]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/aspeed_timer.c
Fix some typos found by codespell
[mirror_qemu.git] / hw / timer / aspeed_timer.c
1 /*
2 * ASPEED AST2400 Timer
3 *
4 * Andrew Jeffery <andrew@aj.id.au>
5 *
6 * Copyright (C) 2016 IBM Corp.
7 *
8 * This code is licensed under the GPL version 2 or later. See
9 * the COPYING file in the top-level directory.
10 */
11
12 #include "qemu/osdep.h"
13 #include "hw/ptimer.h"
14 #include "hw/sysbus.h"
15 #include "hw/timer/aspeed_timer.h"
16 #include "qemu-common.h"
17 #include "qemu/bitops.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "trace.h"
21
22 #define TIMER_NR_REGS 4
23
24 #define TIMER_CTRL_BITS 4
25 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
26
27 #define TIMER_CLOCK_USE_EXT true
28 #define TIMER_CLOCK_EXT_HZ 1000000
29 #define TIMER_CLOCK_USE_APB false
30 #define TIMER_CLOCK_APB_HZ 24000000
31
32 #define TIMER_REG_STATUS 0
33 #define TIMER_REG_RELOAD 1
34 #define TIMER_REG_MATCH_FIRST 2
35 #define TIMER_REG_MATCH_SECOND 3
36
37 #define TIMER_FIRST_CAP_PULSE 4
38
39 enum timer_ctrl_op {
40 op_enable = 0,
41 op_external_clock,
42 op_overflow_interrupt,
43 op_pulse_enable
44 };
45
46 /**
47 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
48 * structs, as it's a waste of memory. The ptimer BH callback needs to know
49 * whether a specific AspeedTimer is enabled, but this information is held in
50 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
51 * arbitrary AspeedTimer to AspeedTimerCtrlState.
52 */
53 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
54 {
55 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
56 return container_of(timers, AspeedTimerCtrlState, timers);
57 }
58
59 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
60 {
61 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
62 }
63
64 static inline bool timer_enabled(AspeedTimer *t)
65 {
66 return timer_ctrl_status(t, op_enable);
67 }
68
69 static inline bool timer_overflow_interrupt(AspeedTimer *t)
70 {
71 return timer_ctrl_status(t, op_overflow_interrupt);
72 }
73
74 static inline bool timer_can_pulse(AspeedTimer *t)
75 {
76 return t->id >= TIMER_FIRST_CAP_PULSE;
77 }
78
79 static void aspeed_timer_expire(void *opaque)
80 {
81 AspeedTimer *t = opaque;
82
83 /* Only support interrupts on match values of zero for the moment - this is
84 * sufficient to boot an aspeed_defconfig Linux kernel.
85 *
86 * TODO: matching on arbitrary values (see e.g. hw/timer/a9gtimer.c)
87 */
88 bool match = !(t->match[0] && t->match[1]);
89 bool interrupt = timer_overflow_interrupt(t) || match;
90 if (timer_enabled(t) && interrupt) {
91 t->level = !t->level;
92 qemu_set_irq(t->irq, t->level);
93 }
94 }
95
96 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
97 {
98 uint64_t value;
99
100 switch (reg) {
101 case TIMER_REG_STATUS:
102 value = ptimer_get_count(t->timer);
103 break;
104 case TIMER_REG_RELOAD:
105 value = t->reload;
106 break;
107 case TIMER_REG_MATCH_FIRST:
108 case TIMER_REG_MATCH_SECOND:
109 value = t->match[reg - 2];
110 break;
111 default:
112 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
113 __func__, reg);
114 value = 0;
115 break;
116 }
117 return value;
118 }
119
120 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
121 {
122 AspeedTimerCtrlState *s = opaque;
123 const int reg = (offset & 0xf) / 4;
124 uint64_t value;
125
126 switch (offset) {
127 case 0x30: /* Control Register */
128 value = s->ctrl;
129 break;
130 case 0x34: /* Control Register 2 */
131 value = s->ctrl2;
132 break;
133 case 0x00 ... 0x2c: /* Timers 1 - 4 */
134 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
135 break;
136 case 0x40 ... 0x8c: /* Timers 5 - 8 */
137 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
138 break;
139 /* Illegal */
140 case 0x38:
141 case 0x3C:
142 default:
143 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
144 __func__, offset);
145 value = 0;
146 break;
147 }
148 trace_aspeed_timer_read(offset, size, value);
149 return value;
150 }
151
152 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
153 uint32_t value)
154 {
155 AspeedTimer *t;
156
157 trace_aspeed_timer_set_value(timer, reg, value);
158 t = &s->timers[timer];
159 switch (reg) {
160 case TIMER_REG_STATUS:
161 if (timer_enabled(t)) {
162 ptimer_set_count(t->timer, value);
163 }
164 break;
165 case TIMER_REG_RELOAD:
166 t->reload = value;
167 ptimer_set_limit(t->timer, value, 1);
168 break;
169 case TIMER_REG_MATCH_FIRST:
170 case TIMER_REG_MATCH_SECOND:
171 if (value) {
172 /* Non-zero match values are unsupported. As such an interrupt will
173 * always be triggered when the timer reaches zero even if the
174 * overflow interrupt control bit is clear.
175 */
176 qemu_log_mask(LOG_UNIMP, "%s: Match value unsupported by device: "
177 "0x%" PRIx32 "\n", __func__, value);
178 } else {
179 t->match[reg - 2] = value;
180 }
181 break;
182 default:
183 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
184 __func__, reg);
185 break;
186 }
187 }
188
189 /* Control register operations are broken out into helpers that can be
190 * explicitly called on aspeed_timer_reset(), but also from
191 * aspeed_timer_ctrl_op().
192 */
193
194 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
195 {
196 trace_aspeed_timer_ctrl_enable(t->id, enable);
197 if (enable) {
198 ptimer_run(t->timer, 0);
199 } else {
200 ptimer_stop(t->timer);
201 ptimer_set_limit(t->timer, t->reload, 1);
202 }
203 }
204
205 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
206 {
207 trace_aspeed_timer_ctrl_external_clock(t->id, enable);
208 if (enable) {
209 ptimer_set_freq(t->timer, TIMER_CLOCK_EXT_HZ);
210 } else {
211 ptimer_set_freq(t->timer, TIMER_CLOCK_APB_HZ);
212 }
213 }
214
215 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
216 {
217 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
218 }
219
220 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
221 {
222 if (timer_can_pulse(t)) {
223 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
224 } else {
225 qemu_log_mask(LOG_GUEST_ERROR,
226 "%s: Timer does not support pulse mode\n", __func__);
227 }
228 }
229
230 /**
231 * Given the actions are fixed in number and completely described in helper
232 * functions, dispatch with a lookup table rather than manage control flow with
233 * a switch statement.
234 */
235 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
236 [op_enable] = aspeed_timer_ctrl_enable,
237 [op_external_clock] = aspeed_timer_ctrl_external_clock,
238 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
239 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
240 };
241
242 /**
243 * Conditionally affect changes chosen by a timer's control bit.
244 *
245 * The aspeed_timer_ctrl_op() interface is convenient for the
246 * aspeed_timer_set_ctrl() function as the "no change" early exit can be
247 * calculated for all operations, which cleans up the caller code. However the
248 * interface isn't convenient for the reset function where we want to enter a
249 * specific state without artificially constructing old and new values that
250 * will fall through the change guard (and motivates extracting the actions
251 * out to helper functions).
252 *
253 * @t: The timer to manipulate
254 * @op: The type of operation to be performed
255 * @old: The old state of the timer's control bits
256 * @new: The incoming state for the timer's control bits
257 */
258 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
259 uint8_t old, uint8_t new)
260 {
261 const uint8_t mask = BIT(op);
262 const bool enable = !!(new & mask);
263 const bool changed = ((old ^ new) & mask);
264 if (!changed) {
265 return;
266 }
267 ctrl_ops[op](t, enable);
268 }
269
270 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
271 {
272 int i;
273 int shift;
274 uint8_t t_old, t_new;
275 AspeedTimer *t;
276 const uint8_t enable_mask = BIT(op_enable);
277
278 /* Handle a dependency between the 'enable' and remaining three
279 * configuration bits - i.e. if more than one bit in the control set has
280 * changed, including the 'enable' bit, then we want either disable the
281 * timer and perform configuration, or perform configuration and then
282 * enable the timer
283 */
284 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
285 t = &s->timers[i];
286 shift = (i * TIMER_CTRL_BITS);
287 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
288 t_new = (reg >> shift) & TIMER_CTRL_MASK;
289
290 /* If we are disabling, do so first */
291 if ((t_old & enable_mask) && !(t_new & enable_mask)) {
292 aspeed_timer_ctrl_enable(t, false);
293 }
294 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
295 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
296 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
297 /* If we are enabling, do so last */
298 if (!(t_old & enable_mask) && (t_new & enable_mask)) {
299 aspeed_timer_ctrl_enable(t, true);
300 }
301 }
302 s->ctrl = reg;
303 }
304
305 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
306 {
307 trace_aspeed_timer_set_ctrl2(value);
308 }
309
310 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
311 unsigned size)
312 {
313 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
314 const int reg = (offset & 0xf) / 4;
315 AspeedTimerCtrlState *s = opaque;
316
317 switch (offset) {
318 /* Control Registers */
319 case 0x30:
320 aspeed_timer_set_ctrl(s, tv);
321 break;
322 case 0x34:
323 aspeed_timer_set_ctrl2(s, tv);
324 break;
325 /* Timer Registers */
326 case 0x00 ... 0x2c:
327 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
328 break;
329 case 0x40 ... 0x8c:
330 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
331 break;
332 /* Illegal */
333 case 0x38:
334 case 0x3C:
335 default:
336 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
337 __func__, offset);
338 break;
339 }
340 }
341
342 static const MemoryRegionOps aspeed_timer_ops = {
343 .read = aspeed_timer_read,
344 .write = aspeed_timer_write,
345 .endianness = DEVICE_LITTLE_ENDIAN,
346 .valid.min_access_size = 4,
347 .valid.max_access_size = 4,
348 .valid.unaligned = false,
349 };
350
351 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
352 {
353 QEMUBH *bh;
354 AspeedTimer *t = &s->timers[id];
355
356 t->id = id;
357 bh = qemu_bh_new(aspeed_timer_expire, t);
358 t->timer = ptimer_init(bh);
359 }
360
361 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
362 {
363 int i;
364 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
365 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
366
367 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
368 aspeed_init_one_timer(s, i);
369 sysbus_init_irq(sbd, &s->timers[i].irq);
370 }
371 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
372 TYPE_ASPEED_TIMER, 0x1000);
373 sysbus_init_mmio(sbd, &s->iomem);
374 }
375
376 static void aspeed_timer_reset(DeviceState *dev)
377 {
378 int i;
379 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
380
381 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
382 AspeedTimer *t = &s->timers[i];
383 /* Explicitly call helpers to avoid any conditional behaviour through
384 * aspeed_timer_set_ctrl().
385 */
386 aspeed_timer_ctrl_enable(t, false);
387 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
388 aspeed_timer_ctrl_overflow_interrupt(t, false);
389 aspeed_timer_ctrl_pulse_enable(t, false);
390 t->level = 0;
391 t->reload = 0;
392 t->match[0] = 0;
393 t->match[1] = 0;
394 }
395 s->ctrl = 0;
396 s->ctrl2 = 0;
397 }
398
399 static const VMStateDescription vmstate_aspeed_timer = {
400 .name = "aspeed.timer",
401 .version_id = 1,
402 .minimum_version_id = 1,
403 .fields = (VMStateField[]) {
404 VMSTATE_UINT8(id, AspeedTimer),
405 VMSTATE_INT32(level, AspeedTimer),
406 VMSTATE_PTIMER(timer, AspeedTimer),
407 VMSTATE_UINT32(reload, AspeedTimer),
408 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
409 VMSTATE_END_OF_LIST()
410 }
411 };
412
413 static const VMStateDescription vmstate_aspeed_timer_state = {
414 .name = "aspeed.timerctrl",
415 .version_id = 1,
416 .minimum_version_id = 1,
417 .fields = (VMStateField[]) {
418 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
419 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
420 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
421 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
422 AspeedTimer),
423 VMSTATE_END_OF_LIST()
424 }
425 };
426
427 static void timer_class_init(ObjectClass *klass, void *data)
428 {
429 DeviceClass *dc = DEVICE_CLASS(klass);
430
431 dc->realize = aspeed_timer_realize;
432 dc->reset = aspeed_timer_reset;
433 dc->desc = "ASPEED Timer";
434 dc->vmsd = &vmstate_aspeed_timer_state;
435 }
436
437 static const TypeInfo aspeed_timer_info = {
438 .name = TYPE_ASPEED_TIMER,
439 .parent = TYPE_SYS_BUS_DEVICE,
440 .instance_size = sizeof(AspeedTimerCtrlState),
441 .class_init = timer_class_init,
442 };
443
444 static void aspeed_timer_register_types(void)
445 {
446 type_register_static(&aspeed_timer_info);
447 }
448
449 type_init(aspeed_timer_register_types)