]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sparc/sun4m.c
sparc32_dma: introduce new SPARC32_DMA type container object
[mirror_qemu.git] / hw / sparc / sun4m.c
1 /*
2 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/sysbus.h"
29 #include "qemu/error-report.h"
30 #include "qemu/timer.h"
31 #include "hw/sparc/sun4m.h"
32 #include "hw/timer/m48t59.h"
33 #include "hw/sparc/sparc32_dma.h"
34 #include "hw/block/fdc.h"
35 #include "sysemu/sysemu.h"
36 #include "net/net.h"
37 #include "hw/boards.h"
38 #include "hw/scsi/esp.h"
39 #include "hw/i386/pc.h"
40 #include "hw/isa/isa.h"
41 #include "hw/nvram/sun_nvram.h"
42 #include "hw/nvram/chrp_nvram.h"
43 #include "hw/nvram/fw_cfg.h"
44 #include "hw/char/escc.h"
45 #include "hw/empty_slot.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "sysemu/block-backend.h"
49 #include "trace.h"
50 #include "qemu/cutils.h"
51
52 /*
53 * Sun4m architecture was used in the following machines:
54 *
55 * SPARCserver 6xxMP/xx
56 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
57 * SPARCclassic X (4/10)
58 * SPARCstation LX/ZX (4/30)
59 * SPARCstation Voyager
60 * SPARCstation 10/xx, SPARCserver 10/xx
61 * SPARCstation 5, SPARCserver 5
62 * SPARCstation 20/xx, SPARCserver 20
63 * SPARCstation 4
64 *
65 * See for example: http://www.sunhelp.org/faq/sunref1.html
66 */
67
68 #define KERNEL_LOAD_ADDR 0x00004000
69 #define CMDLINE_ADDR 0x007ff000
70 #define INITRD_LOAD_ADDR 0x00800000
71 #define PROM_SIZE_MAX (1024 * 1024)
72 #define PROM_VADDR 0xffd00000
73 #define PROM_FILENAME "openbios-sparc32"
74 #define CFG_ADDR 0xd00000510ULL
75 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
76 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
77 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
78
79 #define MAX_CPUS 16
80 #define MAX_PILS 16
81 #define MAX_VSIMMS 4
82
83 #define ESCC_CLOCK 4915200
84
85 struct sun4m_hwdef {
86 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
87 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
88 hwaddr serial_base, fd_base;
89 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
90 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
91 hwaddr bpp_base, dbri_base, sx_base;
92 struct {
93 hwaddr reg_base, vram_base;
94 } vsimm[MAX_VSIMMS];
95 hwaddr ecc_base;
96 uint64_t max_mem;
97 uint32_t ecc_version;
98 uint32_t iommu_version;
99 uint16_t machine_id;
100 uint8_t nvram_machine_id;
101 };
102
103 void DMA_init(ISABus *bus, int high_page_enable)
104 {
105 }
106
107 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
108 Error **errp)
109 {
110 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
111 }
112
113 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
114 const char *cmdline, const char *boot_devices,
115 ram_addr_t RAM_size, uint32_t kernel_size,
116 int width, int height, int depth,
117 int nvram_machine_id, const char *arch)
118 {
119 unsigned int i;
120 int sysp_end;
121 uint8_t image[0x1ff0];
122 NvramClass *k = NVRAM_GET_CLASS(nvram);
123
124 memset(image, '\0', sizeof(image));
125
126 /* OpenBIOS nvram variables partition */
127 sysp_end = chrp_nvram_create_system_partition(image, 0);
128
129 /* Free space partition */
130 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
131
132 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
133 nvram_machine_id);
134
135 for (i = 0; i < sizeof(image); i++) {
136 (k->write)(nvram, i, image[i]);
137 }
138 }
139
140 void cpu_check_irqs(CPUSPARCState *env)
141 {
142 CPUState *cs;
143
144 /* We should be holding the BQL before we mess with IRQs */
145 g_assert(qemu_mutex_iothread_locked());
146
147 if (env->pil_in && (env->interrupt_index == 0 ||
148 (env->interrupt_index & ~15) == TT_EXTINT)) {
149 unsigned int i;
150
151 for (i = 15; i > 0; i--) {
152 if (env->pil_in & (1 << i)) {
153 int old_interrupt = env->interrupt_index;
154
155 env->interrupt_index = TT_EXTINT | i;
156 if (old_interrupt != env->interrupt_index) {
157 cs = CPU(sparc_env_get_cpu(env));
158 trace_sun4m_cpu_interrupt(i);
159 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
160 }
161 break;
162 }
163 }
164 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
165 cs = CPU(sparc_env_get_cpu(env));
166 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
167 env->interrupt_index = 0;
168 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
169 }
170 }
171
172 static void cpu_kick_irq(SPARCCPU *cpu)
173 {
174 CPUSPARCState *env = &cpu->env;
175 CPUState *cs = CPU(cpu);
176
177 cs->halted = 0;
178 cpu_check_irqs(env);
179 qemu_cpu_kick(cs);
180 }
181
182 static void cpu_set_irq(void *opaque, int irq, int level)
183 {
184 SPARCCPU *cpu = opaque;
185 CPUSPARCState *env = &cpu->env;
186
187 if (level) {
188 trace_sun4m_cpu_set_irq_raise(irq);
189 env->pil_in |= 1 << irq;
190 cpu_kick_irq(cpu);
191 } else {
192 trace_sun4m_cpu_set_irq_lower(irq);
193 env->pil_in &= ~(1 << irq);
194 cpu_check_irqs(env);
195 }
196 }
197
198 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
199 {
200 }
201
202 static void main_cpu_reset(void *opaque)
203 {
204 SPARCCPU *cpu = opaque;
205 CPUState *cs = CPU(cpu);
206
207 cpu_reset(cs);
208 cs->halted = 0;
209 }
210
211 static void secondary_cpu_reset(void *opaque)
212 {
213 SPARCCPU *cpu = opaque;
214 CPUState *cs = CPU(cpu);
215
216 cpu_reset(cs);
217 cs->halted = 1;
218 }
219
220 static void cpu_halt_signal(void *opaque, int irq, int level)
221 {
222 if (level && current_cpu) {
223 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
224 }
225 }
226
227 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
228 {
229 return addr - 0xf0000000ULL;
230 }
231
232 static unsigned long sun4m_load_kernel(const char *kernel_filename,
233 const char *initrd_filename,
234 ram_addr_t RAM_size)
235 {
236 int linux_boot;
237 unsigned int i;
238 long initrd_size, kernel_size;
239 uint8_t *ptr;
240
241 linux_boot = (kernel_filename != NULL);
242
243 kernel_size = 0;
244 if (linux_boot) {
245 int bswap_needed;
246
247 #ifdef BSWAP_NEEDED
248 bswap_needed = 1;
249 #else
250 bswap_needed = 0;
251 #endif
252 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
253 NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
254 if (kernel_size < 0)
255 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
256 RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
257 TARGET_PAGE_SIZE);
258 if (kernel_size < 0)
259 kernel_size = load_image_targphys(kernel_filename,
260 KERNEL_LOAD_ADDR,
261 RAM_size - KERNEL_LOAD_ADDR);
262 if (kernel_size < 0) {
263 fprintf(stderr, "qemu: could not load kernel '%s'\n",
264 kernel_filename);
265 exit(1);
266 }
267
268 /* load initrd */
269 initrd_size = 0;
270 if (initrd_filename) {
271 initrd_size = load_image_targphys(initrd_filename,
272 INITRD_LOAD_ADDR,
273 RAM_size - INITRD_LOAD_ADDR);
274 if (initrd_size < 0) {
275 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
276 initrd_filename);
277 exit(1);
278 }
279 }
280 if (initrd_size > 0) {
281 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
282 ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
283 if (ldl_p(ptr) == 0x48647253) { // HdrS
284 stl_p(ptr + 16, INITRD_LOAD_ADDR);
285 stl_p(ptr + 20, initrd_size);
286 break;
287 }
288 }
289 }
290 }
291 return kernel_size;
292 }
293
294 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
295 {
296 DeviceState *dev;
297 SysBusDevice *s;
298
299 dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
300 qdev_prop_set_uint32(dev, "version", version);
301 qdev_init_nofail(dev);
302 s = SYS_BUS_DEVICE(dev);
303 sysbus_connect_irq(s, 0, irq);
304 sysbus_mmio_map(s, 0, addr);
305
306 return s;
307 }
308
309 static void *sparc32_dma_init(hwaddr dma_base,
310 hwaddr esp_base, qemu_irq espdma_irq,
311 hwaddr le_base, qemu_irq ledma_irq)
312 {
313 DeviceState *dma;
314 ESPDMADeviceState *espdma;
315 LEDMADeviceState *ledma;
316 SysBusESPState *esp;
317 SysBusPCNetState *lance;
318
319 dma = qdev_create(NULL, TYPE_SPARC32_DMA);
320 qdev_init_nofail(dma);
321 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
322
323 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
324 OBJECT(dma), "espdma"));
325 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
326
327 esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
328 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
329
330 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
331 OBJECT(dma), "ledma"));
332 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
333
334 lance = SYSBUS_PCNET(object_resolve_path_component(
335 OBJECT(ledma), "lance"));
336 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
337
338 return dma;
339 }
340
341 static DeviceState *slavio_intctl_init(hwaddr addr,
342 hwaddr addrg,
343 qemu_irq **parent_irq)
344 {
345 DeviceState *dev;
346 SysBusDevice *s;
347 unsigned int i, j;
348
349 dev = qdev_create(NULL, "slavio_intctl");
350 qdev_init_nofail(dev);
351
352 s = SYS_BUS_DEVICE(dev);
353
354 for (i = 0; i < MAX_CPUS; i++) {
355 for (j = 0; j < MAX_PILS; j++) {
356 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
357 }
358 }
359 sysbus_mmio_map(s, 0, addrg);
360 for (i = 0; i < MAX_CPUS; i++) {
361 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
362 }
363
364 return dev;
365 }
366
367 #define SYS_TIMER_OFFSET 0x10000ULL
368 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
369
370 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
371 qemu_irq *cpu_irqs, unsigned int num_cpus)
372 {
373 DeviceState *dev;
374 SysBusDevice *s;
375 unsigned int i;
376
377 dev = qdev_create(NULL, "slavio_timer");
378 qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
379 qdev_init_nofail(dev);
380 s = SYS_BUS_DEVICE(dev);
381 sysbus_connect_irq(s, 0, master_irq);
382 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
383
384 for (i = 0; i < MAX_CPUS; i++) {
385 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
386 sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
387 }
388 }
389
390 static qemu_irq slavio_system_powerdown;
391
392 static void slavio_powerdown_req(Notifier *n, void *opaque)
393 {
394 qemu_irq_raise(slavio_system_powerdown);
395 }
396
397 static Notifier slavio_system_powerdown_notifier = {
398 .notify = slavio_powerdown_req
399 };
400
401 #define MISC_LEDS 0x01600000
402 #define MISC_CFG 0x01800000
403 #define MISC_DIAG 0x01a00000
404 #define MISC_MDM 0x01b00000
405 #define MISC_SYS 0x01f00000
406
407 static void slavio_misc_init(hwaddr base,
408 hwaddr aux1_base,
409 hwaddr aux2_base, qemu_irq irq,
410 qemu_irq fdc_tc)
411 {
412 DeviceState *dev;
413 SysBusDevice *s;
414
415 dev = qdev_create(NULL, "slavio_misc");
416 qdev_init_nofail(dev);
417 s = SYS_BUS_DEVICE(dev);
418 if (base) {
419 /* 8 bit registers */
420 /* Slavio control */
421 sysbus_mmio_map(s, 0, base + MISC_CFG);
422 /* Diagnostics */
423 sysbus_mmio_map(s, 1, base + MISC_DIAG);
424 /* Modem control */
425 sysbus_mmio_map(s, 2, base + MISC_MDM);
426 /* 16 bit registers */
427 /* ss600mp diag LEDs */
428 sysbus_mmio_map(s, 3, base + MISC_LEDS);
429 /* 32 bit registers */
430 /* System control */
431 sysbus_mmio_map(s, 4, base + MISC_SYS);
432 }
433 if (aux1_base) {
434 /* AUX 1 (Misc System Functions) */
435 sysbus_mmio_map(s, 5, aux1_base);
436 }
437 if (aux2_base) {
438 /* AUX 2 (Software Powerdown Control) */
439 sysbus_mmio_map(s, 6, aux2_base);
440 }
441 sysbus_connect_irq(s, 0, irq);
442 sysbus_connect_irq(s, 1, fdc_tc);
443 slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
444 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
445 }
446
447 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
448 {
449 DeviceState *dev;
450 SysBusDevice *s;
451
452 dev = qdev_create(NULL, "eccmemctl");
453 qdev_prop_set_uint32(dev, "version", version);
454 qdev_init_nofail(dev);
455 s = SYS_BUS_DEVICE(dev);
456 sysbus_connect_irq(s, 0, irq);
457 sysbus_mmio_map(s, 0, base);
458 if (version == 0) { // SS-600MP only
459 sysbus_mmio_map(s, 1, base + 0x1000);
460 }
461 }
462
463 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
464 {
465 DeviceState *dev;
466 SysBusDevice *s;
467
468 dev = qdev_create(NULL, "apc");
469 qdev_init_nofail(dev);
470 s = SYS_BUS_DEVICE(dev);
471 /* Power management (APC) XXX: not a Slavio device */
472 sysbus_mmio_map(s, 0, power_base);
473 sysbus_connect_irq(s, 0, cpu_halt);
474 }
475
476 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
477 int height, int depth)
478 {
479 DeviceState *dev;
480 SysBusDevice *s;
481
482 dev = qdev_create(NULL, "SUNW,tcx");
483 qdev_prop_set_uint32(dev, "vram_size", vram_size);
484 qdev_prop_set_uint16(dev, "width", width);
485 qdev_prop_set_uint16(dev, "height", height);
486 qdev_prop_set_uint16(dev, "depth", depth);
487 qdev_init_nofail(dev);
488 s = SYS_BUS_DEVICE(dev);
489
490 /* 10/ROM : FCode ROM */
491 sysbus_mmio_map(s, 0, addr);
492 /* 2/STIP : Stipple */
493 sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
494 /* 3/BLIT : Blitter */
495 sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
496 /* 5/RSTIP : Raw Stipple */
497 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
498 /* 6/RBLIT : Raw Blitter */
499 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
500 /* 7/TEC : Transform Engine */
501 sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
502 /* 8/CMAP : DAC */
503 sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
504 /* 9/THC : */
505 if (depth == 8) {
506 sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
507 } else {
508 sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
509 }
510 /* 11/DHC : */
511 sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
512 /* 12/ALT : */
513 sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
514 /* 0/DFB8 : 8-bit plane */
515 sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
516 /* 1/DFB24 : 24bit plane */
517 sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
518 /* 4/RDFB32: Raw framebuffer. Control plane */
519 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
520 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
521 if (depth == 8) {
522 sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
523 }
524
525 sysbus_connect_irq(s, 0, irq);
526 }
527
528 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
529 int height, int depth)
530 {
531 DeviceState *dev;
532 SysBusDevice *s;
533
534 dev = qdev_create(NULL, "cgthree");
535 qdev_prop_set_uint32(dev, "vram-size", vram_size);
536 qdev_prop_set_uint16(dev, "width", width);
537 qdev_prop_set_uint16(dev, "height", height);
538 qdev_prop_set_uint16(dev, "depth", depth);
539 qdev_init_nofail(dev);
540 s = SYS_BUS_DEVICE(dev);
541
542 /* FCode ROM */
543 sysbus_mmio_map(s, 0, addr);
544 /* DAC */
545 sysbus_mmio_map(s, 1, addr + 0x400000ULL);
546 /* 8-bit plane */
547 sysbus_mmio_map(s, 2, addr + 0x800000ULL);
548
549 sysbus_connect_irq(s, 0, irq);
550 }
551
552 /* NCR89C100/MACIO Internal ID register */
553
554 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
555
556 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
557
558 static void idreg_init(hwaddr addr)
559 {
560 DeviceState *dev;
561 SysBusDevice *s;
562
563 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
564 qdev_init_nofail(dev);
565 s = SYS_BUS_DEVICE(dev);
566
567 sysbus_mmio_map(s, 0, addr);
568 cpu_physical_memory_write_rom(&address_space_memory,
569 addr, idreg_data, sizeof(idreg_data));
570 }
571
572 #define MACIO_ID_REGISTER(obj) \
573 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
574
575 typedef struct IDRegState {
576 SysBusDevice parent_obj;
577
578 MemoryRegion mem;
579 } IDRegState;
580
581 static void idreg_init1(Object *obj)
582 {
583 IDRegState *s = MACIO_ID_REGISTER(obj);
584 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
585
586 memory_region_init_ram_nomigrate(&s->mem, obj,
587 "sun4m.idreg", sizeof(idreg_data), &error_fatal);
588 vmstate_register_ram_global(&s->mem);
589 memory_region_set_readonly(&s->mem, true);
590 sysbus_init_mmio(dev, &s->mem);
591 }
592
593 static const TypeInfo idreg_info = {
594 .name = TYPE_MACIO_ID_REGISTER,
595 .parent = TYPE_SYS_BUS_DEVICE,
596 .instance_size = sizeof(IDRegState),
597 .instance_init = idreg_init1,
598 };
599
600 #define TYPE_TCX_AFX "tcx_afx"
601 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
602
603 typedef struct AFXState {
604 SysBusDevice parent_obj;
605
606 MemoryRegion mem;
607 } AFXState;
608
609 /* SS-5 TCX AFX register */
610 static void afx_init(hwaddr addr)
611 {
612 DeviceState *dev;
613 SysBusDevice *s;
614
615 dev = qdev_create(NULL, TYPE_TCX_AFX);
616 qdev_init_nofail(dev);
617 s = SYS_BUS_DEVICE(dev);
618
619 sysbus_mmio_map(s, 0, addr);
620 }
621
622 static void afx_init1(Object *obj)
623 {
624 AFXState *s = TCX_AFX(obj);
625 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
626
627 memory_region_init_ram_nomigrate(&s->mem, obj, "sun4m.afx", 4, &error_fatal);
628 vmstate_register_ram_global(&s->mem);
629 sysbus_init_mmio(dev, &s->mem);
630 }
631
632 static const TypeInfo afx_info = {
633 .name = TYPE_TCX_AFX,
634 .parent = TYPE_SYS_BUS_DEVICE,
635 .instance_size = sizeof(AFXState),
636 .instance_init = afx_init1,
637 };
638
639 #define TYPE_OPENPROM "openprom"
640 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
641
642 typedef struct PROMState {
643 SysBusDevice parent_obj;
644
645 MemoryRegion prom;
646 } PROMState;
647
648 /* Boot PROM (OpenBIOS) */
649 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
650 {
651 hwaddr *base_addr = (hwaddr *)opaque;
652 return addr + *base_addr - PROM_VADDR;
653 }
654
655 static void prom_init(hwaddr addr, const char *bios_name)
656 {
657 DeviceState *dev;
658 SysBusDevice *s;
659 char *filename;
660 int ret;
661
662 dev = qdev_create(NULL, TYPE_OPENPROM);
663 qdev_init_nofail(dev);
664 s = SYS_BUS_DEVICE(dev);
665
666 sysbus_mmio_map(s, 0, addr);
667
668 /* load boot prom */
669 if (bios_name == NULL) {
670 bios_name = PROM_FILENAME;
671 }
672 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
673 if (filename) {
674 ret = load_elf(filename, translate_prom_address, &addr, NULL,
675 NULL, NULL, 1, EM_SPARC, 0, 0);
676 if (ret < 0 || ret > PROM_SIZE_MAX) {
677 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
678 }
679 g_free(filename);
680 } else {
681 ret = -1;
682 }
683 if (ret < 0 || ret > PROM_SIZE_MAX) {
684 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
685 exit(1);
686 }
687 }
688
689 static void prom_init1(Object *obj)
690 {
691 PROMState *s = OPENPROM(obj);
692 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
693
694 memory_region_init_ram_nomigrate(&s->prom, obj, "sun4m.prom", PROM_SIZE_MAX,
695 &error_fatal);
696 vmstate_register_ram_global(&s->prom);
697 memory_region_set_readonly(&s->prom, true);
698 sysbus_init_mmio(dev, &s->prom);
699 }
700
701 static Property prom_properties[] = {
702 {/* end of property list */},
703 };
704
705 static void prom_class_init(ObjectClass *klass, void *data)
706 {
707 DeviceClass *dc = DEVICE_CLASS(klass);
708
709 dc->props = prom_properties;
710 }
711
712 static const TypeInfo prom_info = {
713 .name = TYPE_OPENPROM,
714 .parent = TYPE_SYS_BUS_DEVICE,
715 .instance_size = sizeof(PROMState),
716 .class_init = prom_class_init,
717 .instance_init = prom_init1,
718 };
719
720 #define TYPE_SUN4M_MEMORY "memory"
721 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
722
723 typedef struct RamDevice {
724 SysBusDevice parent_obj;
725
726 MemoryRegion ram;
727 uint64_t size;
728 } RamDevice;
729
730 /* System RAM */
731 static void ram_realize(DeviceState *dev, Error **errp)
732 {
733 RamDevice *d = SUN4M_RAM(dev);
734 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
735
736 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
737 d->size);
738 sysbus_init_mmio(sbd, &d->ram);
739 }
740
741 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
742 uint64_t max_mem)
743 {
744 DeviceState *dev;
745 SysBusDevice *s;
746 RamDevice *d;
747
748 /* allocate RAM */
749 if ((uint64_t)RAM_size > max_mem) {
750 fprintf(stderr,
751 "qemu: Too much memory for this machine: %d, maximum %d\n",
752 (unsigned int)(RAM_size / (1024 * 1024)),
753 (unsigned int)(max_mem / (1024 * 1024)));
754 exit(1);
755 }
756 dev = qdev_create(NULL, "memory");
757 s = SYS_BUS_DEVICE(dev);
758
759 d = SUN4M_RAM(dev);
760 d->size = RAM_size;
761 qdev_init_nofail(dev);
762
763 sysbus_mmio_map(s, 0, addr);
764 }
765
766 static Property ram_properties[] = {
767 DEFINE_PROP_UINT64("size", RamDevice, size, 0),
768 DEFINE_PROP_END_OF_LIST(),
769 };
770
771 static void ram_class_init(ObjectClass *klass, void *data)
772 {
773 DeviceClass *dc = DEVICE_CLASS(klass);
774
775 dc->realize = ram_realize;
776 dc->props = ram_properties;
777 }
778
779 static const TypeInfo ram_info = {
780 .name = TYPE_SUN4M_MEMORY,
781 .parent = TYPE_SYS_BUS_DEVICE,
782 .instance_size = sizeof(RamDevice),
783 .class_init = ram_class_init,
784 };
785
786 static void cpu_devinit(const char *cpu_type, unsigned int id,
787 uint64_t prom_addr, qemu_irq **cpu_irqs)
788 {
789 CPUState *cs;
790 SPARCCPU *cpu;
791 CPUSPARCState *env;
792
793 cpu = SPARC_CPU(cpu_create(cpu_type));
794 env = &cpu->env;
795
796 cpu_sparc_set_id(env, id);
797 if (id == 0) {
798 qemu_register_reset(main_cpu_reset, cpu);
799 } else {
800 qemu_register_reset(secondary_cpu_reset, cpu);
801 cs = CPU(cpu);
802 cs->halted = 1;
803 }
804 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
805 env->prom_addr = prom_addr;
806 }
807
808 static void dummy_fdc_tc(void *opaque, int irq, int level)
809 {
810 }
811
812 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
813 MachineState *machine)
814 {
815 DeviceState *slavio_intctl;
816 unsigned int i;
817 void *nvram;
818 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
819 qemu_irq fdc_tc;
820 unsigned long kernel_size;
821 DriveInfo *fd[MAX_FD];
822 FWCfgState *fw_cfg;
823 unsigned int num_vsimms;
824
825 /* init CPUs */
826 for(i = 0; i < smp_cpus; i++) {
827 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
828 }
829
830 for (i = smp_cpus; i < MAX_CPUS; i++)
831 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
832
833
834 /* set up devices */
835 ram_init(0, machine->ram_size, hwdef->max_mem);
836 /* models without ECC don't trap when missing ram is accessed */
837 if (!hwdef->ecc_base) {
838 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
839 }
840
841 prom_init(hwdef->slavio_base, bios_name);
842
843 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
844 hwdef->intctl_base + 0x10000ULL,
845 cpu_irqs);
846
847 for (i = 0; i < 32; i++) {
848 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
849 }
850 for (i = 0; i < MAX_CPUS; i++) {
851 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
852 }
853
854 if (hwdef->idreg_base) {
855 idreg_init(hwdef->idreg_base);
856 }
857
858 if (hwdef->afx_base) {
859 afx_init(hwdef->afx_base);
860 }
861
862 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
863
864 if (hwdef->iommu_pad_base) {
865 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
866 Software shouldn't use aliased addresses, neither should it crash
867 when does. Using empty_slot instead of aliasing can help with
868 debugging such accesses */
869 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
870 }
871
872 sparc32_dma_init(hwdef->dma_base,
873 hwdef->esp_base, slavio_irq[18],
874 hwdef->le_base, slavio_irq[16]);
875
876 if (graphic_depth != 8 && graphic_depth != 24) {
877 error_report("Unsupported depth: %d", graphic_depth);
878 exit (1);
879 }
880 num_vsimms = 0;
881 if (num_vsimms == 0) {
882 if (vga_interface_type == VGA_CG3) {
883 if (graphic_depth != 8) {
884 error_report("Unsupported depth: %d", graphic_depth);
885 exit(1);
886 }
887
888 if (!(graphic_width == 1024 && graphic_height == 768) &&
889 !(graphic_width == 1152 && graphic_height == 900)) {
890 error_report("Unsupported resolution: %d x %d", graphic_width,
891 graphic_height);
892 exit(1);
893 }
894
895 /* sbus irq 5 */
896 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
897 graphic_width, graphic_height, graphic_depth);
898 } else {
899 /* If no display specified, default to TCX */
900 if (graphic_depth != 8 && graphic_depth != 24) {
901 error_report("Unsupported depth: %d", graphic_depth);
902 exit(1);
903 }
904
905 if (!(graphic_width == 1024 && graphic_height == 768)) {
906 error_report("Unsupported resolution: %d x %d",
907 graphic_width, graphic_height);
908 exit(1);
909 }
910
911 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
912 graphic_width, graphic_height, graphic_depth);
913 }
914 }
915
916 for (i = num_vsimms; i < MAX_VSIMMS; i++) {
917 /* vsimm registers probed by OBP */
918 if (hwdef->vsimm[i].reg_base) {
919 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
920 }
921 }
922
923 if (hwdef->sx_base) {
924 empty_slot_init(hwdef->sx_base, 0x2000);
925 }
926
927 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
928
929 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
930
931 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
932 !machine->enable_graphics, ESCC_CLOCK, 1);
933 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
934 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
935 escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
936 serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
937
938 if (hwdef->apc_base) {
939 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
940 }
941
942 if (hwdef->fd_base) {
943 /* there is zero or one floppy drive */
944 memset(fd, 0, sizeof(fd));
945 fd[0] = drive_get(IF_FLOPPY, 0, 0);
946 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
947 &fdc_tc);
948 } else {
949 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
950 }
951
952 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
953 slavio_irq[30], fdc_tc);
954
955 if (hwdef->cs_base) {
956 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
957 slavio_irq[5]);
958 }
959
960 if (hwdef->dbri_base) {
961 /* ISDN chip with attached CS4215 audio codec */
962 /* prom space */
963 empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
964 /* reg space */
965 empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
966 }
967
968 if (hwdef->bpp_base) {
969 /* parallel port */
970 empty_slot_init(hwdef->bpp_base, 0x20);
971 }
972
973 kernel_size = sun4m_load_kernel(machine->kernel_filename,
974 machine->initrd_filename,
975 machine->ram_size);
976
977 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
978 machine->boot_order, machine->ram_size, kernel_size,
979 graphic_width, graphic_height, graphic_depth,
980 hwdef->nvram_machine_id, "Sun4m");
981
982 if (hwdef->ecc_base)
983 ecc_init(hwdef->ecc_base, slavio_irq[28],
984 hwdef->ecc_version);
985
986 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2);
987 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
988 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
989 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
990 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
991 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
992 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
993 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
994 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
995 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
996 if (machine->kernel_cmdline) {
997 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
998 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
999 machine->kernel_cmdline);
1000 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1001 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1002 strlen(machine->kernel_cmdline) + 1);
1003 } else {
1004 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1005 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1006 }
1007 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1008 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
1009 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1010 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1011 }
1012
1013 enum {
1014 ss5_id = 32,
1015 vger_id,
1016 lx_id,
1017 ss4_id,
1018 scls_id,
1019 sbook_id,
1020 ss10_id = 64,
1021 ss20_id,
1022 ss600mp_id,
1023 };
1024
1025 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1026 /* SS-5 */
1027 {
1028 .iommu_base = 0x10000000,
1029 .iommu_pad_base = 0x10004000,
1030 .iommu_pad_len = 0x0fffb000,
1031 .tcx_base = 0x50000000,
1032 .cs_base = 0x6c000000,
1033 .slavio_base = 0x70000000,
1034 .ms_kb_base = 0x71000000,
1035 .serial_base = 0x71100000,
1036 .nvram_base = 0x71200000,
1037 .fd_base = 0x71400000,
1038 .counter_base = 0x71d00000,
1039 .intctl_base = 0x71e00000,
1040 .idreg_base = 0x78000000,
1041 .dma_base = 0x78400000,
1042 .esp_base = 0x78800000,
1043 .le_base = 0x78c00000,
1044 .apc_base = 0x6a000000,
1045 .afx_base = 0x6e000000,
1046 .aux1_base = 0x71900000,
1047 .aux2_base = 0x71910000,
1048 .nvram_machine_id = 0x80,
1049 .machine_id = ss5_id,
1050 .iommu_version = 0x05000000,
1051 .max_mem = 0x10000000,
1052 },
1053 /* SS-10 */
1054 {
1055 .iommu_base = 0xfe0000000ULL,
1056 .tcx_base = 0xe20000000ULL,
1057 .slavio_base = 0xff0000000ULL,
1058 .ms_kb_base = 0xff1000000ULL,
1059 .serial_base = 0xff1100000ULL,
1060 .nvram_base = 0xff1200000ULL,
1061 .fd_base = 0xff1700000ULL,
1062 .counter_base = 0xff1300000ULL,
1063 .intctl_base = 0xff1400000ULL,
1064 .idreg_base = 0xef0000000ULL,
1065 .dma_base = 0xef0400000ULL,
1066 .esp_base = 0xef0800000ULL,
1067 .le_base = 0xef0c00000ULL,
1068 .apc_base = 0xefa000000ULL, // XXX should not exist
1069 .aux1_base = 0xff1800000ULL,
1070 .aux2_base = 0xff1a01000ULL,
1071 .ecc_base = 0xf00000000ULL,
1072 .ecc_version = 0x10000000, // version 0, implementation 1
1073 .nvram_machine_id = 0x72,
1074 .machine_id = ss10_id,
1075 .iommu_version = 0x03000000,
1076 .max_mem = 0xf00000000ULL,
1077 },
1078 /* SS-600MP */
1079 {
1080 .iommu_base = 0xfe0000000ULL,
1081 .tcx_base = 0xe20000000ULL,
1082 .slavio_base = 0xff0000000ULL,
1083 .ms_kb_base = 0xff1000000ULL,
1084 .serial_base = 0xff1100000ULL,
1085 .nvram_base = 0xff1200000ULL,
1086 .counter_base = 0xff1300000ULL,
1087 .intctl_base = 0xff1400000ULL,
1088 .dma_base = 0xef0081000ULL,
1089 .esp_base = 0xef0080000ULL,
1090 .le_base = 0xef0060000ULL,
1091 .apc_base = 0xefa000000ULL, // XXX should not exist
1092 .aux1_base = 0xff1800000ULL,
1093 .aux2_base = 0xff1a01000ULL, // XXX should not exist
1094 .ecc_base = 0xf00000000ULL,
1095 .ecc_version = 0x00000000, // version 0, implementation 0
1096 .nvram_machine_id = 0x71,
1097 .machine_id = ss600mp_id,
1098 .iommu_version = 0x01000000,
1099 .max_mem = 0xf00000000ULL,
1100 },
1101 /* SS-20 */
1102 {
1103 .iommu_base = 0xfe0000000ULL,
1104 .tcx_base = 0xe20000000ULL,
1105 .slavio_base = 0xff0000000ULL,
1106 .ms_kb_base = 0xff1000000ULL,
1107 .serial_base = 0xff1100000ULL,
1108 .nvram_base = 0xff1200000ULL,
1109 .fd_base = 0xff1700000ULL,
1110 .counter_base = 0xff1300000ULL,
1111 .intctl_base = 0xff1400000ULL,
1112 .idreg_base = 0xef0000000ULL,
1113 .dma_base = 0xef0400000ULL,
1114 .esp_base = 0xef0800000ULL,
1115 .le_base = 0xef0c00000ULL,
1116 .bpp_base = 0xef4800000ULL,
1117 .apc_base = 0xefa000000ULL, // XXX should not exist
1118 .aux1_base = 0xff1800000ULL,
1119 .aux2_base = 0xff1a01000ULL,
1120 .dbri_base = 0xee0000000ULL,
1121 .sx_base = 0xf80000000ULL,
1122 .vsimm = {
1123 {
1124 .reg_base = 0x9c000000ULL,
1125 .vram_base = 0xfc000000ULL
1126 }, {
1127 .reg_base = 0x90000000ULL,
1128 .vram_base = 0xf0000000ULL
1129 }, {
1130 .reg_base = 0x94000000ULL
1131 }, {
1132 .reg_base = 0x98000000ULL
1133 }
1134 },
1135 .ecc_base = 0xf00000000ULL,
1136 .ecc_version = 0x20000000, // version 0, implementation 2
1137 .nvram_machine_id = 0x72,
1138 .machine_id = ss20_id,
1139 .iommu_version = 0x13000000,
1140 .max_mem = 0xf00000000ULL,
1141 },
1142 /* Voyager */
1143 {
1144 .iommu_base = 0x10000000,
1145 .tcx_base = 0x50000000,
1146 .slavio_base = 0x70000000,
1147 .ms_kb_base = 0x71000000,
1148 .serial_base = 0x71100000,
1149 .nvram_base = 0x71200000,
1150 .fd_base = 0x71400000,
1151 .counter_base = 0x71d00000,
1152 .intctl_base = 0x71e00000,
1153 .idreg_base = 0x78000000,
1154 .dma_base = 0x78400000,
1155 .esp_base = 0x78800000,
1156 .le_base = 0x78c00000,
1157 .apc_base = 0x71300000, // pmc
1158 .aux1_base = 0x71900000,
1159 .aux2_base = 0x71910000,
1160 .nvram_machine_id = 0x80,
1161 .machine_id = vger_id,
1162 .iommu_version = 0x05000000,
1163 .max_mem = 0x10000000,
1164 },
1165 /* LX */
1166 {
1167 .iommu_base = 0x10000000,
1168 .iommu_pad_base = 0x10004000,
1169 .iommu_pad_len = 0x0fffb000,
1170 .tcx_base = 0x50000000,
1171 .slavio_base = 0x70000000,
1172 .ms_kb_base = 0x71000000,
1173 .serial_base = 0x71100000,
1174 .nvram_base = 0x71200000,
1175 .fd_base = 0x71400000,
1176 .counter_base = 0x71d00000,
1177 .intctl_base = 0x71e00000,
1178 .idreg_base = 0x78000000,
1179 .dma_base = 0x78400000,
1180 .esp_base = 0x78800000,
1181 .le_base = 0x78c00000,
1182 .aux1_base = 0x71900000,
1183 .aux2_base = 0x71910000,
1184 .nvram_machine_id = 0x80,
1185 .machine_id = lx_id,
1186 .iommu_version = 0x04000000,
1187 .max_mem = 0x10000000,
1188 },
1189 /* SS-4 */
1190 {
1191 .iommu_base = 0x10000000,
1192 .tcx_base = 0x50000000,
1193 .cs_base = 0x6c000000,
1194 .slavio_base = 0x70000000,
1195 .ms_kb_base = 0x71000000,
1196 .serial_base = 0x71100000,
1197 .nvram_base = 0x71200000,
1198 .fd_base = 0x71400000,
1199 .counter_base = 0x71d00000,
1200 .intctl_base = 0x71e00000,
1201 .idreg_base = 0x78000000,
1202 .dma_base = 0x78400000,
1203 .esp_base = 0x78800000,
1204 .le_base = 0x78c00000,
1205 .apc_base = 0x6a000000,
1206 .aux1_base = 0x71900000,
1207 .aux2_base = 0x71910000,
1208 .nvram_machine_id = 0x80,
1209 .machine_id = ss4_id,
1210 .iommu_version = 0x05000000,
1211 .max_mem = 0x10000000,
1212 },
1213 /* SPARCClassic */
1214 {
1215 .iommu_base = 0x10000000,
1216 .tcx_base = 0x50000000,
1217 .slavio_base = 0x70000000,
1218 .ms_kb_base = 0x71000000,
1219 .serial_base = 0x71100000,
1220 .nvram_base = 0x71200000,
1221 .fd_base = 0x71400000,
1222 .counter_base = 0x71d00000,
1223 .intctl_base = 0x71e00000,
1224 .idreg_base = 0x78000000,
1225 .dma_base = 0x78400000,
1226 .esp_base = 0x78800000,
1227 .le_base = 0x78c00000,
1228 .apc_base = 0x6a000000,
1229 .aux1_base = 0x71900000,
1230 .aux2_base = 0x71910000,
1231 .nvram_machine_id = 0x80,
1232 .machine_id = scls_id,
1233 .iommu_version = 0x05000000,
1234 .max_mem = 0x10000000,
1235 },
1236 /* SPARCbook */
1237 {
1238 .iommu_base = 0x10000000,
1239 .tcx_base = 0x50000000, // XXX
1240 .slavio_base = 0x70000000,
1241 .ms_kb_base = 0x71000000,
1242 .serial_base = 0x71100000,
1243 .nvram_base = 0x71200000,
1244 .fd_base = 0x71400000,
1245 .counter_base = 0x71d00000,
1246 .intctl_base = 0x71e00000,
1247 .idreg_base = 0x78000000,
1248 .dma_base = 0x78400000,
1249 .esp_base = 0x78800000,
1250 .le_base = 0x78c00000,
1251 .apc_base = 0x6a000000,
1252 .aux1_base = 0x71900000,
1253 .aux2_base = 0x71910000,
1254 .nvram_machine_id = 0x80,
1255 .machine_id = sbook_id,
1256 .iommu_version = 0x05000000,
1257 .max_mem = 0x10000000,
1258 },
1259 };
1260
1261 /* SPARCstation 5 hardware initialisation */
1262 static void ss5_init(MachineState *machine)
1263 {
1264 sun4m_hw_init(&sun4m_hwdefs[0], machine);
1265 }
1266
1267 /* SPARCstation 10 hardware initialisation */
1268 static void ss10_init(MachineState *machine)
1269 {
1270 sun4m_hw_init(&sun4m_hwdefs[1], machine);
1271 }
1272
1273 /* SPARCserver 600MP hardware initialisation */
1274 static void ss600mp_init(MachineState *machine)
1275 {
1276 sun4m_hw_init(&sun4m_hwdefs[2], machine);
1277 }
1278
1279 /* SPARCstation 20 hardware initialisation */
1280 static void ss20_init(MachineState *machine)
1281 {
1282 sun4m_hw_init(&sun4m_hwdefs[3], machine);
1283 }
1284
1285 /* SPARCstation Voyager hardware initialisation */
1286 static void vger_init(MachineState *machine)
1287 {
1288 sun4m_hw_init(&sun4m_hwdefs[4], machine);
1289 }
1290
1291 /* SPARCstation LX hardware initialisation */
1292 static void ss_lx_init(MachineState *machine)
1293 {
1294 sun4m_hw_init(&sun4m_hwdefs[5], machine);
1295 }
1296
1297 /* SPARCstation 4 hardware initialisation */
1298 static void ss4_init(MachineState *machine)
1299 {
1300 sun4m_hw_init(&sun4m_hwdefs[6], machine);
1301 }
1302
1303 /* SPARCClassic hardware initialisation */
1304 static void scls_init(MachineState *machine)
1305 {
1306 sun4m_hw_init(&sun4m_hwdefs[7], machine);
1307 }
1308
1309 /* SPARCbook hardware initialisation */
1310 static void sbook_init(MachineState *machine)
1311 {
1312 sun4m_hw_init(&sun4m_hwdefs[8], machine);
1313 }
1314
1315 static void ss5_class_init(ObjectClass *oc, void *data)
1316 {
1317 MachineClass *mc = MACHINE_CLASS(oc);
1318
1319 mc->desc = "Sun4m platform, SPARCstation 5";
1320 mc->init = ss5_init;
1321 mc->block_default_type = IF_SCSI;
1322 mc->is_default = 1;
1323 mc->default_boot_order = "c";
1324 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1325 }
1326
1327 static const TypeInfo ss5_type = {
1328 .name = MACHINE_TYPE_NAME("SS-5"),
1329 .parent = TYPE_MACHINE,
1330 .class_init = ss5_class_init,
1331 };
1332
1333 static void ss10_class_init(ObjectClass *oc, void *data)
1334 {
1335 MachineClass *mc = MACHINE_CLASS(oc);
1336
1337 mc->desc = "Sun4m platform, SPARCstation 10";
1338 mc->init = ss10_init;
1339 mc->block_default_type = IF_SCSI;
1340 mc->max_cpus = 4;
1341 mc->default_boot_order = "c";
1342 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1343 }
1344
1345 static const TypeInfo ss10_type = {
1346 .name = MACHINE_TYPE_NAME("SS-10"),
1347 .parent = TYPE_MACHINE,
1348 .class_init = ss10_class_init,
1349 };
1350
1351 static void ss600mp_class_init(ObjectClass *oc, void *data)
1352 {
1353 MachineClass *mc = MACHINE_CLASS(oc);
1354
1355 mc->desc = "Sun4m platform, SPARCserver 600MP";
1356 mc->init = ss600mp_init;
1357 mc->block_default_type = IF_SCSI;
1358 mc->max_cpus = 4;
1359 mc->default_boot_order = "c";
1360 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1361 }
1362
1363 static const TypeInfo ss600mp_type = {
1364 .name = MACHINE_TYPE_NAME("SS-600MP"),
1365 .parent = TYPE_MACHINE,
1366 .class_init = ss600mp_class_init,
1367 };
1368
1369 static void ss20_class_init(ObjectClass *oc, void *data)
1370 {
1371 MachineClass *mc = MACHINE_CLASS(oc);
1372
1373 mc->desc = "Sun4m platform, SPARCstation 20";
1374 mc->init = ss20_init;
1375 mc->block_default_type = IF_SCSI;
1376 mc->max_cpus = 4;
1377 mc->default_boot_order = "c";
1378 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1379 }
1380
1381 static const TypeInfo ss20_type = {
1382 .name = MACHINE_TYPE_NAME("SS-20"),
1383 .parent = TYPE_MACHINE,
1384 .class_init = ss20_class_init,
1385 };
1386
1387 static void voyager_class_init(ObjectClass *oc, void *data)
1388 {
1389 MachineClass *mc = MACHINE_CLASS(oc);
1390
1391 mc->desc = "Sun4m platform, SPARCstation Voyager";
1392 mc->init = vger_init;
1393 mc->block_default_type = IF_SCSI;
1394 mc->default_boot_order = "c";
1395 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1396 }
1397
1398 static const TypeInfo voyager_type = {
1399 .name = MACHINE_TYPE_NAME("Voyager"),
1400 .parent = TYPE_MACHINE,
1401 .class_init = voyager_class_init,
1402 };
1403
1404 static void ss_lx_class_init(ObjectClass *oc, void *data)
1405 {
1406 MachineClass *mc = MACHINE_CLASS(oc);
1407
1408 mc->desc = "Sun4m platform, SPARCstation LX";
1409 mc->init = ss_lx_init;
1410 mc->block_default_type = IF_SCSI;
1411 mc->default_boot_order = "c";
1412 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1413 }
1414
1415 static const TypeInfo ss_lx_type = {
1416 .name = MACHINE_TYPE_NAME("LX"),
1417 .parent = TYPE_MACHINE,
1418 .class_init = ss_lx_class_init,
1419 };
1420
1421 static void ss4_class_init(ObjectClass *oc, void *data)
1422 {
1423 MachineClass *mc = MACHINE_CLASS(oc);
1424
1425 mc->desc = "Sun4m platform, SPARCstation 4";
1426 mc->init = ss4_init;
1427 mc->block_default_type = IF_SCSI;
1428 mc->default_boot_order = "c";
1429 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1430 }
1431
1432 static const TypeInfo ss4_type = {
1433 .name = MACHINE_TYPE_NAME("SS-4"),
1434 .parent = TYPE_MACHINE,
1435 .class_init = ss4_class_init,
1436 };
1437
1438 static void scls_class_init(ObjectClass *oc, void *data)
1439 {
1440 MachineClass *mc = MACHINE_CLASS(oc);
1441
1442 mc->desc = "Sun4m platform, SPARCClassic";
1443 mc->init = scls_init;
1444 mc->block_default_type = IF_SCSI;
1445 mc->default_boot_order = "c";
1446 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1447 }
1448
1449 static const TypeInfo scls_type = {
1450 .name = MACHINE_TYPE_NAME("SPARCClassic"),
1451 .parent = TYPE_MACHINE,
1452 .class_init = scls_class_init,
1453 };
1454
1455 static void sbook_class_init(ObjectClass *oc, void *data)
1456 {
1457 MachineClass *mc = MACHINE_CLASS(oc);
1458
1459 mc->desc = "Sun4m platform, SPARCbook";
1460 mc->init = sbook_init;
1461 mc->block_default_type = IF_SCSI;
1462 mc->default_boot_order = "c";
1463 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1464 }
1465
1466 static const TypeInfo sbook_type = {
1467 .name = MACHINE_TYPE_NAME("SPARCbook"),
1468 .parent = TYPE_MACHINE,
1469 .class_init = sbook_class_init,
1470 };
1471
1472 static void sun4m_register_types(void)
1473 {
1474 type_register_static(&idreg_info);
1475 type_register_static(&afx_info);
1476 type_register_static(&prom_info);
1477 type_register_static(&ram_info);
1478
1479 type_register_static(&ss5_type);
1480 type_register_static(&ss10_type);
1481 type_register_static(&ss600mp_type);
1482 type_register_static(&ss20_type);
1483 type_register_static(&voyager_type);
1484 type_register_static(&ss_lx_type);
1485 type_register_static(&ss4_type);
1486 type_register_static(&scls_type);
1487 type_register_static(&sbook_type);
1488 }
1489
1490 type_init(sun4m_register_types)