]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sparc/sun4m.c
61eb424bbc73d41afa60568b9addd7344f33ed7f
[mirror_qemu.git] / hw / sparc / sun4m.c
1 /*
2 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/sysbus.h"
29 #include "qemu/error-report.h"
30 #include "qemu/timer.h"
31 #include "hw/sparc/sun4m_iommu.h"
32 #include "hw/timer/m48t59.h"
33 #include "hw/sparc/sparc32_dma.h"
34 #include "hw/block/fdc.h"
35 #include "sysemu/sysemu.h"
36 #include "net/net.h"
37 #include "hw/boards.h"
38 #include "hw/scsi/esp.h"
39 #include "hw/isa/isa.h"
40 #include "hw/nvram/sun_nvram.h"
41 #include "hw/nvram/chrp_nvram.h"
42 #include "hw/nvram/fw_cfg.h"
43 #include "hw/char/escc.h"
44 #include "hw/empty_slot.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "sysemu/block-backend.h"
48 #include "trace.h"
49 #include "qemu/cutils.h"
50
51 /*
52 * Sun4m architecture was used in the following machines:
53 *
54 * SPARCserver 6xxMP/xx
55 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
56 * SPARCclassic X (4/10)
57 * SPARCstation LX/ZX (4/30)
58 * SPARCstation Voyager
59 * SPARCstation 10/xx, SPARCserver 10/xx
60 * SPARCstation 5, SPARCserver 5
61 * SPARCstation 20/xx, SPARCserver 20
62 * SPARCstation 4
63 *
64 * See for example: http://www.sunhelp.org/faq/sunref1.html
65 */
66
67 #define KERNEL_LOAD_ADDR 0x00004000
68 #define CMDLINE_ADDR 0x007ff000
69 #define INITRD_LOAD_ADDR 0x00800000
70 #define PROM_SIZE_MAX (1024 * 1024)
71 #define PROM_VADDR 0xffd00000
72 #define PROM_FILENAME "openbios-sparc32"
73 #define CFG_ADDR 0xd00000510ULL
74 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
75 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
76 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
77
78 #define MAX_CPUS 16
79 #define MAX_PILS 16
80 #define MAX_VSIMMS 4
81
82 #define ESCC_CLOCK 4915200
83
84 struct sun4m_hwdef {
85 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
86 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
87 hwaddr serial_base, fd_base;
88 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
89 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
90 hwaddr bpp_base, dbri_base, sx_base;
91 struct {
92 hwaddr reg_base, vram_base;
93 } vsimm[MAX_VSIMMS];
94 hwaddr ecc_base;
95 uint64_t max_mem;
96 uint32_t ecc_version;
97 uint32_t iommu_version;
98 uint16_t machine_id;
99 uint8_t nvram_machine_id;
100 };
101
102 void DMA_init(ISABus *bus, int high_page_enable)
103 {
104 }
105
106 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
107 Error **errp)
108 {
109 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
110 }
111
112 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
113 const char *cmdline, const char *boot_devices,
114 ram_addr_t RAM_size, uint32_t kernel_size,
115 int width, int height, int depth,
116 int nvram_machine_id, const char *arch)
117 {
118 unsigned int i;
119 int sysp_end;
120 uint8_t image[0x1ff0];
121 NvramClass *k = NVRAM_GET_CLASS(nvram);
122
123 memset(image, '\0', sizeof(image));
124
125 /* OpenBIOS nvram variables partition */
126 sysp_end = chrp_nvram_create_system_partition(image, 0);
127
128 /* Free space partition */
129 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
130
131 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
132 nvram_machine_id);
133
134 for (i = 0; i < sizeof(image); i++) {
135 (k->write)(nvram, i, image[i]);
136 }
137 }
138
139 void cpu_check_irqs(CPUSPARCState *env)
140 {
141 CPUState *cs;
142
143 /* We should be holding the BQL before we mess with IRQs */
144 g_assert(qemu_mutex_iothread_locked());
145
146 if (env->pil_in && (env->interrupt_index == 0 ||
147 (env->interrupt_index & ~15) == TT_EXTINT)) {
148 unsigned int i;
149
150 for (i = 15; i > 0; i--) {
151 if (env->pil_in & (1 << i)) {
152 int old_interrupt = env->interrupt_index;
153
154 env->interrupt_index = TT_EXTINT | i;
155 if (old_interrupt != env->interrupt_index) {
156 cs = CPU(sparc_env_get_cpu(env));
157 trace_sun4m_cpu_interrupt(i);
158 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
159 }
160 break;
161 }
162 }
163 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
164 cs = CPU(sparc_env_get_cpu(env));
165 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
166 env->interrupt_index = 0;
167 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
168 }
169 }
170
171 static void cpu_kick_irq(SPARCCPU *cpu)
172 {
173 CPUSPARCState *env = &cpu->env;
174 CPUState *cs = CPU(cpu);
175
176 cs->halted = 0;
177 cpu_check_irqs(env);
178 qemu_cpu_kick(cs);
179 }
180
181 static void cpu_set_irq(void *opaque, int irq, int level)
182 {
183 SPARCCPU *cpu = opaque;
184 CPUSPARCState *env = &cpu->env;
185
186 if (level) {
187 trace_sun4m_cpu_set_irq_raise(irq);
188 env->pil_in |= 1 << irq;
189 cpu_kick_irq(cpu);
190 } else {
191 trace_sun4m_cpu_set_irq_lower(irq);
192 env->pil_in &= ~(1 << irq);
193 cpu_check_irqs(env);
194 }
195 }
196
197 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
198 {
199 }
200
201 static void main_cpu_reset(void *opaque)
202 {
203 SPARCCPU *cpu = opaque;
204 CPUState *cs = CPU(cpu);
205
206 cpu_reset(cs);
207 cs->halted = 0;
208 }
209
210 static void secondary_cpu_reset(void *opaque)
211 {
212 SPARCCPU *cpu = opaque;
213 CPUState *cs = CPU(cpu);
214
215 cpu_reset(cs);
216 cs->halted = 1;
217 }
218
219 static void cpu_halt_signal(void *opaque, int irq, int level)
220 {
221 if (level && current_cpu) {
222 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
223 }
224 }
225
226 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
227 {
228 return addr - 0xf0000000ULL;
229 }
230
231 static unsigned long sun4m_load_kernel(const char *kernel_filename,
232 const char *initrd_filename,
233 ram_addr_t RAM_size)
234 {
235 int linux_boot;
236 unsigned int i;
237 long initrd_size, kernel_size;
238 uint8_t *ptr;
239
240 linux_boot = (kernel_filename != NULL);
241
242 kernel_size = 0;
243 if (linux_boot) {
244 int bswap_needed;
245
246 #ifdef BSWAP_NEEDED
247 bswap_needed = 1;
248 #else
249 bswap_needed = 0;
250 #endif
251 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
252 NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
253 if (kernel_size < 0)
254 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
255 RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
256 TARGET_PAGE_SIZE);
257 if (kernel_size < 0)
258 kernel_size = load_image_targphys(kernel_filename,
259 KERNEL_LOAD_ADDR,
260 RAM_size - KERNEL_LOAD_ADDR);
261 if (kernel_size < 0) {
262 error_report("could not load kernel '%s'", kernel_filename);
263 exit(1);
264 }
265
266 /* load initrd */
267 initrd_size = 0;
268 if (initrd_filename) {
269 initrd_size = load_image_targphys(initrd_filename,
270 INITRD_LOAD_ADDR,
271 RAM_size - INITRD_LOAD_ADDR);
272 if (initrd_size < 0) {
273 error_report("could not load initial ram disk '%s'",
274 initrd_filename);
275 exit(1);
276 }
277 }
278 if (initrd_size > 0) {
279 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
280 ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
281 if (ldl_p(ptr) == 0x48647253) { // HdrS
282 stl_p(ptr + 16, INITRD_LOAD_ADDR);
283 stl_p(ptr + 20, initrd_size);
284 break;
285 }
286 }
287 }
288 }
289 return kernel_size;
290 }
291
292 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
293 {
294 DeviceState *dev;
295 SysBusDevice *s;
296
297 dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
298 qdev_prop_set_uint32(dev, "version", version);
299 qdev_init_nofail(dev);
300 s = SYS_BUS_DEVICE(dev);
301 sysbus_connect_irq(s, 0, irq);
302 sysbus_mmio_map(s, 0, addr);
303
304 return s;
305 }
306
307 static void *sparc32_dma_init(hwaddr dma_base,
308 hwaddr esp_base, qemu_irq espdma_irq,
309 hwaddr le_base, qemu_irq ledma_irq)
310 {
311 DeviceState *dma;
312 ESPDMADeviceState *espdma;
313 LEDMADeviceState *ledma;
314 SysBusESPState *esp;
315 SysBusPCNetState *lance;
316
317 dma = qdev_create(NULL, TYPE_SPARC32_DMA);
318 qdev_init_nofail(dma);
319 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
320
321 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
322 OBJECT(dma), "espdma"));
323 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
324
325 esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
326 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
327
328 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
329 OBJECT(dma), "ledma"));
330 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
331
332 lance = SYSBUS_PCNET(object_resolve_path_component(
333 OBJECT(ledma), "lance"));
334 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
335
336 return dma;
337 }
338
339 static DeviceState *slavio_intctl_init(hwaddr addr,
340 hwaddr addrg,
341 qemu_irq **parent_irq)
342 {
343 DeviceState *dev;
344 SysBusDevice *s;
345 unsigned int i, j;
346
347 dev = qdev_create(NULL, "slavio_intctl");
348 qdev_init_nofail(dev);
349
350 s = SYS_BUS_DEVICE(dev);
351
352 for (i = 0; i < MAX_CPUS; i++) {
353 for (j = 0; j < MAX_PILS; j++) {
354 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
355 }
356 }
357 sysbus_mmio_map(s, 0, addrg);
358 for (i = 0; i < MAX_CPUS; i++) {
359 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
360 }
361
362 return dev;
363 }
364
365 #define SYS_TIMER_OFFSET 0x10000ULL
366 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
367
368 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
369 qemu_irq *cpu_irqs, unsigned int num_cpus)
370 {
371 DeviceState *dev;
372 SysBusDevice *s;
373 unsigned int i;
374
375 dev = qdev_create(NULL, "slavio_timer");
376 qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
377 qdev_init_nofail(dev);
378 s = SYS_BUS_DEVICE(dev);
379 sysbus_connect_irq(s, 0, master_irq);
380 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
381
382 for (i = 0; i < MAX_CPUS; i++) {
383 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
384 sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
385 }
386 }
387
388 static qemu_irq slavio_system_powerdown;
389
390 static void slavio_powerdown_req(Notifier *n, void *opaque)
391 {
392 qemu_irq_raise(slavio_system_powerdown);
393 }
394
395 static Notifier slavio_system_powerdown_notifier = {
396 .notify = slavio_powerdown_req
397 };
398
399 #define MISC_LEDS 0x01600000
400 #define MISC_CFG 0x01800000
401 #define MISC_DIAG 0x01a00000
402 #define MISC_MDM 0x01b00000
403 #define MISC_SYS 0x01f00000
404
405 static void slavio_misc_init(hwaddr base,
406 hwaddr aux1_base,
407 hwaddr aux2_base, qemu_irq irq,
408 qemu_irq fdc_tc)
409 {
410 DeviceState *dev;
411 SysBusDevice *s;
412
413 dev = qdev_create(NULL, "slavio_misc");
414 qdev_init_nofail(dev);
415 s = SYS_BUS_DEVICE(dev);
416 if (base) {
417 /* 8 bit registers */
418 /* Slavio control */
419 sysbus_mmio_map(s, 0, base + MISC_CFG);
420 /* Diagnostics */
421 sysbus_mmio_map(s, 1, base + MISC_DIAG);
422 /* Modem control */
423 sysbus_mmio_map(s, 2, base + MISC_MDM);
424 /* 16 bit registers */
425 /* ss600mp diag LEDs */
426 sysbus_mmio_map(s, 3, base + MISC_LEDS);
427 /* 32 bit registers */
428 /* System control */
429 sysbus_mmio_map(s, 4, base + MISC_SYS);
430 }
431 if (aux1_base) {
432 /* AUX 1 (Misc System Functions) */
433 sysbus_mmio_map(s, 5, aux1_base);
434 }
435 if (aux2_base) {
436 /* AUX 2 (Software Powerdown Control) */
437 sysbus_mmio_map(s, 6, aux2_base);
438 }
439 sysbus_connect_irq(s, 0, irq);
440 sysbus_connect_irq(s, 1, fdc_tc);
441 slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
442 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
443 }
444
445 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
446 {
447 DeviceState *dev;
448 SysBusDevice *s;
449
450 dev = qdev_create(NULL, "eccmemctl");
451 qdev_prop_set_uint32(dev, "version", version);
452 qdev_init_nofail(dev);
453 s = SYS_BUS_DEVICE(dev);
454 sysbus_connect_irq(s, 0, irq);
455 sysbus_mmio_map(s, 0, base);
456 if (version == 0) { // SS-600MP only
457 sysbus_mmio_map(s, 1, base + 0x1000);
458 }
459 }
460
461 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
462 {
463 DeviceState *dev;
464 SysBusDevice *s;
465
466 dev = qdev_create(NULL, "apc");
467 qdev_init_nofail(dev);
468 s = SYS_BUS_DEVICE(dev);
469 /* Power management (APC) XXX: not a Slavio device */
470 sysbus_mmio_map(s, 0, power_base);
471 sysbus_connect_irq(s, 0, cpu_halt);
472 }
473
474 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
475 int height, int depth)
476 {
477 DeviceState *dev;
478 SysBusDevice *s;
479
480 dev = qdev_create(NULL, "SUNW,tcx");
481 qdev_prop_set_uint32(dev, "vram_size", vram_size);
482 qdev_prop_set_uint16(dev, "width", width);
483 qdev_prop_set_uint16(dev, "height", height);
484 qdev_prop_set_uint16(dev, "depth", depth);
485 qdev_init_nofail(dev);
486 s = SYS_BUS_DEVICE(dev);
487
488 /* 10/ROM : FCode ROM */
489 sysbus_mmio_map(s, 0, addr);
490 /* 2/STIP : Stipple */
491 sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
492 /* 3/BLIT : Blitter */
493 sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
494 /* 5/RSTIP : Raw Stipple */
495 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
496 /* 6/RBLIT : Raw Blitter */
497 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
498 /* 7/TEC : Transform Engine */
499 sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
500 /* 8/CMAP : DAC */
501 sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
502 /* 9/THC : */
503 if (depth == 8) {
504 sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
505 } else {
506 sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
507 }
508 /* 11/DHC : */
509 sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
510 /* 12/ALT : */
511 sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
512 /* 0/DFB8 : 8-bit plane */
513 sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
514 /* 1/DFB24 : 24bit plane */
515 sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
516 /* 4/RDFB32: Raw framebuffer. Control plane */
517 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
518 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
519 if (depth == 8) {
520 sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
521 }
522
523 sysbus_connect_irq(s, 0, irq);
524 }
525
526 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
527 int height, int depth)
528 {
529 DeviceState *dev;
530 SysBusDevice *s;
531
532 dev = qdev_create(NULL, "cgthree");
533 qdev_prop_set_uint32(dev, "vram-size", vram_size);
534 qdev_prop_set_uint16(dev, "width", width);
535 qdev_prop_set_uint16(dev, "height", height);
536 qdev_prop_set_uint16(dev, "depth", depth);
537 qdev_init_nofail(dev);
538 s = SYS_BUS_DEVICE(dev);
539
540 /* FCode ROM */
541 sysbus_mmio_map(s, 0, addr);
542 /* DAC */
543 sysbus_mmio_map(s, 1, addr + 0x400000ULL);
544 /* 8-bit plane */
545 sysbus_mmio_map(s, 2, addr + 0x800000ULL);
546
547 sysbus_connect_irq(s, 0, irq);
548 }
549
550 /* NCR89C100/MACIO Internal ID register */
551
552 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
553
554 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
555
556 static void idreg_init(hwaddr addr)
557 {
558 DeviceState *dev;
559 SysBusDevice *s;
560
561 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
562 qdev_init_nofail(dev);
563 s = SYS_BUS_DEVICE(dev);
564
565 sysbus_mmio_map(s, 0, addr);
566 cpu_physical_memory_write_rom(&address_space_memory,
567 addr, idreg_data, sizeof(idreg_data));
568 }
569
570 #define MACIO_ID_REGISTER(obj) \
571 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
572
573 typedef struct IDRegState {
574 SysBusDevice parent_obj;
575
576 MemoryRegion mem;
577 } IDRegState;
578
579 static void idreg_init1(Object *obj)
580 {
581 IDRegState *s = MACIO_ID_REGISTER(obj);
582 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
583
584 memory_region_init_ram_nomigrate(&s->mem, obj,
585 "sun4m.idreg", sizeof(idreg_data), &error_fatal);
586 vmstate_register_ram_global(&s->mem);
587 memory_region_set_readonly(&s->mem, true);
588 sysbus_init_mmio(dev, &s->mem);
589 }
590
591 static const TypeInfo idreg_info = {
592 .name = TYPE_MACIO_ID_REGISTER,
593 .parent = TYPE_SYS_BUS_DEVICE,
594 .instance_size = sizeof(IDRegState),
595 .instance_init = idreg_init1,
596 };
597
598 #define TYPE_TCX_AFX "tcx_afx"
599 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
600
601 typedef struct AFXState {
602 SysBusDevice parent_obj;
603
604 MemoryRegion mem;
605 } AFXState;
606
607 /* SS-5 TCX AFX register */
608 static void afx_init(hwaddr addr)
609 {
610 DeviceState *dev;
611 SysBusDevice *s;
612
613 dev = qdev_create(NULL, TYPE_TCX_AFX);
614 qdev_init_nofail(dev);
615 s = SYS_BUS_DEVICE(dev);
616
617 sysbus_mmio_map(s, 0, addr);
618 }
619
620 static void afx_init1(Object *obj)
621 {
622 AFXState *s = TCX_AFX(obj);
623 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
624
625 memory_region_init_ram_nomigrate(&s->mem, obj, "sun4m.afx", 4, &error_fatal);
626 vmstate_register_ram_global(&s->mem);
627 sysbus_init_mmio(dev, &s->mem);
628 }
629
630 static const TypeInfo afx_info = {
631 .name = TYPE_TCX_AFX,
632 .parent = TYPE_SYS_BUS_DEVICE,
633 .instance_size = sizeof(AFXState),
634 .instance_init = afx_init1,
635 };
636
637 #define TYPE_OPENPROM "openprom"
638 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
639
640 typedef struct PROMState {
641 SysBusDevice parent_obj;
642
643 MemoryRegion prom;
644 } PROMState;
645
646 /* Boot PROM (OpenBIOS) */
647 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
648 {
649 hwaddr *base_addr = (hwaddr *)opaque;
650 return addr + *base_addr - PROM_VADDR;
651 }
652
653 static void prom_init(hwaddr addr, const char *bios_name)
654 {
655 DeviceState *dev;
656 SysBusDevice *s;
657 char *filename;
658 int ret;
659
660 dev = qdev_create(NULL, TYPE_OPENPROM);
661 qdev_init_nofail(dev);
662 s = SYS_BUS_DEVICE(dev);
663
664 sysbus_mmio_map(s, 0, addr);
665
666 /* load boot prom */
667 if (bios_name == NULL) {
668 bios_name = PROM_FILENAME;
669 }
670 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
671 if (filename) {
672 ret = load_elf(filename, translate_prom_address, &addr, NULL,
673 NULL, NULL, 1, EM_SPARC, 0, 0);
674 if (ret < 0 || ret > PROM_SIZE_MAX) {
675 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
676 }
677 g_free(filename);
678 } else {
679 ret = -1;
680 }
681 if (ret < 0 || ret > PROM_SIZE_MAX) {
682 error_report("could not load prom '%s'", bios_name);
683 exit(1);
684 }
685 }
686
687 static void prom_init1(Object *obj)
688 {
689 PROMState *s = OPENPROM(obj);
690 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
691
692 memory_region_init_ram_nomigrate(&s->prom, obj, "sun4m.prom", PROM_SIZE_MAX,
693 &error_fatal);
694 vmstate_register_ram_global(&s->prom);
695 memory_region_set_readonly(&s->prom, true);
696 sysbus_init_mmio(dev, &s->prom);
697 }
698
699 static Property prom_properties[] = {
700 {/* end of property list */},
701 };
702
703 static void prom_class_init(ObjectClass *klass, void *data)
704 {
705 DeviceClass *dc = DEVICE_CLASS(klass);
706
707 dc->props = prom_properties;
708 }
709
710 static const TypeInfo prom_info = {
711 .name = TYPE_OPENPROM,
712 .parent = TYPE_SYS_BUS_DEVICE,
713 .instance_size = sizeof(PROMState),
714 .class_init = prom_class_init,
715 .instance_init = prom_init1,
716 };
717
718 #define TYPE_SUN4M_MEMORY "memory"
719 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
720
721 typedef struct RamDevice {
722 SysBusDevice parent_obj;
723
724 MemoryRegion ram;
725 uint64_t size;
726 } RamDevice;
727
728 /* System RAM */
729 static void ram_realize(DeviceState *dev, Error **errp)
730 {
731 RamDevice *d = SUN4M_RAM(dev);
732 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
733
734 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
735 d->size);
736 sysbus_init_mmio(sbd, &d->ram);
737 }
738
739 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
740 uint64_t max_mem)
741 {
742 DeviceState *dev;
743 SysBusDevice *s;
744 RamDevice *d;
745
746 /* allocate RAM */
747 if ((uint64_t)RAM_size > max_mem) {
748 error_report("Too much memory for this machine: %d, maximum %d",
749 (unsigned int)(RAM_size / (1024 * 1024)),
750 (unsigned int)(max_mem / (1024 * 1024)));
751 exit(1);
752 }
753 dev = qdev_create(NULL, "memory");
754 s = SYS_BUS_DEVICE(dev);
755
756 d = SUN4M_RAM(dev);
757 d->size = RAM_size;
758 qdev_init_nofail(dev);
759
760 sysbus_mmio_map(s, 0, addr);
761 }
762
763 static Property ram_properties[] = {
764 DEFINE_PROP_UINT64("size", RamDevice, size, 0),
765 DEFINE_PROP_END_OF_LIST(),
766 };
767
768 static void ram_class_init(ObjectClass *klass, void *data)
769 {
770 DeviceClass *dc = DEVICE_CLASS(klass);
771
772 dc->realize = ram_realize;
773 dc->props = ram_properties;
774 }
775
776 static const TypeInfo ram_info = {
777 .name = TYPE_SUN4M_MEMORY,
778 .parent = TYPE_SYS_BUS_DEVICE,
779 .instance_size = sizeof(RamDevice),
780 .class_init = ram_class_init,
781 };
782
783 static void cpu_devinit(const char *cpu_type, unsigned int id,
784 uint64_t prom_addr, qemu_irq **cpu_irqs)
785 {
786 CPUState *cs;
787 SPARCCPU *cpu;
788 CPUSPARCState *env;
789
790 cpu = SPARC_CPU(cpu_create(cpu_type));
791 env = &cpu->env;
792
793 cpu_sparc_set_id(env, id);
794 if (id == 0) {
795 qemu_register_reset(main_cpu_reset, cpu);
796 } else {
797 qemu_register_reset(secondary_cpu_reset, cpu);
798 cs = CPU(cpu);
799 cs->halted = 1;
800 }
801 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
802 env->prom_addr = prom_addr;
803 }
804
805 static void dummy_fdc_tc(void *opaque, int irq, int level)
806 {
807 }
808
809 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
810 MachineState *machine)
811 {
812 DeviceState *slavio_intctl;
813 unsigned int i;
814 void *nvram;
815 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
816 qemu_irq fdc_tc;
817 unsigned long kernel_size;
818 DriveInfo *fd[MAX_FD];
819 FWCfgState *fw_cfg;
820 unsigned int num_vsimms;
821 DeviceState *dev;
822 SysBusDevice *s;
823
824 /* init CPUs */
825 for(i = 0; i < smp_cpus; i++) {
826 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
827 }
828
829 for (i = smp_cpus; i < MAX_CPUS; i++)
830 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
831
832
833 /* set up devices */
834 ram_init(0, machine->ram_size, hwdef->max_mem);
835 /* models without ECC don't trap when missing ram is accessed */
836 if (!hwdef->ecc_base) {
837 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
838 }
839
840 prom_init(hwdef->slavio_base, bios_name);
841
842 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
843 hwdef->intctl_base + 0x10000ULL,
844 cpu_irqs);
845
846 for (i = 0; i < 32; i++) {
847 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
848 }
849 for (i = 0; i < MAX_CPUS; i++) {
850 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
851 }
852
853 if (hwdef->idreg_base) {
854 idreg_init(hwdef->idreg_base);
855 }
856
857 if (hwdef->afx_base) {
858 afx_init(hwdef->afx_base);
859 }
860
861 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
862
863 if (hwdef->iommu_pad_base) {
864 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
865 Software shouldn't use aliased addresses, neither should it crash
866 when does. Using empty_slot instead of aliasing can help with
867 debugging such accesses */
868 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
869 }
870
871 sparc32_dma_init(hwdef->dma_base,
872 hwdef->esp_base, slavio_irq[18],
873 hwdef->le_base, slavio_irq[16]);
874
875 if (graphic_depth != 8 && graphic_depth != 24) {
876 error_report("Unsupported depth: %d", graphic_depth);
877 exit (1);
878 }
879 num_vsimms = 0;
880 if (num_vsimms == 0) {
881 if (vga_interface_type == VGA_CG3) {
882 if (graphic_depth != 8) {
883 error_report("Unsupported depth: %d", graphic_depth);
884 exit(1);
885 }
886
887 if (!(graphic_width == 1024 && graphic_height == 768) &&
888 !(graphic_width == 1152 && graphic_height == 900)) {
889 error_report("Unsupported resolution: %d x %d", graphic_width,
890 graphic_height);
891 exit(1);
892 }
893
894 /* sbus irq 5 */
895 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
896 graphic_width, graphic_height, graphic_depth);
897 } else {
898 /* If no display specified, default to TCX */
899 if (graphic_depth != 8 && graphic_depth != 24) {
900 error_report("Unsupported depth: %d", graphic_depth);
901 exit(1);
902 }
903
904 if (!(graphic_width == 1024 && graphic_height == 768)) {
905 error_report("Unsupported resolution: %d x %d",
906 graphic_width, graphic_height);
907 exit(1);
908 }
909
910 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
911 graphic_width, graphic_height, graphic_depth);
912 }
913 }
914
915 for (i = num_vsimms; i < MAX_VSIMMS; i++) {
916 /* vsimm registers probed by OBP */
917 if (hwdef->vsimm[i].reg_base) {
918 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
919 }
920 }
921
922 if (hwdef->sx_base) {
923 empty_slot_init(hwdef->sx_base, 0x2000);
924 }
925
926 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
927
928 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
929
930 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
931 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
932 dev = qdev_create(NULL, TYPE_ESCC);
933 qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
934 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
935 qdev_prop_set_uint32(dev, "it_shift", 1);
936 qdev_prop_set_chr(dev, "chrB", NULL);
937 qdev_prop_set_chr(dev, "chrA", NULL);
938 qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
939 qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
940 qdev_init_nofail(dev);
941 s = SYS_BUS_DEVICE(dev);
942 sysbus_connect_irq(s, 0, slavio_irq[14]);
943 sysbus_connect_irq(s, 1, slavio_irq[14]);
944 sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
945
946 dev = qdev_create(NULL, TYPE_ESCC);
947 qdev_prop_set_uint32(dev, "disabled", 0);
948 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
949 qdev_prop_set_uint32(dev, "it_shift", 1);
950 qdev_prop_set_chr(dev, "chrB", serial_hds[1]);
951 qdev_prop_set_chr(dev, "chrA", serial_hds[0]);
952 qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
953 qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
954 qdev_init_nofail(dev);
955
956 s = SYS_BUS_DEVICE(dev);
957 sysbus_connect_irq(s, 0, slavio_irq[15]);
958 sysbus_connect_irq(s, 1, slavio_irq[15]);
959 sysbus_mmio_map(s, 0, hwdef->serial_base);
960
961 if (hwdef->apc_base) {
962 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
963 }
964
965 if (hwdef->fd_base) {
966 /* there is zero or one floppy drive */
967 memset(fd, 0, sizeof(fd));
968 fd[0] = drive_get(IF_FLOPPY, 0, 0);
969 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
970 &fdc_tc);
971 } else {
972 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
973 }
974
975 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
976 slavio_irq[30], fdc_tc);
977
978 if (hwdef->cs_base) {
979 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
980 slavio_irq[5]);
981 }
982
983 if (hwdef->dbri_base) {
984 /* ISDN chip with attached CS4215 audio codec */
985 /* prom space */
986 empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
987 /* reg space */
988 empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
989 }
990
991 if (hwdef->bpp_base) {
992 /* parallel port */
993 empty_slot_init(hwdef->bpp_base, 0x20);
994 }
995
996 kernel_size = sun4m_load_kernel(machine->kernel_filename,
997 machine->initrd_filename,
998 machine->ram_size);
999
1000 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
1001 machine->boot_order, machine->ram_size, kernel_size,
1002 graphic_width, graphic_height, graphic_depth,
1003 hwdef->nvram_machine_id, "Sun4m");
1004
1005 if (hwdef->ecc_base)
1006 ecc_init(hwdef->ecc_base, slavio_irq[28],
1007 hwdef->ecc_version);
1008
1009 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2);
1010 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1011 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1012 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1013 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1014 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1015 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1016 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1017 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1018 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1019 if (machine->kernel_cmdline) {
1020 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1021 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1022 machine->kernel_cmdline);
1023 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1024 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1025 strlen(machine->kernel_cmdline) + 1);
1026 } else {
1027 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1028 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1029 }
1030 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1031 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
1032 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1033 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1034 }
1035
1036 enum {
1037 ss5_id = 32,
1038 vger_id,
1039 lx_id,
1040 ss4_id,
1041 scls_id,
1042 sbook_id,
1043 ss10_id = 64,
1044 ss20_id,
1045 ss600mp_id,
1046 };
1047
1048 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1049 /* SS-5 */
1050 {
1051 .iommu_base = 0x10000000,
1052 .iommu_pad_base = 0x10004000,
1053 .iommu_pad_len = 0x0fffb000,
1054 .tcx_base = 0x50000000,
1055 .cs_base = 0x6c000000,
1056 .slavio_base = 0x70000000,
1057 .ms_kb_base = 0x71000000,
1058 .serial_base = 0x71100000,
1059 .nvram_base = 0x71200000,
1060 .fd_base = 0x71400000,
1061 .counter_base = 0x71d00000,
1062 .intctl_base = 0x71e00000,
1063 .idreg_base = 0x78000000,
1064 .dma_base = 0x78400000,
1065 .esp_base = 0x78800000,
1066 .le_base = 0x78c00000,
1067 .apc_base = 0x6a000000,
1068 .afx_base = 0x6e000000,
1069 .aux1_base = 0x71900000,
1070 .aux2_base = 0x71910000,
1071 .nvram_machine_id = 0x80,
1072 .machine_id = ss5_id,
1073 .iommu_version = 0x05000000,
1074 .max_mem = 0x10000000,
1075 },
1076 /* SS-10 */
1077 {
1078 .iommu_base = 0xfe0000000ULL,
1079 .tcx_base = 0xe20000000ULL,
1080 .slavio_base = 0xff0000000ULL,
1081 .ms_kb_base = 0xff1000000ULL,
1082 .serial_base = 0xff1100000ULL,
1083 .nvram_base = 0xff1200000ULL,
1084 .fd_base = 0xff1700000ULL,
1085 .counter_base = 0xff1300000ULL,
1086 .intctl_base = 0xff1400000ULL,
1087 .idreg_base = 0xef0000000ULL,
1088 .dma_base = 0xef0400000ULL,
1089 .esp_base = 0xef0800000ULL,
1090 .le_base = 0xef0c00000ULL,
1091 .apc_base = 0xefa000000ULL, // XXX should not exist
1092 .aux1_base = 0xff1800000ULL,
1093 .aux2_base = 0xff1a01000ULL,
1094 .ecc_base = 0xf00000000ULL,
1095 .ecc_version = 0x10000000, // version 0, implementation 1
1096 .nvram_machine_id = 0x72,
1097 .machine_id = ss10_id,
1098 .iommu_version = 0x03000000,
1099 .max_mem = 0xf00000000ULL,
1100 },
1101 /* SS-600MP */
1102 {
1103 .iommu_base = 0xfe0000000ULL,
1104 .tcx_base = 0xe20000000ULL,
1105 .slavio_base = 0xff0000000ULL,
1106 .ms_kb_base = 0xff1000000ULL,
1107 .serial_base = 0xff1100000ULL,
1108 .nvram_base = 0xff1200000ULL,
1109 .counter_base = 0xff1300000ULL,
1110 .intctl_base = 0xff1400000ULL,
1111 .dma_base = 0xef0081000ULL,
1112 .esp_base = 0xef0080000ULL,
1113 .le_base = 0xef0060000ULL,
1114 .apc_base = 0xefa000000ULL, // XXX should not exist
1115 .aux1_base = 0xff1800000ULL,
1116 .aux2_base = 0xff1a01000ULL, // XXX should not exist
1117 .ecc_base = 0xf00000000ULL,
1118 .ecc_version = 0x00000000, // version 0, implementation 0
1119 .nvram_machine_id = 0x71,
1120 .machine_id = ss600mp_id,
1121 .iommu_version = 0x01000000,
1122 .max_mem = 0xf00000000ULL,
1123 },
1124 /* SS-20 */
1125 {
1126 .iommu_base = 0xfe0000000ULL,
1127 .tcx_base = 0xe20000000ULL,
1128 .slavio_base = 0xff0000000ULL,
1129 .ms_kb_base = 0xff1000000ULL,
1130 .serial_base = 0xff1100000ULL,
1131 .nvram_base = 0xff1200000ULL,
1132 .fd_base = 0xff1700000ULL,
1133 .counter_base = 0xff1300000ULL,
1134 .intctl_base = 0xff1400000ULL,
1135 .idreg_base = 0xef0000000ULL,
1136 .dma_base = 0xef0400000ULL,
1137 .esp_base = 0xef0800000ULL,
1138 .le_base = 0xef0c00000ULL,
1139 .bpp_base = 0xef4800000ULL,
1140 .apc_base = 0xefa000000ULL, // XXX should not exist
1141 .aux1_base = 0xff1800000ULL,
1142 .aux2_base = 0xff1a01000ULL,
1143 .dbri_base = 0xee0000000ULL,
1144 .sx_base = 0xf80000000ULL,
1145 .vsimm = {
1146 {
1147 .reg_base = 0x9c000000ULL,
1148 .vram_base = 0xfc000000ULL
1149 }, {
1150 .reg_base = 0x90000000ULL,
1151 .vram_base = 0xf0000000ULL
1152 }, {
1153 .reg_base = 0x94000000ULL
1154 }, {
1155 .reg_base = 0x98000000ULL
1156 }
1157 },
1158 .ecc_base = 0xf00000000ULL,
1159 .ecc_version = 0x20000000, // version 0, implementation 2
1160 .nvram_machine_id = 0x72,
1161 .machine_id = ss20_id,
1162 .iommu_version = 0x13000000,
1163 .max_mem = 0xf00000000ULL,
1164 },
1165 /* Voyager */
1166 {
1167 .iommu_base = 0x10000000,
1168 .tcx_base = 0x50000000,
1169 .slavio_base = 0x70000000,
1170 .ms_kb_base = 0x71000000,
1171 .serial_base = 0x71100000,
1172 .nvram_base = 0x71200000,
1173 .fd_base = 0x71400000,
1174 .counter_base = 0x71d00000,
1175 .intctl_base = 0x71e00000,
1176 .idreg_base = 0x78000000,
1177 .dma_base = 0x78400000,
1178 .esp_base = 0x78800000,
1179 .le_base = 0x78c00000,
1180 .apc_base = 0x71300000, // pmc
1181 .aux1_base = 0x71900000,
1182 .aux2_base = 0x71910000,
1183 .nvram_machine_id = 0x80,
1184 .machine_id = vger_id,
1185 .iommu_version = 0x05000000,
1186 .max_mem = 0x10000000,
1187 },
1188 /* LX */
1189 {
1190 .iommu_base = 0x10000000,
1191 .iommu_pad_base = 0x10004000,
1192 .iommu_pad_len = 0x0fffb000,
1193 .tcx_base = 0x50000000,
1194 .slavio_base = 0x70000000,
1195 .ms_kb_base = 0x71000000,
1196 .serial_base = 0x71100000,
1197 .nvram_base = 0x71200000,
1198 .fd_base = 0x71400000,
1199 .counter_base = 0x71d00000,
1200 .intctl_base = 0x71e00000,
1201 .idreg_base = 0x78000000,
1202 .dma_base = 0x78400000,
1203 .esp_base = 0x78800000,
1204 .le_base = 0x78c00000,
1205 .aux1_base = 0x71900000,
1206 .aux2_base = 0x71910000,
1207 .nvram_machine_id = 0x80,
1208 .machine_id = lx_id,
1209 .iommu_version = 0x04000000,
1210 .max_mem = 0x10000000,
1211 },
1212 /* SS-4 */
1213 {
1214 .iommu_base = 0x10000000,
1215 .tcx_base = 0x50000000,
1216 .cs_base = 0x6c000000,
1217 .slavio_base = 0x70000000,
1218 .ms_kb_base = 0x71000000,
1219 .serial_base = 0x71100000,
1220 .nvram_base = 0x71200000,
1221 .fd_base = 0x71400000,
1222 .counter_base = 0x71d00000,
1223 .intctl_base = 0x71e00000,
1224 .idreg_base = 0x78000000,
1225 .dma_base = 0x78400000,
1226 .esp_base = 0x78800000,
1227 .le_base = 0x78c00000,
1228 .apc_base = 0x6a000000,
1229 .aux1_base = 0x71900000,
1230 .aux2_base = 0x71910000,
1231 .nvram_machine_id = 0x80,
1232 .machine_id = ss4_id,
1233 .iommu_version = 0x05000000,
1234 .max_mem = 0x10000000,
1235 },
1236 /* SPARCClassic */
1237 {
1238 .iommu_base = 0x10000000,
1239 .tcx_base = 0x50000000,
1240 .slavio_base = 0x70000000,
1241 .ms_kb_base = 0x71000000,
1242 .serial_base = 0x71100000,
1243 .nvram_base = 0x71200000,
1244 .fd_base = 0x71400000,
1245 .counter_base = 0x71d00000,
1246 .intctl_base = 0x71e00000,
1247 .idreg_base = 0x78000000,
1248 .dma_base = 0x78400000,
1249 .esp_base = 0x78800000,
1250 .le_base = 0x78c00000,
1251 .apc_base = 0x6a000000,
1252 .aux1_base = 0x71900000,
1253 .aux2_base = 0x71910000,
1254 .nvram_machine_id = 0x80,
1255 .machine_id = scls_id,
1256 .iommu_version = 0x05000000,
1257 .max_mem = 0x10000000,
1258 },
1259 /* SPARCbook */
1260 {
1261 .iommu_base = 0x10000000,
1262 .tcx_base = 0x50000000, // XXX
1263 .slavio_base = 0x70000000,
1264 .ms_kb_base = 0x71000000,
1265 .serial_base = 0x71100000,
1266 .nvram_base = 0x71200000,
1267 .fd_base = 0x71400000,
1268 .counter_base = 0x71d00000,
1269 .intctl_base = 0x71e00000,
1270 .idreg_base = 0x78000000,
1271 .dma_base = 0x78400000,
1272 .esp_base = 0x78800000,
1273 .le_base = 0x78c00000,
1274 .apc_base = 0x6a000000,
1275 .aux1_base = 0x71900000,
1276 .aux2_base = 0x71910000,
1277 .nvram_machine_id = 0x80,
1278 .machine_id = sbook_id,
1279 .iommu_version = 0x05000000,
1280 .max_mem = 0x10000000,
1281 },
1282 };
1283
1284 /* SPARCstation 5 hardware initialisation */
1285 static void ss5_init(MachineState *machine)
1286 {
1287 sun4m_hw_init(&sun4m_hwdefs[0], machine);
1288 }
1289
1290 /* SPARCstation 10 hardware initialisation */
1291 static void ss10_init(MachineState *machine)
1292 {
1293 sun4m_hw_init(&sun4m_hwdefs[1], machine);
1294 }
1295
1296 /* SPARCserver 600MP hardware initialisation */
1297 static void ss600mp_init(MachineState *machine)
1298 {
1299 sun4m_hw_init(&sun4m_hwdefs[2], machine);
1300 }
1301
1302 /* SPARCstation 20 hardware initialisation */
1303 static void ss20_init(MachineState *machine)
1304 {
1305 sun4m_hw_init(&sun4m_hwdefs[3], machine);
1306 }
1307
1308 /* SPARCstation Voyager hardware initialisation */
1309 static void vger_init(MachineState *machine)
1310 {
1311 sun4m_hw_init(&sun4m_hwdefs[4], machine);
1312 }
1313
1314 /* SPARCstation LX hardware initialisation */
1315 static void ss_lx_init(MachineState *machine)
1316 {
1317 sun4m_hw_init(&sun4m_hwdefs[5], machine);
1318 }
1319
1320 /* SPARCstation 4 hardware initialisation */
1321 static void ss4_init(MachineState *machine)
1322 {
1323 sun4m_hw_init(&sun4m_hwdefs[6], machine);
1324 }
1325
1326 /* SPARCClassic hardware initialisation */
1327 static void scls_init(MachineState *machine)
1328 {
1329 sun4m_hw_init(&sun4m_hwdefs[7], machine);
1330 }
1331
1332 /* SPARCbook hardware initialisation */
1333 static void sbook_init(MachineState *machine)
1334 {
1335 sun4m_hw_init(&sun4m_hwdefs[8], machine);
1336 }
1337
1338 static void ss5_class_init(ObjectClass *oc, void *data)
1339 {
1340 MachineClass *mc = MACHINE_CLASS(oc);
1341
1342 mc->desc = "Sun4m platform, SPARCstation 5";
1343 mc->init = ss5_init;
1344 mc->block_default_type = IF_SCSI;
1345 mc->is_default = 1;
1346 mc->default_boot_order = "c";
1347 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1348 }
1349
1350 static const TypeInfo ss5_type = {
1351 .name = MACHINE_TYPE_NAME("SS-5"),
1352 .parent = TYPE_MACHINE,
1353 .class_init = ss5_class_init,
1354 };
1355
1356 static void ss10_class_init(ObjectClass *oc, void *data)
1357 {
1358 MachineClass *mc = MACHINE_CLASS(oc);
1359
1360 mc->desc = "Sun4m platform, SPARCstation 10";
1361 mc->init = ss10_init;
1362 mc->block_default_type = IF_SCSI;
1363 mc->max_cpus = 4;
1364 mc->default_boot_order = "c";
1365 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1366 }
1367
1368 static const TypeInfo ss10_type = {
1369 .name = MACHINE_TYPE_NAME("SS-10"),
1370 .parent = TYPE_MACHINE,
1371 .class_init = ss10_class_init,
1372 };
1373
1374 static void ss600mp_class_init(ObjectClass *oc, void *data)
1375 {
1376 MachineClass *mc = MACHINE_CLASS(oc);
1377
1378 mc->desc = "Sun4m platform, SPARCserver 600MP";
1379 mc->init = ss600mp_init;
1380 mc->block_default_type = IF_SCSI;
1381 mc->max_cpus = 4;
1382 mc->default_boot_order = "c";
1383 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1384 }
1385
1386 static const TypeInfo ss600mp_type = {
1387 .name = MACHINE_TYPE_NAME("SS-600MP"),
1388 .parent = TYPE_MACHINE,
1389 .class_init = ss600mp_class_init,
1390 };
1391
1392 static void ss20_class_init(ObjectClass *oc, void *data)
1393 {
1394 MachineClass *mc = MACHINE_CLASS(oc);
1395
1396 mc->desc = "Sun4m platform, SPARCstation 20";
1397 mc->init = ss20_init;
1398 mc->block_default_type = IF_SCSI;
1399 mc->max_cpus = 4;
1400 mc->default_boot_order = "c";
1401 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1402 }
1403
1404 static const TypeInfo ss20_type = {
1405 .name = MACHINE_TYPE_NAME("SS-20"),
1406 .parent = TYPE_MACHINE,
1407 .class_init = ss20_class_init,
1408 };
1409
1410 static void voyager_class_init(ObjectClass *oc, void *data)
1411 {
1412 MachineClass *mc = MACHINE_CLASS(oc);
1413
1414 mc->desc = "Sun4m platform, SPARCstation Voyager";
1415 mc->init = vger_init;
1416 mc->block_default_type = IF_SCSI;
1417 mc->default_boot_order = "c";
1418 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1419 }
1420
1421 static const TypeInfo voyager_type = {
1422 .name = MACHINE_TYPE_NAME("Voyager"),
1423 .parent = TYPE_MACHINE,
1424 .class_init = voyager_class_init,
1425 };
1426
1427 static void ss_lx_class_init(ObjectClass *oc, void *data)
1428 {
1429 MachineClass *mc = MACHINE_CLASS(oc);
1430
1431 mc->desc = "Sun4m platform, SPARCstation LX";
1432 mc->init = ss_lx_init;
1433 mc->block_default_type = IF_SCSI;
1434 mc->default_boot_order = "c";
1435 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1436 }
1437
1438 static const TypeInfo ss_lx_type = {
1439 .name = MACHINE_TYPE_NAME("LX"),
1440 .parent = TYPE_MACHINE,
1441 .class_init = ss_lx_class_init,
1442 };
1443
1444 static void ss4_class_init(ObjectClass *oc, void *data)
1445 {
1446 MachineClass *mc = MACHINE_CLASS(oc);
1447
1448 mc->desc = "Sun4m platform, SPARCstation 4";
1449 mc->init = ss4_init;
1450 mc->block_default_type = IF_SCSI;
1451 mc->default_boot_order = "c";
1452 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1453 }
1454
1455 static const TypeInfo ss4_type = {
1456 .name = MACHINE_TYPE_NAME("SS-4"),
1457 .parent = TYPE_MACHINE,
1458 .class_init = ss4_class_init,
1459 };
1460
1461 static void scls_class_init(ObjectClass *oc, void *data)
1462 {
1463 MachineClass *mc = MACHINE_CLASS(oc);
1464
1465 mc->desc = "Sun4m platform, SPARCClassic";
1466 mc->init = scls_init;
1467 mc->block_default_type = IF_SCSI;
1468 mc->default_boot_order = "c";
1469 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1470 }
1471
1472 static const TypeInfo scls_type = {
1473 .name = MACHINE_TYPE_NAME("SPARCClassic"),
1474 .parent = TYPE_MACHINE,
1475 .class_init = scls_class_init,
1476 };
1477
1478 static void sbook_class_init(ObjectClass *oc, void *data)
1479 {
1480 MachineClass *mc = MACHINE_CLASS(oc);
1481
1482 mc->desc = "Sun4m platform, SPARCbook";
1483 mc->init = sbook_init;
1484 mc->block_default_type = IF_SCSI;
1485 mc->default_boot_order = "c";
1486 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1487 }
1488
1489 static const TypeInfo sbook_type = {
1490 .name = MACHINE_TYPE_NAME("SPARCbook"),
1491 .parent = TYPE_MACHINE,
1492 .class_init = sbook_class_init,
1493 };
1494
1495 static void sun4m_register_types(void)
1496 {
1497 type_register_static(&idreg_info);
1498 type_register_static(&afx_info);
1499 type_register_static(&prom_info);
1500 type_register_static(&ram_info);
1501
1502 type_register_static(&ss5_type);
1503 type_register_static(&ss10_type);
1504 type_register_static(&ss600mp_type);
1505 type_register_static(&ss20_type);
1506 type_register_static(&voyager_type);
1507 type_register_static(&ss_lx_type);
1508 type_register_static(&ss4_type);
1509 type_register_static(&scls_type);
1510 type_register_static(&sbook_type);
1511 }
1512
1513 type_init(sun4m_register_types)