]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ssi/mss-spi.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / hw / ssi / mss-spi.c
1 /*
2 * Block model of SPI controller present in
3 * Microsemi's SmartFusion2 and SmartFusion SoCs.
4 *
5 * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/ssi/mss-spi.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30
31 #ifndef MSS_SPI_ERR_DEBUG
32 #define MSS_SPI_ERR_DEBUG 0
33 #endif
34
35 #define DB_PRINT_L(lvl, fmt, args...) do { \
36 if (MSS_SPI_ERR_DEBUG >= lvl) { \
37 qemu_log("%s: " fmt "\n", __func__, ## args); \
38 } \
39 } while (0)
40
41 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
42
43 #define FIFO_CAPACITY 32
44
45 #define R_SPI_CONTROL 0
46 #define R_SPI_DFSIZE 1
47 #define R_SPI_STATUS 2
48 #define R_SPI_INTCLR 3
49 #define R_SPI_RX 4
50 #define R_SPI_TX 5
51 #define R_SPI_CLKGEN 6
52 #define R_SPI_SS 7
53 #define R_SPI_MIS 8
54 #define R_SPI_RIS 9
55
56 #define S_TXDONE (1 << 0)
57 #define S_RXRDY (1 << 1)
58 #define S_RXCHOVRF (1 << 2)
59 #define S_RXFIFOFUL (1 << 4)
60 #define S_RXFIFOFULNXT (1 << 5)
61 #define S_RXFIFOEMP (1 << 6)
62 #define S_RXFIFOEMPNXT (1 << 7)
63 #define S_TXFIFOFUL (1 << 8)
64 #define S_TXFIFOFULNXT (1 << 9)
65 #define S_TXFIFOEMP (1 << 10)
66 #define S_TXFIFOEMPNXT (1 << 11)
67 #define S_FRAMESTART (1 << 12)
68 #define S_SSEL (1 << 13)
69 #define S_ACTIVE (1 << 14)
70
71 #define C_ENABLE (1 << 0)
72 #define C_MODE (1 << 1)
73 #define C_INTRXDATA (1 << 4)
74 #define C_INTTXDATA (1 << 5)
75 #define C_INTRXOVRFLO (1 << 6)
76 #define C_SPS (1 << 26)
77 #define C_BIGFIFO (1 << 29)
78 #define C_RESET (1 << 31)
79
80 #define FRAMESZ_MASK 0x3F
81 #define FMCOUNT_MASK 0x00FFFF00
82 #define FMCOUNT_SHIFT 8
83 #define FRAMESZ_MAX 32
84
85 static void txfifo_reset(MSSSpiState *s)
86 {
87 fifo32_reset(&s->tx_fifo);
88
89 s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
90 s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
91 }
92
93 static void rxfifo_reset(MSSSpiState *s)
94 {
95 fifo32_reset(&s->rx_fifo);
96
97 s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
98 s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
99 }
100
101 static void set_fifodepth(MSSSpiState *s)
102 {
103 unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
104
105 if (size <= 8) {
106 s->fifo_depth = 32;
107 } else if (size <= 16) {
108 s->fifo_depth = 16;
109 } else {
110 s->fifo_depth = 8;
111 }
112 }
113
114 static void update_mis(MSSSpiState *s)
115 {
116 uint32_t reg = s->regs[R_SPI_CONTROL];
117 uint32_t tmp;
118
119 /*
120 * form the Control register interrupt enable bits
121 * same as RIS, MIS and Interrupt clear registers for simplicity
122 */
123 tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
124 ((reg & C_INTTXDATA) >> 5);
125 s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
126 }
127
128 static void spi_update_irq(MSSSpiState *s)
129 {
130 int irq;
131
132 update_mis(s);
133 irq = !!(s->regs[R_SPI_MIS]);
134
135 qemu_set_irq(s->irq, irq);
136 }
137
138 static void mss_spi_reset(DeviceState *d)
139 {
140 MSSSpiState *s = MSS_SPI(d);
141
142 memset(s->regs, 0, sizeof s->regs);
143 s->regs[R_SPI_CONTROL] = 0x80000102;
144 s->regs[R_SPI_DFSIZE] = 0x4;
145 s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
146 s->regs[R_SPI_CLKGEN] = 0x7;
147 s->regs[R_SPI_RIS] = 0x0;
148
149 s->fifo_depth = 4;
150 s->frame_count = 1;
151 s->enabled = false;
152
153 rxfifo_reset(s);
154 txfifo_reset(s);
155 }
156
157 static uint64_t
158 spi_read(void *opaque, hwaddr addr, unsigned int size)
159 {
160 MSSSpiState *s = opaque;
161 uint32_t ret = 0;
162
163 addr >>= 2;
164 switch (addr) {
165 case R_SPI_RX:
166 s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
167 s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
168 if (fifo32_is_empty(&s->rx_fifo)) {
169 qemu_log_mask(LOG_GUEST_ERROR,
170 "%s: Reading empty RX_FIFO\n",
171 __func__);
172 } else {
173 ret = fifo32_pop(&s->rx_fifo);
174 }
175 if (fifo32_is_empty(&s->rx_fifo)) {
176 s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
177 }
178 break;
179
180 case R_SPI_MIS:
181 update_mis(s);
182 ret = s->regs[R_SPI_MIS];
183 break;
184
185 default:
186 if (addr < ARRAY_SIZE(s->regs)) {
187 ret = s->regs[addr];
188 } else {
189 qemu_log_mask(LOG_GUEST_ERROR,
190 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
191 addr * 4);
192 return ret;
193 }
194 break;
195 }
196
197 DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
198 spi_update_irq(s);
199 return ret;
200 }
201
202 static void assert_cs(MSSSpiState *s)
203 {
204 qemu_set_irq(s->cs_line, 0);
205 }
206
207 static void deassert_cs(MSSSpiState *s)
208 {
209 qemu_set_irq(s->cs_line, 1);
210 }
211
212 static void spi_flush_txfifo(MSSSpiState *s)
213 {
214 uint32_t tx;
215 uint32_t rx;
216 bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
217
218 /*
219 * Chip Select(CS) is automatically controlled by this controller.
220 * If SPS bit is set in Control register then CS is asserted
221 * until all the frames set in frame count of Control register are
222 * transferred. If SPS is not set then CS pulses between frames.
223 * Note that Slave Select register specifies which of the CS line
224 * has to be controlled automatically by controller. Bits SS[7:1] are for
225 * masters in FPGA fabric since we model only Microcontroller subsystem
226 * of Smartfusion2 we control only one CS(SS[0]) line.
227 */
228 while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
229 assert_cs(s);
230
231 s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
232
233 tx = fifo32_pop(&s->tx_fifo);
234 DB_PRINT("data tx:0x%" PRIx32, tx);
235 rx = ssi_transfer(s->spi, tx);
236 DB_PRINT("data rx:0x%" PRIx32, rx);
237
238 if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
239 s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
240 s->regs[R_SPI_RIS] |= S_RXCHOVRF;
241 } else {
242 fifo32_push(&s->rx_fifo, rx);
243 s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
244 if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
245 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
246 } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
247 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
248 }
249 }
250 s->frame_count--;
251 if (!sps) {
252 deassert_cs(s);
253 }
254 }
255
256 if (!s->frame_count) {
257 s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
258 FMCOUNT_SHIFT;
259 deassert_cs(s);
260 s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
261 s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
262 }
263 }
264
265 static void spi_write(void *opaque, hwaddr addr,
266 uint64_t val64, unsigned int size)
267 {
268 MSSSpiState *s = opaque;
269 uint32_t value = val64;
270
271 DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
272 addr >>= 2;
273
274 switch (addr) {
275 case R_SPI_TX:
276 /* adding to already full FIFO */
277 if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
278 break;
279 }
280 s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
281 fifo32_push(&s->tx_fifo, value);
282 if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
283 s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
284 } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
285 s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
286 }
287 if (s->enabled) {
288 spi_flush_txfifo(s);
289 }
290 break;
291
292 case R_SPI_CONTROL:
293 s->regs[R_SPI_CONTROL] = value;
294 if (value & C_BIGFIFO) {
295 set_fifodepth(s);
296 } else {
297 s->fifo_depth = 4;
298 }
299 s->enabled = value & C_ENABLE;
300 s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
301 if (value & C_RESET) {
302 mss_spi_reset(DEVICE(s));
303 }
304 break;
305
306 case R_SPI_DFSIZE:
307 if (s->enabled) {
308 break;
309 }
310 /*
311 * [31:6] bits are reserved bits and for future use.
312 * [5:0] are for frame size. Only [5:0] bits are validated
313 * during write, [31:6] bits are untouched.
314 */
315 if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
316 qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
317 "Maximum frame size is %u\n",
318 __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
319 break;
320 }
321 s->regs[R_SPI_DFSIZE] = value;
322 break;
323
324 case R_SPI_INTCLR:
325 s->regs[R_SPI_INTCLR] = value;
326 if (value & S_TXDONE) {
327 s->regs[R_SPI_RIS] &= ~S_TXDONE;
328 }
329 if (value & S_RXRDY) {
330 s->regs[R_SPI_RIS] &= ~S_RXRDY;
331 }
332 if (value & S_RXCHOVRF) {
333 s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
334 }
335 break;
336
337 case R_SPI_MIS:
338 case R_SPI_STATUS:
339 case R_SPI_RIS:
340 qemu_log_mask(LOG_GUEST_ERROR,
341 "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
342 __func__, addr * 4);
343 break;
344
345 default:
346 if (addr < ARRAY_SIZE(s->regs)) {
347 s->regs[addr] = value;
348 } else {
349 qemu_log_mask(LOG_GUEST_ERROR,
350 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
351 addr * 4);
352 }
353 break;
354 }
355
356 spi_update_irq(s);
357 }
358
359 static const MemoryRegionOps spi_ops = {
360 .read = spi_read,
361 .write = spi_write,
362 .endianness = DEVICE_NATIVE_ENDIAN,
363 .valid = {
364 .min_access_size = 1,
365 .max_access_size = 4
366 }
367 };
368
369 static void mss_spi_realize(DeviceState *dev, Error **errp)
370 {
371 MSSSpiState *s = MSS_SPI(dev);
372 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
373
374 s->spi = ssi_create_bus(dev, "spi");
375
376 sysbus_init_irq(sbd, &s->irq);
377 ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
378 sysbus_init_irq(sbd, &s->cs_line);
379
380 memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
381 TYPE_MSS_SPI, R_SPI_MAX * 4);
382 sysbus_init_mmio(sbd, &s->mmio);
383
384 fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
385 fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
386 }
387
388 static const VMStateDescription vmstate_mss_spi = {
389 .name = TYPE_MSS_SPI,
390 .version_id = 1,
391 .minimum_version_id = 1,
392 .fields = (VMStateField[]) {
393 VMSTATE_FIFO32(tx_fifo, MSSSpiState),
394 VMSTATE_FIFO32(rx_fifo, MSSSpiState),
395 VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
396 VMSTATE_END_OF_LIST()
397 }
398 };
399
400 static void mss_spi_class_init(ObjectClass *klass, void *data)
401 {
402 DeviceClass *dc = DEVICE_CLASS(klass);
403
404 dc->realize = mss_spi_realize;
405 dc->reset = mss_spi_reset;
406 dc->vmsd = &vmstate_mss_spi;
407 }
408
409 static const TypeInfo mss_spi_info = {
410 .name = TYPE_MSS_SPI,
411 .parent = TYPE_SYS_BUS_DEVICE,
412 .instance_size = sizeof(MSSSpiState),
413 .class_init = mss_spi_class_init,
414 };
415
416 static void mss_spi_register_types(void)
417 {
418 type_register_static(&mss_spi_info);
419 }
420
421 type_init(mss_spi_register_types)