]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/aspeed_timer.c
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[mirror_qemu.git] / hw / timer / aspeed_timer.c
1 /*
2 * ASPEED AST2400 Timer
3 *
4 * Andrew Jeffery <andrew@aj.id.au>
5 *
6 * Copyright (C) 2016 IBM Corp.
7 *
8 * This code is licensed under the GPL version 2 or later. See
9 * the COPYING file in the top-level directory.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/sysbus.h"
15 #include "hw/timer/aspeed_timer.h"
16 #include "qemu/bitops.h"
17 #include "qemu/timer.h"
18 #include "qemu/log.h"
19 #include "qemu/module.h"
20 #include "trace.h"
21
22 #define TIMER_NR_REGS 4
23
24 #define TIMER_CTRL_BITS 4
25 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
26
27 #define TIMER_CLOCK_USE_EXT true
28 #define TIMER_CLOCK_EXT_HZ 1000000
29 #define TIMER_CLOCK_USE_APB false
30
31 #define TIMER_REG_STATUS 0
32 #define TIMER_REG_RELOAD 1
33 #define TIMER_REG_MATCH_FIRST 2
34 #define TIMER_REG_MATCH_SECOND 3
35
36 #define TIMER_FIRST_CAP_PULSE 4
37
38 enum timer_ctrl_op {
39 op_enable = 0,
40 op_external_clock,
41 op_overflow_interrupt,
42 op_pulse_enable
43 };
44
45 /**
46 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
47 * structs, as it's a waste of memory. The ptimer BH callback needs to know
48 * whether a specific AspeedTimer is enabled, but this information is held in
49 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
50 * arbitrary AspeedTimer to AspeedTimerCtrlState.
51 */
52 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
53 {
54 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
55 return container_of(timers, AspeedTimerCtrlState, timers);
56 }
57
58 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
59 {
60 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
61 }
62
63 static inline bool timer_enabled(AspeedTimer *t)
64 {
65 return timer_ctrl_status(t, op_enable);
66 }
67
68 static inline bool timer_overflow_interrupt(AspeedTimer *t)
69 {
70 return timer_ctrl_status(t, op_overflow_interrupt);
71 }
72
73 static inline bool timer_can_pulse(AspeedTimer *t)
74 {
75 return t->id >= TIMER_FIRST_CAP_PULSE;
76 }
77
78 static inline bool timer_external_clock(AspeedTimer *t)
79 {
80 return timer_ctrl_status(t, op_external_clock);
81 }
82
83 static inline uint32_t calculate_rate(struct AspeedTimer *t)
84 {
85 AspeedTimerCtrlState *s = timer_to_ctrl(t);
86
87 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq;
88 }
89
90 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
91 {
92 uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
93 uint32_t rate = calculate_rate(t);
94 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
95
96 return t->reload - MIN(t->reload, ticks);
97 }
98
99 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
100 {
101 uint64_t delta_ns;
102 uint64_t delta_ticks;
103
104 delta_ticks = t->reload - MIN(t->reload, ticks);
105 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
106
107 return t->start + delta_ns;
108 }
109
110 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
111 {
112 return t->match[i] < t->reload ? t->match[i] : 0;
113 }
114
115 static uint64_t calculate_next(struct AspeedTimer *t)
116 {
117 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
118 uint64_t next;
119
120 /*
121 * We don't know the relationship between the values in the match
122 * registers, so sort using MAX/MIN/zero. We sort in that order as
123 * the timer counts down to zero.
124 */
125
126 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
127 if (now < next) {
128 return next;
129 }
130
131 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
132 if (now < next) {
133 return next;
134 }
135
136 next = calculate_time(t, 0);
137 if (now < next) {
138 return next;
139 }
140
141 /* We've missed all deadlines, fire interrupt and try again */
142 timer_del(&t->timer);
143
144 if (timer_overflow_interrupt(t)) {
145 t->level = !t->level;
146 qemu_set_irq(t->irq, t->level);
147 }
148
149 next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0);
150 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
151
152 return calculate_time(t, next);
153 }
154
155 static void aspeed_timer_mod(AspeedTimer *t)
156 {
157 uint64_t next = calculate_next(t);
158 if (next) {
159 timer_mod(&t->timer, next);
160 }
161 }
162
163 static void aspeed_timer_expire(void *opaque)
164 {
165 AspeedTimer *t = opaque;
166 bool interrupt = false;
167 uint32_t ticks;
168
169 if (!timer_enabled(t)) {
170 return;
171 }
172
173 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
174
175 if (!ticks) {
176 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
177 } else if (ticks <= MIN(t->match[0], t->match[1])) {
178 interrupt = true;
179 } else if (ticks <= MAX(t->match[0], t->match[1])) {
180 interrupt = true;
181 }
182
183 if (interrupt) {
184 t->level = !t->level;
185 qemu_set_irq(t->irq, t->level);
186 }
187
188 aspeed_timer_mod(t);
189 }
190
191 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
192 {
193 uint64_t value;
194
195 switch (reg) {
196 case TIMER_REG_STATUS:
197 if (timer_enabled(t)) {
198 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
199 } else {
200 value = t->reload;
201 }
202 break;
203 case TIMER_REG_RELOAD:
204 value = t->reload;
205 break;
206 case TIMER_REG_MATCH_FIRST:
207 case TIMER_REG_MATCH_SECOND:
208 value = t->match[reg - 2];
209 break;
210 default:
211 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
212 __func__, reg);
213 value = 0;
214 break;
215 }
216 return value;
217 }
218
219 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
220 {
221 AspeedTimerCtrlState *s = opaque;
222 const int reg = (offset & 0xf) / 4;
223 uint64_t value;
224
225 switch (offset) {
226 case 0x30: /* Control Register */
227 value = s->ctrl;
228 break;
229 case 0x34: /* Control Register 2 */
230 value = s->ctrl2;
231 break;
232 case 0x00 ... 0x2c: /* Timers 1 - 4 */
233 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
234 break;
235 case 0x40 ... 0x8c: /* Timers 5 - 8 */
236 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
237 break;
238 /* Illegal */
239 case 0x38:
240 case 0x3C:
241 default:
242 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
243 __func__, offset);
244 value = 0;
245 break;
246 }
247 trace_aspeed_timer_read(offset, size, value);
248 return value;
249 }
250
251 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
252 uint32_t value)
253 {
254 AspeedTimer *t;
255 uint32_t old_reload;
256
257 trace_aspeed_timer_set_value(timer, reg, value);
258 t = &s->timers[timer];
259 switch (reg) {
260 case TIMER_REG_RELOAD:
261 old_reload = t->reload;
262 t->reload = value;
263
264 /* If the reload value was not previously set, or zero, and
265 * the current value is valid, try to start the timer if it is
266 * enabled.
267 */
268 if (old_reload || !t->reload) {
269 break;
270 }
271
272 case TIMER_REG_STATUS:
273 if (timer_enabled(t)) {
274 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
275 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
276 uint32_t rate = calculate_rate(t);
277
278 if (delta >= 0) {
279 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
280 } else {
281 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
282 }
283 aspeed_timer_mod(t);
284 }
285 break;
286 case TIMER_REG_MATCH_FIRST:
287 case TIMER_REG_MATCH_SECOND:
288 t->match[reg - 2] = value;
289 if (timer_enabled(t)) {
290 aspeed_timer_mod(t);
291 }
292 break;
293 default:
294 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
295 __func__, reg);
296 break;
297 }
298 }
299
300 /* Control register operations are broken out into helpers that can be
301 * explicitly called on aspeed_timer_reset(), but also from
302 * aspeed_timer_ctrl_op().
303 */
304
305 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
306 {
307 trace_aspeed_timer_ctrl_enable(t->id, enable);
308 if (enable) {
309 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
310 aspeed_timer_mod(t);
311 } else {
312 timer_del(&t->timer);
313 }
314 }
315
316 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
317 {
318 trace_aspeed_timer_ctrl_external_clock(t->id, enable);
319 }
320
321 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
322 {
323 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
324 }
325
326 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
327 {
328 if (timer_can_pulse(t)) {
329 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
330 } else {
331 qemu_log_mask(LOG_GUEST_ERROR,
332 "%s: Timer does not support pulse mode\n", __func__);
333 }
334 }
335
336 /**
337 * Given the actions are fixed in number and completely described in helper
338 * functions, dispatch with a lookup table rather than manage control flow with
339 * a switch statement.
340 */
341 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
342 [op_enable] = aspeed_timer_ctrl_enable,
343 [op_external_clock] = aspeed_timer_ctrl_external_clock,
344 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
345 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
346 };
347
348 /**
349 * Conditionally affect changes chosen by a timer's control bit.
350 *
351 * The aspeed_timer_ctrl_op() interface is convenient for the
352 * aspeed_timer_set_ctrl() function as the "no change" early exit can be
353 * calculated for all operations, which cleans up the caller code. However the
354 * interface isn't convenient for the reset function where we want to enter a
355 * specific state without artificially constructing old and new values that
356 * will fall through the change guard (and motivates extracting the actions
357 * out to helper functions).
358 *
359 * @t: The timer to manipulate
360 * @op: The type of operation to be performed
361 * @old: The old state of the timer's control bits
362 * @new: The incoming state for the timer's control bits
363 */
364 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
365 uint8_t old, uint8_t new)
366 {
367 const uint8_t mask = BIT(op);
368 const bool enable = !!(new & mask);
369 const bool changed = ((old ^ new) & mask);
370 if (!changed) {
371 return;
372 }
373 ctrl_ops[op](t, enable);
374 }
375
376 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
377 {
378 int i;
379 int shift;
380 uint8_t t_old, t_new;
381 AspeedTimer *t;
382 const uint8_t enable_mask = BIT(op_enable);
383
384 /* Handle a dependency between the 'enable' and remaining three
385 * configuration bits - i.e. if more than one bit in the control set has
386 * changed, including the 'enable' bit, then we want either disable the
387 * timer and perform configuration, or perform configuration and then
388 * enable the timer
389 */
390 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
391 t = &s->timers[i];
392 shift = (i * TIMER_CTRL_BITS);
393 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
394 t_new = (reg >> shift) & TIMER_CTRL_MASK;
395
396 /* If we are disabling, do so first */
397 if ((t_old & enable_mask) && !(t_new & enable_mask)) {
398 aspeed_timer_ctrl_enable(t, false);
399 }
400 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
401 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
402 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
403 /* If we are enabling, do so last */
404 if (!(t_old & enable_mask) && (t_new & enable_mask)) {
405 aspeed_timer_ctrl_enable(t, true);
406 }
407 }
408 s->ctrl = reg;
409 }
410
411 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
412 {
413 trace_aspeed_timer_set_ctrl2(value);
414 }
415
416 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
417 unsigned size)
418 {
419 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
420 const int reg = (offset & 0xf) / 4;
421 AspeedTimerCtrlState *s = opaque;
422
423 switch (offset) {
424 /* Control Registers */
425 case 0x30:
426 aspeed_timer_set_ctrl(s, tv);
427 break;
428 case 0x34:
429 aspeed_timer_set_ctrl2(s, tv);
430 break;
431 /* Timer Registers */
432 case 0x00 ... 0x2c:
433 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
434 break;
435 case 0x40 ... 0x8c:
436 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
437 break;
438 /* Illegal */
439 case 0x38:
440 case 0x3C:
441 default:
442 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
443 __func__, offset);
444 break;
445 }
446 }
447
448 static const MemoryRegionOps aspeed_timer_ops = {
449 .read = aspeed_timer_read,
450 .write = aspeed_timer_write,
451 .endianness = DEVICE_LITTLE_ENDIAN,
452 .valid.min_access_size = 4,
453 .valid.max_access_size = 4,
454 .valid.unaligned = false,
455 };
456
457 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
458 {
459 AspeedTimer *t = &s->timers[id];
460
461 t->id = id;
462 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
463 }
464
465 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
466 {
467 int i;
468 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
469 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
470 Object *obj;
471 Error *err = NULL;
472
473 obj = object_property_get_link(OBJECT(dev), "scu", &err);
474 if (!obj) {
475 error_propagate_prepend(errp, err, "required link 'scu' not found: ");
476 return;
477 }
478 s->scu = ASPEED_SCU(obj);
479
480 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
481 aspeed_init_one_timer(s, i);
482 sysbus_init_irq(sbd, &s->timers[i].irq);
483 }
484 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
485 TYPE_ASPEED_TIMER, 0x1000);
486 sysbus_init_mmio(sbd, &s->iomem);
487 }
488
489 static void aspeed_timer_reset(DeviceState *dev)
490 {
491 int i;
492 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
493
494 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
495 AspeedTimer *t = &s->timers[i];
496 /* Explicitly call helpers to avoid any conditional behaviour through
497 * aspeed_timer_set_ctrl().
498 */
499 aspeed_timer_ctrl_enable(t, false);
500 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
501 aspeed_timer_ctrl_overflow_interrupt(t, false);
502 aspeed_timer_ctrl_pulse_enable(t, false);
503 t->level = 0;
504 t->reload = 0;
505 t->match[0] = 0;
506 t->match[1] = 0;
507 }
508 s->ctrl = 0;
509 s->ctrl2 = 0;
510 }
511
512 static const VMStateDescription vmstate_aspeed_timer = {
513 .name = "aspeed.timer",
514 .version_id = 2,
515 .minimum_version_id = 2,
516 .fields = (VMStateField[]) {
517 VMSTATE_UINT8(id, AspeedTimer),
518 VMSTATE_INT32(level, AspeedTimer),
519 VMSTATE_TIMER(timer, AspeedTimer),
520 VMSTATE_UINT32(reload, AspeedTimer),
521 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
522 VMSTATE_END_OF_LIST()
523 }
524 };
525
526 static const VMStateDescription vmstate_aspeed_timer_state = {
527 .name = "aspeed.timerctrl",
528 .version_id = 1,
529 .minimum_version_id = 1,
530 .fields = (VMStateField[]) {
531 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
532 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
533 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
534 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
535 AspeedTimer),
536 VMSTATE_END_OF_LIST()
537 }
538 };
539
540 static void timer_class_init(ObjectClass *klass, void *data)
541 {
542 DeviceClass *dc = DEVICE_CLASS(klass);
543
544 dc->realize = aspeed_timer_realize;
545 dc->reset = aspeed_timer_reset;
546 dc->desc = "ASPEED Timer";
547 dc->vmsd = &vmstate_aspeed_timer_state;
548 }
549
550 static const TypeInfo aspeed_timer_info = {
551 .name = TYPE_ASPEED_TIMER,
552 .parent = TYPE_SYS_BUS_DEVICE,
553 .instance_size = sizeof(AspeedTimerCtrlState),
554 .class_init = timer_class_init,
555 };
556
557 static void aspeed_timer_register_types(void)
558 {
559 type_register_static(&aspeed_timer_info);
560 }
561
562 type_init(aspeed_timer_register_types)