]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/hpet.c
hw/fsi: Update MAINTAINER list
[mirror_qemu.git] / hw / timer / hpet.c
1 /*
2 * High Precision Event Timer emulation
3 *
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
6 *
7 * Authors: Beth Kon <bkon@us.ibm.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * *****************************************************************
23 *
24 * This driver attempts to emulate an HPET device in software.
25 */
26
27 #include "qemu/osdep.h"
28 #include "hw/i386/pc.h"
29 #include "hw/irq.h"
30 #include "qapi/error.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/timer/hpet.h"
35 #include "hw/sysbus.h"
36 #include "hw/rtc/mc146818rtc.h"
37 #include "hw/rtc/mc146818rtc_regs.h"
38 #include "migration/vmstate.h"
39 #include "hw/timer/i8254.h"
40 #include "exec/address-spaces.h"
41 #include "qom/object.h"
42 #include "trace.h"
43
44 #define HPET_MSI_SUPPORT 0
45
46 OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
47
48 struct HPETState;
49 typedef struct HPETTimer { /* timers */
50 uint8_t tn; /*timer number*/
51 QEMUTimer *qemu_timer;
52 struct HPETState *state;
53 /* Memory-mapped, software visible timer registers */
54 uint64_t config; /* configuration/cap */
55 uint64_t cmp; /* comparator */
56 uint64_t fsb; /* FSB route */
57 /* Hidden register state */
58 uint64_t period; /* Last value written to comparator */
59 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
60 * mode. Next pop will be actual timer expiration.
61 */
62 } HPETTimer;
63
64 struct HPETState {
65 /*< private >*/
66 SysBusDevice parent_obj;
67 /*< public >*/
68
69 MemoryRegion iomem;
70 uint64_t hpet_offset;
71 bool hpet_offset_saved;
72 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
73 uint32_t flags;
74 uint8_t rtc_irq_level;
75 qemu_irq pit_enabled;
76 uint8_t num_timers;
77 uint32_t intcap;
78 HPETTimer timer[HPET_MAX_TIMERS];
79
80 /* Memory-mapped, software visible registers */
81 uint64_t capability; /* capabilities */
82 uint64_t config; /* configuration */
83 uint64_t isr; /* interrupt status reg */
84 uint64_t hpet_counter; /* main counter */
85 uint8_t hpet_id; /* instance id */
86 };
87
88 static uint32_t hpet_in_legacy_mode(HPETState *s)
89 {
90 return s->config & HPET_CFG_LEGACY;
91 }
92
93 static uint32_t timer_int_route(struct HPETTimer *timer)
94 {
95 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
96 }
97
98 static uint32_t timer_fsb_route(HPETTimer *t)
99 {
100 return t->config & HPET_TN_FSB_ENABLE;
101 }
102
103 static uint32_t hpet_enabled(HPETState *s)
104 {
105 return s->config & HPET_CFG_ENABLE;
106 }
107
108 static uint32_t timer_is_periodic(HPETTimer *t)
109 {
110 return t->config & HPET_TN_PERIODIC;
111 }
112
113 static uint32_t timer_enabled(HPETTimer *t)
114 {
115 return t->config & HPET_TN_ENABLE;
116 }
117
118 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
119 {
120 return ((int32_t)(b - a) < 0);
121 }
122
123 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
124 {
125 return ((int64_t)(b - a) < 0);
126 }
127
128 static uint64_t ticks_to_ns(uint64_t value)
129 {
130 return value * HPET_CLK_PERIOD;
131 }
132
133 static uint64_t ns_to_ticks(uint64_t value)
134 {
135 return value / HPET_CLK_PERIOD;
136 }
137
138 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
139 {
140 new &= mask;
141 new |= old & ~mask;
142 return new;
143 }
144
145 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
146 {
147 return (!(old & mask) && (new & mask));
148 }
149
150 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
151 {
152 return ((old & mask) && !(new & mask));
153 }
154
155 static uint64_t hpet_get_ticks(HPETState *s)
156 {
157 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
158 }
159
160 /*
161 * calculate diff between comparator value and current ticks
162 */
163 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
164 {
165
166 if (t->config & HPET_TN_32BIT) {
167 uint32_t diff, cmp;
168
169 cmp = (uint32_t)t->cmp;
170 diff = cmp - (uint32_t)current;
171 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
172 return (uint64_t)diff;
173 } else {
174 uint64_t diff, cmp;
175
176 cmp = t->cmp;
177 diff = cmp - current;
178 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
179 return diff;
180 }
181 }
182
183 static void update_irq(struct HPETTimer *timer, int set)
184 {
185 uint64_t mask;
186 HPETState *s;
187 int route;
188
189 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
190 /* if LegacyReplacementRoute bit is set, HPET specification requires
191 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
192 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
193 */
194 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
195 } else {
196 route = timer_int_route(timer);
197 }
198 s = timer->state;
199 mask = 1 << timer->tn;
200 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
201 s->isr &= ~mask;
202 if (!timer_fsb_route(timer)) {
203 qemu_irq_lower(s->irqs[route]);
204 }
205 } else if (timer_fsb_route(timer)) {
206 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
207 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
208 NULL);
209 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
210 s->isr |= mask;
211 qemu_irq_raise(s->irqs[route]);
212 } else {
213 s->isr &= ~mask;
214 qemu_irq_pulse(s->irqs[route]);
215 }
216 }
217
218 static int hpet_pre_save(void *opaque)
219 {
220 HPETState *s = opaque;
221
222 /* save current counter value */
223 if (hpet_enabled(s)) {
224 s->hpet_counter = hpet_get_ticks(s);
225 }
226
227 return 0;
228 }
229
230 static int hpet_pre_load(void *opaque)
231 {
232 HPETState *s = opaque;
233
234 /* version 1 only supports 3, later versions will load the actual value */
235 s->num_timers = HPET_MIN_TIMERS;
236 return 0;
237 }
238
239 static bool hpet_validate_num_timers(void *opaque, int version_id)
240 {
241 HPETState *s = opaque;
242
243 if (s->num_timers < HPET_MIN_TIMERS) {
244 return false;
245 } else if (s->num_timers > HPET_MAX_TIMERS) {
246 return false;
247 }
248 return true;
249 }
250
251 static int hpet_post_load(void *opaque, int version_id)
252 {
253 HPETState *s = opaque;
254
255 /* Recalculate the offset between the main counter and guest time */
256 if (!s->hpet_offset_saved) {
257 s->hpet_offset = ticks_to_ns(s->hpet_counter)
258 - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
259 }
260
261 /* Push number of timers into capability returned via HPET_ID */
262 s->capability &= ~HPET_ID_NUM_TIM_MASK;
263 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
264 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
265
266 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
267 s->flags &= ~(1 << HPET_MSI_SUPPORT);
268 if (s->timer[0].config & HPET_TN_FSB_CAP) {
269 s->flags |= 1 << HPET_MSI_SUPPORT;
270 }
271 return 0;
272 }
273
274 static bool hpet_offset_needed(void *opaque)
275 {
276 HPETState *s = opaque;
277
278 return hpet_enabled(s) && s->hpet_offset_saved;
279 }
280
281 static bool hpet_rtc_irq_level_needed(void *opaque)
282 {
283 HPETState *s = opaque;
284
285 return s->rtc_irq_level != 0;
286 }
287
288 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
289 .name = "hpet/rtc_irq_level",
290 .version_id = 1,
291 .minimum_version_id = 1,
292 .needed = hpet_rtc_irq_level_needed,
293 .fields = (const VMStateField[]) {
294 VMSTATE_UINT8(rtc_irq_level, HPETState),
295 VMSTATE_END_OF_LIST()
296 }
297 };
298
299 static const VMStateDescription vmstate_hpet_offset = {
300 .name = "hpet/offset",
301 .version_id = 1,
302 .minimum_version_id = 1,
303 .needed = hpet_offset_needed,
304 .fields = (const VMStateField[]) {
305 VMSTATE_UINT64(hpet_offset, HPETState),
306 VMSTATE_END_OF_LIST()
307 }
308 };
309
310 static const VMStateDescription vmstate_hpet_timer = {
311 .name = "hpet_timer",
312 .version_id = 1,
313 .minimum_version_id = 1,
314 .fields = (const VMStateField[]) {
315 VMSTATE_UINT8(tn, HPETTimer),
316 VMSTATE_UINT64(config, HPETTimer),
317 VMSTATE_UINT64(cmp, HPETTimer),
318 VMSTATE_UINT64(fsb, HPETTimer),
319 VMSTATE_UINT64(period, HPETTimer),
320 VMSTATE_UINT8(wrap_flag, HPETTimer),
321 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
322 VMSTATE_END_OF_LIST()
323 }
324 };
325
326 static const VMStateDescription vmstate_hpet = {
327 .name = "hpet",
328 .version_id = 2,
329 .minimum_version_id = 1,
330 .pre_save = hpet_pre_save,
331 .pre_load = hpet_pre_load,
332 .post_load = hpet_post_load,
333 .fields = (const VMStateField[]) {
334 VMSTATE_UINT64(config, HPETState),
335 VMSTATE_UINT64(isr, HPETState),
336 VMSTATE_UINT64(hpet_counter, HPETState),
337 VMSTATE_UINT8_V(num_timers, HPETState, 2),
338 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
339 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
340 vmstate_hpet_timer, HPETTimer),
341 VMSTATE_END_OF_LIST()
342 },
343 .subsections = (const VMStateDescription * const []) {
344 &vmstate_hpet_rtc_irq_level,
345 &vmstate_hpet_offset,
346 NULL
347 }
348 };
349
350 static void hpet_arm(HPETTimer *t, uint64_t ticks)
351 {
352 if (ticks < ns_to_ticks(INT64_MAX / 2)) {
353 timer_mod(t->qemu_timer,
354 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ticks_to_ns(ticks));
355 } else {
356 timer_del(t->qemu_timer);
357 }
358 }
359
360 /*
361 * timer expiration callback
362 */
363 static void hpet_timer(void *opaque)
364 {
365 HPETTimer *t = opaque;
366 uint64_t diff;
367
368 uint64_t period = t->period;
369 uint64_t cur_tick = hpet_get_ticks(t->state);
370
371 if (timer_is_periodic(t) && period != 0) {
372 if (t->config & HPET_TN_32BIT) {
373 while (hpet_time_after(cur_tick, t->cmp)) {
374 t->cmp = (uint32_t)(t->cmp + t->period);
375 }
376 } else {
377 while (hpet_time_after64(cur_tick, t->cmp)) {
378 t->cmp += period;
379 }
380 }
381 diff = hpet_calculate_diff(t, cur_tick);
382 hpet_arm(t, diff);
383 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
384 if (t->wrap_flag) {
385 diff = hpet_calculate_diff(t, cur_tick);
386 hpet_arm(t, diff);
387 t->wrap_flag = 0;
388 }
389 }
390 update_irq(t, 1);
391 }
392
393 static void hpet_set_timer(HPETTimer *t)
394 {
395 uint64_t diff;
396 uint32_t wrap_diff; /* how many ticks until we wrap? */
397 uint64_t cur_tick = hpet_get_ticks(t->state);
398
399 /* whenever new timer is being set up, make sure wrap_flag is 0 */
400 t->wrap_flag = 0;
401 diff = hpet_calculate_diff(t, cur_tick);
402
403 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
404 * counter wraps in addition to an interrupt with comparator match.
405 */
406 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
407 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
408 if (wrap_diff < (uint32_t)diff) {
409 diff = wrap_diff;
410 t->wrap_flag = 1;
411 }
412 }
413 hpet_arm(t, diff);
414 }
415
416 static void hpet_del_timer(HPETTimer *t)
417 {
418 timer_del(t->qemu_timer);
419 update_irq(t, 0);
420 }
421
422 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
423 unsigned size)
424 {
425 HPETState *s = opaque;
426 uint64_t cur_tick, index;
427
428 trace_hpet_ram_read(addr);
429 index = addr;
430 /*address range of all TN regs*/
431 if (index >= 0x100 && index <= 0x3ff) {
432 uint8_t timer_id = (addr - 0x100) / 0x20;
433 HPETTimer *timer = &s->timer[timer_id];
434
435 if (timer_id > s->num_timers) {
436 trace_hpet_timer_id_out_of_range(timer_id);
437 return 0;
438 }
439
440 switch ((addr - 0x100) % 0x20) {
441 case HPET_TN_CFG:
442 return timer->config;
443 case HPET_TN_CFG + 4: // Interrupt capabilities
444 return timer->config >> 32;
445 case HPET_TN_CMP: // comparator register
446 return timer->cmp;
447 case HPET_TN_CMP + 4:
448 return timer->cmp >> 32;
449 case HPET_TN_ROUTE:
450 return timer->fsb;
451 case HPET_TN_ROUTE + 4:
452 return timer->fsb >> 32;
453 default:
454 trace_hpet_ram_read_invalid();
455 break;
456 }
457 } else {
458 switch (index) {
459 case HPET_ID:
460 return s->capability;
461 case HPET_PERIOD:
462 return s->capability >> 32;
463 case HPET_CFG:
464 return s->config;
465 case HPET_CFG + 4:
466 trace_hpet_invalid_hpet_cfg(4);
467 return 0;
468 case HPET_COUNTER:
469 if (hpet_enabled(s)) {
470 cur_tick = hpet_get_ticks(s);
471 } else {
472 cur_tick = s->hpet_counter;
473 }
474 trace_hpet_ram_read_reading_counter(0, cur_tick);
475 return cur_tick;
476 case HPET_COUNTER + 4:
477 if (hpet_enabled(s)) {
478 cur_tick = hpet_get_ticks(s);
479 } else {
480 cur_tick = s->hpet_counter;
481 }
482 trace_hpet_ram_read_reading_counter(4, cur_tick);
483 return cur_tick >> 32;
484 case HPET_STATUS:
485 return s->isr;
486 default:
487 trace_hpet_ram_read_invalid();
488 break;
489 }
490 }
491 return 0;
492 }
493
494 static void hpet_ram_write(void *opaque, hwaddr addr,
495 uint64_t value, unsigned size)
496 {
497 int i;
498 HPETState *s = opaque;
499 uint64_t old_val, new_val, val, index;
500
501 trace_hpet_ram_write(addr, value);
502 index = addr;
503 old_val = hpet_ram_read(opaque, addr, 4);
504 new_val = value;
505
506 /*address range of all TN regs*/
507 if (index >= 0x100 && index <= 0x3ff) {
508 uint8_t timer_id = (addr - 0x100) / 0x20;
509 HPETTimer *timer = &s->timer[timer_id];
510
511 trace_hpet_ram_write_timer_id(timer_id);
512 if (timer_id > s->num_timers) {
513 trace_hpet_timer_id_out_of_range(timer_id);
514 return;
515 }
516 switch ((addr - 0x100) % 0x20) {
517 case HPET_TN_CFG:
518 trace_hpet_ram_write_tn_cfg();
519 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
520 update_irq(timer, 0);
521 }
522 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
523 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
524 if (new_val & HPET_TN_32BIT) {
525 timer->cmp = (uint32_t)timer->cmp;
526 timer->period = (uint32_t)timer->period;
527 }
528 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
529 hpet_enabled(s)) {
530 hpet_set_timer(timer);
531 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
532 hpet_del_timer(timer);
533 }
534 break;
535 case HPET_TN_CFG + 4: // Interrupt capabilities
536 trace_hpet_ram_write_invalid_tn_cfg(4);
537 break;
538 case HPET_TN_CMP: // comparator register
539 trace_hpet_ram_write_tn_cmp(0);
540 if (timer->config & HPET_TN_32BIT) {
541 new_val = (uint32_t)new_val;
542 }
543 if (!timer_is_periodic(timer)
544 || (timer->config & HPET_TN_SETVAL)) {
545 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
546 }
547 if (timer_is_periodic(timer)) {
548 /*
549 * FIXME: Clamp period to reasonable min value?
550 * Clamp period to reasonable max value
551 */
552 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
553 timer->period =
554 (timer->period & 0xffffffff00000000ULL) | new_val;
555 }
556 timer->config &= ~HPET_TN_SETVAL;
557 if (hpet_enabled(s)) {
558 hpet_set_timer(timer);
559 }
560 break;
561 case HPET_TN_CMP + 4: // comparator register high order
562 trace_hpet_ram_write_tn_cmp(4);
563 if (!timer_is_periodic(timer)
564 || (timer->config & HPET_TN_SETVAL)) {
565 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
566 } else {
567 /*
568 * FIXME: Clamp period to reasonable min value?
569 * Clamp period to reasonable max value
570 */
571 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
572 timer->period =
573 (timer->period & 0xffffffffULL) | new_val << 32;
574 }
575 timer->config &= ~HPET_TN_SETVAL;
576 if (hpet_enabled(s)) {
577 hpet_set_timer(timer);
578 }
579 break;
580 case HPET_TN_ROUTE:
581 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
582 break;
583 case HPET_TN_ROUTE + 4:
584 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
585 break;
586 default:
587 trace_hpet_ram_write_invalid();
588 break;
589 }
590 return;
591 } else {
592 switch (index) {
593 case HPET_ID:
594 return;
595 case HPET_CFG:
596 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
597 s->config = (s->config & 0xffffffff00000000ULL) | val;
598 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
599 /* Enable main counter and interrupt generation. */
600 s->hpet_offset =
601 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
602 for (i = 0; i < s->num_timers; i++) {
603 if ((&s->timer[i])->cmp != ~0ULL) {
604 hpet_set_timer(&s->timer[i]);
605 }
606 }
607 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
608 /* Halt main counter and disable interrupt generation. */
609 s->hpet_counter = hpet_get_ticks(s);
610 for (i = 0; i < s->num_timers; i++) {
611 hpet_del_timer(&s->timer[i]);
612 }
613 }
614 /* i8254 and RTC output pins are disabled
615 * when HPET is in legacy mode */
616 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
617 qemu_set_irq(s->pit_enabled, 0);
618 qemu_irq_lower(s->irqs[0]);
619 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
620 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
621 qemu_irq_lower(s->irqs[0]);
622 qemu_set_irq(s->pit_enabled, 1);
623 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
624 }
625 break;
626 case HPET_CFG + 4:
627 trace_hpet_invalid_hpet_cfg(4);
628 break;
629 case HPET_STATUS:
630 val = new_val & s->isr;
631 for (i = 0; i < s->num_timers; i++) {
632 if (val & (1 << i)) {
633 update_irq(&s->timer[i], 0);
634 }
635 }
636 break;
637 case HPET_COUNTER:
638 if (hpet_enabled(s)) {
639 trace_hpet_ram_write_counter_write_while_enabled();
640 }
641 s->hpet_counter =
642 (s->hpet_counter & 0xffffffff00000000ULL) | value;
643 trace_hpet_ram_write_counter_written(0, value, s->hpet_counter);
644 break;
645 case HPET_COUNTER + 4:
646 trace_hpet_ram_write_counter_write_while_enabled();
647 s->hpet_counter =
648 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
649 trace_hpet_ram_write_counter_written(4, value, s->hpet_counter);
650 break;
651 default:
652 trace_hpet_ram_write_invalid();
653 break;
654 }
655 }
656 }
657
658 static const MemoryRegionOps hpet_ram_ops = {
659 .read = hpet_ram_read,
660 .write = hpet_ram_write,
661 .valid = {
662 .min_access_size = 4,
663 .max_access_size = 4,
664 },
665 .endianness = DEVICE_NATIVE_ENDIAN,
666 };
667
668 static void hpet_reset(DeviceState *d)
669 {
670 HPETState *s = HPET(d);
671 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
672 int i;
673
674 for (i = 0; i < s->num_timers; i++) {
675 HPETTimer *timer = &s->timer[i];
676
677 hpet_del_timer(timer);
678 timer->cmp = ~0ULL;
679 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
680 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
681 timer->config |= HPET_TN_FSB_CAP;
682 }
683 /* advertise availability of ioapic int */
684 timer->config |= (uint64_t)s->intcap << 32;
685 timer->period = 0ULL;
686 timer->wrap_flag = 0;
687 }
688
689 qemu_set_irq(s->pit_enabled, 1);
690 s->hpet_counter = 0ULL;
691 s->hpet_offset = 0ULL;
692 s->config = 0ULL;
693 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
694 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
695
696 /* to document that the RTC lowers its output on reset as well */
697 s->rtc_irq_level = 0;
698 }
699
700 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
701 {
702 HPETState *s = HPET(opaque);
703
704 if (n == HPET_LEGACY_PIT_INT) {
705 if (!hpet_in_legacy_mode(s)) {
706 qemu_set_irq(s->irqs[0], level);
707 }
708 } else {
709 s->rtc_irq_level = level;
710 if (!hpet_in_legacy_mode(s)) {
711 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
712 }
713 }
714 }
715
716 static void hpet_init(Object *obj)
717 {
718 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
719 HPETState *s = HPET(obj);
720
721 /* HPET Area */
722 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
723 sysbus_init_mmio(sbd, &s->iomem);
724 }
725
726 static void hpet_realize(DeviceState *dev, Error **errp)
727 {
728 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
729 HPETState *s = HPET(dev);
730 int i;
731 HPETTimer *timer;
732
733 if (!s->intcap) {
734 warn_report("Hpet's intcap not initialized");
735 }
736 if (hpet_cfg.count == UINT8_MAX) {
737 /* first instance */
738 hpet_cfg.count = 0;
739 }
740
741 if (hpet_cfg.count == 8) {
742 error_setg(errp, "Only 8 instances of HPET is allowed");
743 return;
744 }
745
746 s->hpet_id = hpet_cfg.count++;
747
748 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
749 sysbus_init_irq(sbd, &s->irqs[i]);
750 }
751
752 if (s->num_timers < HPET_MIN_TIMERS) {
753 s->num_timers = HPET_MIN_TIMERS;
754 } else if (s->num_timers > HPET_MAX_TIMERS) {
755 s->num_timers = HPET_MAX_TIMERS;
756 }
757 for (i = 0; i < HPET_MAX_TIMERS; i++) {
758 timer = &s->timer[i];
759 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
760 timer->tn = i;
761 timer->state = s;
762 }
763
764 /* 64-bit main counter; LegacyReplacementRoute. */
765 s->capability = 0x8086a001ULL;
766 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
767 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
768
769 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
770 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
771 }
772
773 static Property hpet_device_properties[] = {
774 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
775 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
776 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
777 DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
778 DEFINE_PROP_END_OF_LIST(),
779 };
780
781 static void hpet_device_class_init(ObjectClass *klass, void *data)
782 {
783 DeviceClass *dc = DEVICE_CLASS(klass);
784
785 dc->realize = hpet_realize;
786 dc->reset = hpet_reset;
787 dc->vmsd = &vmstate_hpet;
788 device_class_set_props(dc, hpet_device_properties);
789 }
790
791 static const TypeInfo hpet_device_info = {
792 .name = TYPE_HPET,
793 .parent = TYPE_SYS_BUS_DEVICE,
794 .instance_size = sizeof(HPETState),
795 .instance_init = hpet_init,
796 .class_init = hpet_device_class_init,
797 };
798
799 static void hpet_register_types(void)
800 {
801 type_register_static(&hpet_device_info);
802 }
803
804 type_init(hpet_register_types)