]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/arm_mptimer.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / timer / arm_mptimer.c
1 /*
2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Copyright (c) 2011 Linaro Limited
6 * Written by Paul Brook, Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "hw/ptimer.h"
24 #include "hw/timer/arm_mptimer.h"
25 #include "qapi/error.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qom/cpu.h"
29
30 #define PTIMER_POLICY \
31 (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \
32 PTIMER_POLICY_CONTINUOUS_TRIGGER | \
33 PTIMER_POLICY_NO_IMMEDIATE_TRIGGER | \
34 PTIMER_POLICY_NO_IMMEDIATE_RELOAD | \
35 PTIMER_POLICY_NO_COUNTER_ROUND_DOWN)
36
37 /* This device implements the per-cpu private timer and watchdog block
38 * which is used in both the ARM11MPCore and Cortex-A9MP.
39 */
40
41 static inline int get_current_cpu(ARMMPTimerState *s)
42 {
43 int cpu_id = current_cpu ? current_cpu->cpu_index : 0;
44
45 if (cpu_id >= s->num_cpu) {
46 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
47 s->num_cpu, cpu_id);
48 }
49
50 return cpu_id;
51 }
52
53 static inline void timerblock_update_irq(TimerBlock *tb)
54 {
55 qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
56 }
57
58 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
59 static inline uint32_t timerblock_scale(uint32_t control)
60 {
61 return (((control >> 8) & 0xff) + 1) * 10;
62 }
63
64 static inline void timerblock_set_count(struct ptimer_state *timer,
65 uint32_t control, uint64_t *count)
66 {
67 /* PTimer would trigger interrupt for periodic timer when counter set
68 * to 0, MPtimer under certain condition only.
69 */
70 if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) {
71 *count = ptimer_get_limit(timer);
72 }
73 ptimer_set_count(timer, *count);
74 }
75
76 static inline void timerblock_run(struct ptimer_state *timer,
77 uint32_t control, uint32_t load)
78 {
79 if ((control & 1) && ((control & 0xff00) || load != 0)) {
80 ptimer_run(timer, !(control & 2));
81 }
82 }
83
84 static void timerblock_tick(void *opaque)
85 {
86 TimerBlock *tb = (TimerBlock *)opaque;
87 /* Periodic timer with load = 0 and prescaler != 0 would re-trigger
88 * IRQ after one period, otherwise it either stops or wraps around.
89 */
90 if ((tb->control & 2) && (tb->control & 0xff00) == 0 &&
91 ptimer_get_limit(tb->timer) == 0) {
92 ptimer_stop(tb->timer);
93 }
94 tb->status = 1;
95 timerblock_update_irq(tb);
96 }
97
98 static uint64_t timerblock_read(void *opaque, hwaddr addr,
99 unsigned size)
100 {
101 TimerBlock *tb = (TimerBlock *)opaque;
102 switch (addr) {
103 case 0: /* Load */
104 return ptimer_get_limit(tb->timer);
105 case 4: /* Counter. */
106 return ptimer_get_count(tb->timer);
107 case 8: /* Control. */
108 return tb->control;
109 case 12: /* Interrupt status. */
110 return tb->status;
111 default:
112 return 0;
113 }
114 }
115
116 static void timerblock_write(void *opaque, hwaddr addr,
117 uint64_t value, unsigned size)
118 {
119 TimerBlock *tb = (TimerBlock *)opaque;
120 uint32_t control = tb->control;
121 switch (addr) {
122 case 0: /* Load */
123 /* Setting load to 0 stops the timer without doing the tick if
124 * prescaler = 0.
125 */
126 if ((control & 1) && (control & 0xff00) == 0 && value == 0) {
127 ptimer_stop(tb->timer);
128 }
129 ptimer_set_limit(tb->timer, value, 1);
130 timerblock_run(tb->timer, control, value);
131 break;
132 case 4: /* Counter. */
133 /* Setting counter to 0 stops the one-shot timer, or periodic with
134 * load = 0, without doing the tick if prescaler = 0.
135 */
136 if ((control & 1) && (control & 0xff00) == 0 && value == 0 &&
137 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) {
138 ptimer_stop(tb->timer);
139 }
140 timerblock_set_count(tb->timer, control, &value);
141 timerblock_run(tb->timer, control, value);
142 break;
143 case 8: /* Control. */
144 if ((control & 3) != (value & 3)) {
145 ptimer_stop(tb->timer);
146 }
147 if ((control & 0xff00) != (value & 0xff00)) {
148 ptimer_set_period(tb->timer, timerblock_scale(value));
149 }
150 if (value & 1) {
151 uint64_t count = ptimer_get_count(tb->timer);
152 /* Re-load periodic timer counter if needed. */
153 if ((value & 2) && count == 0) {
154 timerblock_set_count(tb->timer, value, &count);
155 }
156 timerblock_run(tb->timer, value, count);
157 }
158 tb->control = value;
159 break;
160 case 12: /* Interrupt status. */
161 tb->status &= ~value;
162 timerblock_update_irq(tb);
163 break;
164 }
165 }
166
167 /* Wrapper functions to implement the "read timer/watchdog for
168 * the current CPU" memory regions.
169 */
170 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
171 unsigned size)
172 {
173 ARMMPTimerState *s = (ARMMPTimerState *)opaque;
174 int id = get_current_cpu(s);
175 return timerblock_read(&s->timerblock[id], addr, size);
176 }
177
178 static void arm_thistimer_write(void *opaque, hwaddr addr,
179 uint64_t value, unsigned size)
180 {
181 ARMMPTimerState *s = (ARMMPTimerState *)opaque;
182 int id = get_current_cpu(s);
183 timerblock_write(&s->timerblock[id], addr, value, size);
184 }
185
186 static const MemoryRegionOps arm_thistimer_ops = {
187 .read = arm_thistimer_read,
188 .write = arm_thistimer_write,
189 .valid = {
190 .min_access_size = 4,
191 .max_access_size = 4,
192 },
193 .endianness = DEVICE_NATIVE_ENDIAN,
194 };
195
196 static const MemoryRegionOps timerblock_ops = {
197 .read = timerblock_read,
198 .write = timerblock_write,
199 .valid = {
200 .min_access_size = 4,
201 .max_access_size = 4,
202 },
203 .endianness = DEVICE_NATIVE_ENDIAN,
204 };
205
206 static void timerblock_reset(TimerBlock *tb)
207 {
208 tb->control = 0;
209 tb->status = 0;
210 if (tb->timer) {
211 ptimer_stop(tb->timer);
212 ptimer_set_limit(tb->timer, 0, 1);
213 ptimer_set_period(tb->timer, timerblock_scale(0));
214 }
215 }
216
217 static void arm_mptimer_reset(DeviceState *dev)
218 {
219 ARMMPTimerState *s = ARM_MPTIMER(dev);
220 int i;
221
222 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
223 timerblock_reset(&s->timerblock[i]);
224 }
225 }
226
227 static void arm_mptimer_init(Object *obj)
228 {
229 ARMMPTimerState *s = ARM_MPTIMER(obj);
230
231 memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
232 "arm_mptimer_timer", 0x20);
233 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
234 }
235
236 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
237 {
238 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
239 ARMMPTimerState *s = ARM_MPTIMER(dev);
240 int i;
241
242 if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
243 error_setg(errp, "num-cpu must be between 1 and %d",
244 ARM_MPTIMER_MAX_CPUS);
245 return;
246 }
247 /* We implement one timer block per CPU, and expose multiple MMIO regions:
248 * * region 0 is "timer for this core"
249 * * region 1 is "timer for core 0"
250 * * region 2 is "timer for core 1"
251 * and so on.
252 * The outgoing interrupt lines are
253 * * timer for core 0
254 * * timer for core 1
255 * and so on.
256 */
257 for (i = 0; i < s->num_cpu; i++) {
258 TimerBlock *tb = &s->timerblock[i];
259 QEMUBH *bh = qemu_bh_new(timerblock_tick, tb);
260 tb->timer = ptimer_init(bh, PTIMER_POLICY);
261 sysbus_init_irq(sbd, &tb->irq);
262 memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
263 "arm_mptimer_timerblock", 0x20);
264 sysbus_init_mmio(sbd, &tb->iomem);
265 }
266 }
267
268 static const VMStateDescription vmstate_timerblock = {
269 .name = "arm_mptimer_timerblock",
270 .version_id = 3,
271 .minimum_version_id = 3,
272 .fields = (VMStateField[]) {
273 VMSTATE_UINT32(control, TimerBlock),
274 VMSTATE_UINT32(status, TimerBlock),
275 VMSTATE_PTIMER(timer, TimerBlock),
276 VMSTATE_END_OF_LIST()
277 }
278 };
279
280 static const VMStateDescription vmstate_arm_mptimer = {
281 .name = "arm_mptimer",
282 .version_id = 3,
283 .minimum_version_id = 3,
284 .fields = (VMStateField[]) {
285 VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
286 3, vmstate_timerblock, TimerBlock),
287 VMSTATE_END_OF_LIST()
288 }
289 };
290
291 static Property arm_mptimer_properties[] = {
292 DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
293 DEFINE_PROP_END_OF_LIST()
294 };
295
296 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
297 {
298 DeviceClass *dc = DEVICE_CLASS(klass);
299
300 dc->realize = arm_mptimer_realize;
301 dc->vmsd = &vmstate_arm_mptimer;
302 dc->reset = arm_mptimer_reset;
303 dc->props = arm_mptimer_properties;
304 }
305
306 static const TypeInfo arm_mptimer_info = {
307 .name = TYPE_ARM_MPTIMER,
308 .parent = TYPE_SYS_BUS_DEVICE,
309 .instance_size = sizeof(ARMMPTimerState),
310 .instance_init = arm_mptimer_init,
311 .class_init = arm_mptimer_class_init,
312 };
313
314 static void arm_mptimer_register_types(void)
315 {
316 type_register_static(&arm_mptimer_info);
317 }
318
319 type_init(arm_mptimer_register_types)