]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/arm_mptimer.c
3092b85d915e862070fab17d53b36850f650da6e
[mirror_qemu.git] / hw / timer / arm_mptimer.c
1 /*
2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Copyright (c) 2011 Linaro Limited
6 * Written by Paul Brook, Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "hw/irq.h"
24 #include "hw/ptimer.h"
25 #include "hw/timer/arm_mptimer.h"
26 #include "qapi/error.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qom/cpu.h"
30
31 #define PTIMER_POLICY \
32 (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \
33 PTIMER_POLICY_CONTINUOUS_TRIGGER | \
34 PTIMER_POLICY_NO_IMMEDIATE_TRIGGER | \
35 PTIMER_POLICY_NO_IMMEDIATE_RELOAD | \
36 PTIMER_POLICY_NO_COUNTER_ROUND_DOWN)
37
38 /* This device implements the per-cpu private timer and watchdog block
39 * which is used in both the ARM11MPCore and Cortex-A9MP.
40 */
41
42 static inline int get_current_cpu(ARMMPTimerState *s)
43 {
44 int cpu_id = current_cpu ? current_cpu->cpu_index : 0;
45
46 if (cpu_id >= s->num_cpu) {
47 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
48 s->num_cpu, cpu_id);
49 }
50
51 return cpu_id;
52 }
53
54 static inline void timerblock_update_irq(TimerBlock *tb)
55 {
56 qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
57 }
58
59 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
60 static inline uint32_t timerblock_scale(uint32_t control)
61 {
62 return (((control >> 8) & 0xff) + 1) * 10;
63 }
64
65 static inline void timerblock_set_count(struct ptimer_state *timer,
66 uint32_t control, uint64_t *count)
67 {
68 /* PTimer would trigger interrupt for periodic timer when counter set
69 * to 0, MPtimer under certain condition only.
70 */
71 if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) {
72 *count = ptimer_get_limit(timer);
73 }
74 ptimer_set_count(timer, *count);
75 }
76
77 static inline void timerblock_run(struct ptimer_state *timer,
78 uint32_t control, uint32_t load)
79 {
80 if ((control & 1) && ((control & 0xff00) || load != 0)) {
81 ptimer_run(timer, !(control & 2));
82 }
83 }
84
85 static void timerblock_tick(void *opaque)
86 {
87 TimerBlock *tb = (TimerBlock *)opaque;
88 /* Periodic timer with load = 0 and prescaler != 0 would re-trigger
89 * IRQ after one period, otherwise it either stops or wraps around.
90 */
91 if ((tb->control & 2) && (tb->control & 0xff00) == 0 &&
92 ptimer_get_limit(tb->timer) == 0) {
93 ptimer_stop(tb->timer);
94 }
95 tb->status = 1;
96 timerblock_update_irq(tb);
97 }
98
99 static uint64_t timerblock_read(void *opaque, hwaddr addr,
100 unsigned size)
101 {
102 TimerBlock *tb = (TimerBlock *)opaque;
103 switch (addr) {
104 case 0: /* Load */
105 return ptimer_get_limit(tb->timer);
106 case 4: /* Counter. */
107 return ptimer_get_count(tb->timer);
108 case 8: /* Control. */
109 return tb->control;
110 case 12: /* Interrupt status. */
111 return tb->status;
112 default:
113 return 0;
114 }
115 }
116
117 static void timerblock_write(void *opaque, hwaddr addr,
118 uint64_t value, unsigned size)
119 {
120 TimerBlock *tb = (TimerBlock *)opaque;
121 uint32_t control = tb->control;
122 switch (addr) {
123 case 0: /* Load */
124 /* Setting load to 0 stops the timer without doing the tick if
125 * prescaler = 0.
126 */
127 if ((control & 1) && (control & 0xff00) == 0 && value == 0) {
128 ptimer_stop(tb->timer);
129 }
130 ptimer_set_limit(tb->timer, value, 1);
131 timerblock_run(tb->timer, control, value);
132 break;
133 case 4: /* Counter. */
134 /* Setting counter to 0 stops the one-shot timer, or periodic with
135 * load = 0, without doing the tick if prescaler = 0.
136 */
137 if ((control & 1) && (control & 0xff00) == 0 && value == 0 &&
138 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) {
139 ptimer_stop(tb->timer);
140 }
141 timerblock_set_count(tb->timer, control, &value);
142 timerblock_run(tb->timer, control, value);
143 break;
144 case 8: /* Control. */
145 if ((control & 3) != (value & 3)) {
146 ptimer_stop(tb->timer);
147 }
148 if ((control & 0xff00) != (value & 0xff00)) {
149 ptimer_set_period(tb->timer, timerblock_scale(value));
150 }
151 if (value & 1) {
152 uint64_t count = ptimer_get_count(tb->timer);
153 /* Re-load periodic timer counter if needed. */
154 if ((value & 2) && count == 0) {
155 timerblock_set_count(tb->timer, value, &count);
156 }
157 timerblock_run(tb->timer, value, count);
158 }
159 tb->control = value;
160 break;
161 case 12: /* Interrupt status. */
162 tb->status &= ~value;
163 timerblock_update_irq(tb);
164 break;
165 }
166 }
167
168 /* Wrapper functions to implement the "read timer/watchdog for
169 * the current CPU" memory regions.
170 */
171 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
172 unsigned size)
173 {
174 ARMMPTimerState *s = (ARMMPTimerState *)opaque;
175 int id = get_current_cpu(s);
176 return timerblock_read(&s->timerblock[id], addr, size);
177 }
178
179 static void arm_thistimer_write(void *opaque, hwaddr addr,
180 uint64_t value, unsigned size)
181 {
182 ARMMPTimerState *s = (ARMMPTimerState *)opaque;
183 int id = get_current_cpu(s);
184 timerblock_write(&s->timerblock[id], addr, value, size);
185 }
186
187 static const MemoryRegionOps arm_thistimer_ops = {
188 .read = arm_thistimer_read,
189 .write = arm_thistimer_write,
190 .valid = {
191 .min_access_size = 4,
192 .max_access_size = 4,
193 },
194 .endianness = DEVICE_NATIVE_ENDIAN,
195 };
196
197 static const MemoryRegionOps timerblock_ops = {
198 .read = timerblock_read,
199 .write = timerblock_write,
200 .valid = {
201 .min_access_size = 4,
202 .max_access_size = 4,
203 },
204 .endianness = DEVICE_NATIVE_ENDIAN,
205 };
206
207 static void timerblock_reset(TimerBlock *tb)
208 {
209 tb->control = 0;
210 tb->status = 0;
211 if (tb->timer) {
212 ptimer_stop(tb->timer);
213 ptimer_set_limit(tb->timer, 0, 1);
214 ptimer_set_period(tb->timer, timerblock_scale(0));
215 }
216 }
217
218 static void arm_mptimer_reset(DeviceState *dev)
219 {
220 ARMMPTimerState *s = ARM_MPTIMER(dev);
221 int i;
222
223 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
224 timerblock_reset(&s->timerblock[i]);
225 }
226 }
227
228 static void arm_mptimer_init(Object *obj)
229 {
230 ARMMPTimerState *s = ARM_MPTIMER(obj);
231
232 memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
233 "arm_mptimer_timer", 0x20);
234 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
235 }
236
237 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
238 {
239 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
240 ARMMPTimerState *s = ARM_MPTIMER(dev);
241 int i;
242
243 if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
244 error_setg(errp, "num-cpu must be between 1 and %d",
245 ARM_MPTIMER_MAX_CPUS);
246 return;
247 }
248 /* We implement one timer block per CPU, and expose multiple MMIO regions:
249 * * region 0 is "timer for this core"
250 * * region 1 is "timer for core 0"
251 * * region 2 is "timer for core 1"
252 * and so on.
253 * The outgoing interrupt lines are
254 * * timer for core 0
255 * * timer for core 1
256 * and so on.
257 */
258 for (i = 0; i < s->num_cpu; i++) {
259 TimerBlock *tb = &s->timerblock[i];
260 QEMUBH *bh = qemu_bh_new(timerblock_tick, tb);
261 tb->timer = ptimer_init(bh, PTIMER_POLICY);
262 sysbus_init_irq(sbd, &tb->irq);
263 memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
264 "arm_mptimer_timerblock", 0x20);
265 sysbus_init_mmio(sbd, &tb->iomem);
266 }
267 }
268
269 static const VMStateDescription vmstate_timerblock = {
270 .name = "arm_mptimer_timerblock",
271 .version_id = 3,
272 .minimum_version_id = 3,
273 .fields = (VMStateField[]) {
274 VMSTATE_UINT32(control, TimerBlock),
275 VMSTATE_UINT32(status, TimerBlock),
276 VMSTATE_PTIMER(timer, TimerBlock),
277 VMSTATE_END_OF_LIST()
278 }
279 };
280
281 static const VMStateDescription vmstate_arm_mptimer = {
282 .name = "arm_mptimer",
283 .version_id = 3,
284 .minimum_version_id = 3,
285 .fields = (VMStateField[]) {
286 VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
287 3, vmstate_timerblock, TimerBlock),
288 VMSTATE_END_OF_LIST()
289 }
290 };
291
292 static Property arm_mptimer_properties[] = {
293 DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
294 DEFINE_PROP_END_OF_LIST()
295 };
296
297 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
298 {
299 DeviceClass *dc = DEVICE_CLASS(klass);
300
301 dc->realize = arm_mptimer_realize;
302 dc->vmsd = &vmstate_arm_mptimer;
303 dc->reset = arm_mptimer_reset;
304 dc->props = arm_mptimer_properties;
305 }
306
307 static const TypeInfo arm_mptimer_info = {
308 .name = TYPE_ARM_MPTIMER,
309 .parent = TYPE_SYS_BUS_DEVICE,
310 .instance_size = sizeof(ARMMPTimerState),
311 .instance_init = arm_mptimer_init,
312 .class_init = arm_mptimer_class_init,
313 };
314
315 static void arm_mptimer_register_types(void)
316 {
317 type_register_static(&arm_mptimer_info);
318 }
319
320 type_init(arm_mptimer_register_types)