1345 .iommu_version = 0x05000000,
1346 .max_mem = 0x10000000,
1347 .default_cpu_model = "TI MicroSparc I",
1348 },
1349 };
1350
1351 /* SPARCstation 5 hardware initialisation */
1352 static void ss5_init(MachineState *machine)
1353 {
1354 sun4m_hw_init(&sun4m_hwdefs[0], machine);
1355 }
1356
1357 /* SPARCstation 10 hardware initialisation */
1358 static void ss10_init(MachineState *machine)
1359 {
1360 sun4m_hw_init(&sun4m_hwdefs[1], machine);
1361 }
1362
1363 /* SPARCserver 600MP hardware initialisation */
1364 static void ss600mp_init(MachineState *machine)
1365 {
1366 sun4m_hw_init(&sun4m_hwdefs[2], machine);
1367 }
1368
1369 /* SPARCstation 20 hardware initialisation */
1370 static void ss20_init(MachineState *machine)
1371 {
1372 sun4m_hw_init(&sun4m_hwdefs[3], machine);
1373 }
1374
1375 /* SPARCstation Voyager hardware initialisation */
1376 static void vger_init(MachineState *machine)
1377 {
1378 sun4m_hw_init(&sun4m_hwdefs[4], machine);
1379 }
1380
1381 /* SPARCstation LX hardware initialisation */
1382 static void ss_lx_init(MachineState *machine)
1383 {
1384 sun4m_hw_init(&sun4m_hwdefs[5], machine);
1385 }
1386
1387 /* SPARCstation 4 hardware initialisation */
1388 static void ss4_init(MachineState *machine)
1389 {
1390 sun4m_hw_init(&sun4m_hwdefs[6], machine);
1391 }
1392
1393 /* SPARCClassic hardware initialisation */
1394 static void scls_init(MachineState *machine)
1395 {
1396 sun4m_hw_init(&sun4m_hwdefs[7], machine);
1397 }
1398
1399 /* SPARCbook hardware initialisation */
1400 static void sbook_init(MachineState *machine)
1401 {
1402 sun4m_hw_init(&sun4m_hwdefs[8], machine);
1403 }
1404
1405 static void ss5_class_init(ObjectClass *oc, void *data)
1406 {
1407 MachineClass *mc = MACHINE_CLASS(oc);
1408
1409 mc->desc = "Sun4m platform, SPARCstation 5";
1410 mc->init = ss5_init;
1411 mc->block_default_type = IF_SCSI;
1412 mc->is_default = 1;
1413 mc->default_boot_order = "c";
1414 }
1415
1416 static const TypeInfo ss5_type = {
1417 .name = MACHINE_TYPE_NAME("SS-5"),
1418 .parent = TYPE_MACHINE,
1419 .class_init = ss5_class_init,
1420 };
1421
1422 static void ss10_class_init(ObjectClass *oc, void *data)
1423 {
1424 MachineClass *mc = MACHINE_CLASS(oc);
1425
1426 mc->desc = "Sun4m platform, SPARCstation 10";
1427 mc->init = ss10_init;
1428 mc->block_default_type = IF_SCSI;
1429 mc->max_cpus = 4;
1430 mc->default_boot_order = "c";
1431 }
1432
1433 static const TypeInfo ss10_type = {
1434 .name = MACHINE_TYPE_NAME("SS-10"),
1435 .parent = TYPE_MACHINE,
1436 .class_init = ss10_class_init,
1437 };
1438
1439 static void ss600mp_class_init(ObjectClass *oc, void *data)
1440 {
1441 MachineClass *mc = MACHINE_CLASS(oc);
1442
1443 mc->desc = "Sun4m platform, SPARCserver 600MP";
1444 mc->init = ss600mp_init;
1445 mc->block_default_type = IF_SCSI;
1446 mc->max_cpus = 4;
1447 mc->default_boot_order = "c";
1448 }
1449
1450 static const TypeInfo ss600mp_type = {
1451 .name = MACHINE_TYPE_NAME("SS-600MP"),
1452 .parent = TYPE_MACHINE,
1453 .class_init = ss600mp_class_init,
1454 };
1455
1456 static void ss20_class_init(ObjectClass *oc, void *data)
1457 {
1458 MachineClass *mc = MACHINE_CLASS(oc);
1459
1460 mc->desc = "Sun4m platform, SPARCstation 20";
1461 mc->init = ss20_init;
1462 mc->block_default_type = IF_SCSI;
1463 mc->max_cpus = 4;
1464 mc->default_boot_order = "c";
1465 }
1466
1467 static const TypeInfo ss20_type = {
1468 .name = MACHINE_TYPE_NAME("SS-20"),
1469 .parent = TYPE_MACHINE,
1470 .class_init = ss20_class_init,
1471 };
1472
1473 static void voyager_class_init(ObjectClass *oc, void *data)
1474 {
1475 MachineClass *mc = MACHINE_CLASS(oc);
1476
1477 mc->desc = "Sun4m platform, SPARCstation Voyager";
1478 mc->init = vger_init;
1479 mc->block_default_type = IF_SCSI;
1480 mc->default_boot_order = "c";
1481 }
1482
1483 static const TypeInfo voyager_type = {
1484 .name = MACHINE_TYPE_NAME("Voyager"),
1485 .parent = TYPE_MACHINE,
1486 .class_init = voyager_class_init,
1487 };
1488
1489 static void ss_lx_class_init(ObjectClass *oc, void *data)
1490 {
1491 MachineClass *mc = MACHINE_CLASS(oc);
1492
1493 mc->desc = "Sun4m platform, SPARCstation LX";
1494 mc->init = ss_lx_init;
1495 mc->block_default_type = IF_SCSI;
1496 mc->default_boot_order = "c";
1497 }
1498
1499 static const TypeInfo ss_lx_type = {
1500 .name = MACHINE_TYPE_NAME("LX"),
1501 .parent = TYPE_MACHINE,
1502 .class_init = ss_lx_class_init,
1503 };
1504
1505 static void ss4_class_init(ObjectClass *oc, void *data)
1506 {
1507 MachineClass *mc = MACHINE_CLASS(oc);
1508
1509 mc->desc = "Sun4m platform, SPARCstation 4";
1510 mc->init = ss4_init;
1511 mc->block_default_type = IF_SCSI;
1512 mc->default_boot_order = "c";
1513 }
1514
1515 static const TypeInfo ss4_type = {
1516 .name = MACHINE_TYPE_NAME("SS-4"),
1517 .parent = TYPE_MACHINE,
1518 .class_init = ss4_class_init,
1519 };
1520
1521 static void scls_class_init(ObjectClass *oc, void *data)
1522 {
1523 MachineClass *mc = MACHINE_CLASS(oc);
1524
1525 mc->desc = "Sun4m platform, SPARCClassic";
1526 mc->init = scls_init;
1527 mc->block_default_type = IF_SCSI;
1528 mc->default_boot_order = "c";
1529 }
1530
1531 static const TypeInfo scls_type = {
1532 .name = MACHINE_TYPE_NAME("SPARCClassic"),
1533 .parent = TYPE_MACHINE,
1534 .class_init = scls_class_init,
1535 };
1536
1537 static void sbook_class_init(ObjectClass *oc, void *data)
1538 {
1539 MachineClass *mc = MACHINE_CLASS(oc);
1540
1541 mc->desc = "Sun4m platform, SPARCbook";
1542 mc->init = sbook_init;
1543 mc->block_default_type = IF_SCSI;
1544 mc->default_boot_order = "c";
1545 }
1546
1547 static const TypeInfo sbook_type = {
1548 .name = MACHINE_TYPE_NAME("SPARCbook"),
1549 .parent = TYPE_MACHINE,
1550 .class_init = sbook_class_init,
1551 };
1552
1553 static void sun4m_register_types(void)
1554 {
1555 type_register_static(&idreg_info);
1556 type_register_static(&afx_info);
1557 type_register_static(&prom_info);
1558 type_register_static(&ram_info);
1559
1560 type_register_static(&ss5_type);
1561 type_register_static(&ss10_type);
1562 type_register_static(&ss600mp_type);
1563 type_register_static(&ss20_type);
1564 type_register_static(&voyager_type);
1565 type_register_static(&ss_lx_type);
1566 type_register_static(&ss4_type);
1567 type_register_static(&scls_type);
1568 type_register_static(&sbook_type);
1569 }
1570
1571 type_init(sun4m_register_types)