]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/hpet.c
Use DECLARE_*CHECKER* macros
[mirror_qemu.git] / hw / timer / hpet.c
1 /*
2 * High Precision Event Timer emulation
3 *
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
6 *
7 * Authors: Beth Kon <bkon@us.ibm.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * *****************************************************************
23 *
24 * This driver attempts to emulate an HPET device in software.
25 */
26
27 #include "qemu/osdep.h"
28 #include "hw/i386/pc.h"
29 #include "hw/irq.h"
30 #include "qapi/error.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/sysbus.h"
35 #include "hw/rtc/mc146818rtc.h"
36 #include "hw/rtc/mc146818rtc_regs.h"
37 #include "migration/vmstate.h"
38 #include "hw/timer/i8254.h"
39 #include "exec/address-spaces.h"
40 #include "qom/object.h"
41
42 //#define HPET_DEBUG
43 #ifdef HPET_DEBUG
44 #define DPRINTF printf
45 #else
46 #define DPRINTF(...)
47 #endif
48
49 #define HPET_MSI_SUPPORT 0
50
51 typedef struct HPETState HPETState;
52 DECLARE_INSTANCE_CHECKER(HPETState, HPET,
53 TYPE_HPET)
54
55 struct HPETState;
56 typedef struct HPETTimer { /* timers */
57 uint8_t tn; /*timer number*/
58 QEMUTimer *qemu_timer;
59 struct HPETState *state;
60 /* Memory-mapped, software visible timer registers */
61 uint64_t config; /* configuration/cap */
62 uint64_t cmp; /* comparator */
63 uint64_t fsb; /* FSB route */
64 /* Hidden register state */
65 uint64_t period; /* Last value written to comparator */
66 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
67 * mode. Next pop will be actual timer expiration.
68 */
69 } HPETTimer;
70
71 struct HPETState {
72 /*< private >*/
73 SysBusDevice parent_obj;
74 /*< public >*/
75
76 MemoryRegion iomem;
77 uint64_t hpet_offset;
78 bool hpet_offset_saved;
79 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
80 uint32_t flags;
81 uint8_t rtc_irq_level;
82 qemu_irq pit_enabled;
83 uint8_t num_timers;
84 uint32_t intcap;
85 HPETTimer timer[HPET_MAX_TIMERS];
86
87 /* Memory-mapped, software visible registers */
88 uint64_t capability; /* capabilities */
89 uint64_t config; /* configuration */
90 uint64_t isr; /* interrupt status reg */
91 uint64_t hpet_counter; /* main counter */
92 uint8_t hpet_id; /* instance id */
93 };
94
95 static uint32_t hpet_in_legacy_mode(HPETState *s)
96 {
97 return s->config & HPET_CFG_LEGACY;
98 }
99
100 static uint32_t timer_int_route(struct HPETTimer *timer)
101 {
102 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
103 }
104
105 static uint32_t timer_fsb_route(HPETTimer *t)
106 {
107 return t->config & HPET_TN_FSB_ENABLE;
108 }
109
110 static uint32_t hpet_enabled(HPETState *s)
111 {
112 return s->config & HPET_CFG_ENABLE;
113 }
114
115 static uint32_t timer_is_periodic(HPETTimer *t)
116 {
117 return t->config & HPET_TN_PERIODIC;
118 }
119
120 static uint32_t timer_enabled(HPETTimer *t)
121 {
122 return t->config & HPET_TN_ENABLE;
123 }
124
125 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
126 {
127 return ((int32_t)(b - a) < 0);
128 }
129
130 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
131 {
132 return ((int64_t)(b - a) < 0);
133 }
134
135 static uint64_t ticks_to_ns(uint64_t value)
136 {
137 return value * HPET_CLK_PERIOD;
138 }
139
140 static uint64_t ns_to_ticks(uint64_t value)
141 {
142 return value / HPET_CLK_PERIOD;
143 }
144
145 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
146 {
147 new &= mask;
148 new |= old & ~mask;
149 return new;
150 }
151
152 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
153 {
154 return (!(old & mask) && (new & mask));
155 }
156
157 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
158 {
159 return ((old & mask) && !(new & mask));
160 }
161
162 static uint64_t hpet_get_ticks(HPETState *s)
163 {
164 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
165 }
166
167 /*
168 * calculate diff between comparator value and current ticks
169 */
170 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
171 {
172
173 if (t->config & HPET_TN_32BIT) {
174 uint32_t diff, cmp;
175
176 cmp = (uint32_t)t->cmp;
177 diff = cmp - (uint32_t)current;
178 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
179 return (uint64_t)diff;
180 } else {
181 uint64_t diff, cmp;
182
183 cmp = t->cmp;
184 diff = cmp - current;
185 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
186 return diff;
187 }
188 }
189
190 static void update_irq(struct HPETTimer *timer, int set)
191 {
192 uint64_t mask;
193 HPETState *s;
194 int route;
195
196 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
197 /* if LegacyReplacementRoute bit is set, HPET specification requires
198 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
199 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
200 */
201 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
202 } else {
203 route = timer_int_route(timer);
204 }
205 s = timer->state;
206 mask = 1 << timer->tn;
207 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
208 s->isr &= ~mask;
209 if (!timer_fsb_route(timer)) {
210 qemu_irq_lower(s->irqs[route]);
211 }
212 } else if (timer_fsb_route(timer)) {
213 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
214 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
215 NULL);
216 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
217 s->isr |= mask;
218 qemu_irq_raise(s->irqs[route]);
219 } else {
220 s->isr &= ~mask;
221 qemu_irq_pulse(s->irqs[route]);
222 }
223 }
224
225 static int hpet_pre_save(void *opaque)
226 {
227 HPETState *s = opaque;
228
229 /* save current counter value */
230 if (hpet_enabled(s)) {
231 s->hpet_counter = hpet_get_ticks(s);
232 }
233
234 return 0;
235 }
236
237 static int hpet_pre_load(void *opaque)
238 {
239 HPETState *s = opaque;
240
241 /* version 1 only supports 3, later versions will load the actual value */
242 s->num_timers = HPET_MIN_TIMERS;
243 return 0;
244 }
245
246 static bool hpet_validate_num_timers(void *opaque, int version_id)
247 {
248 HPETState *s = opaque;
249
250 if (s->num_timers < HPET_MIN_TIMERS) {
251 return false;
252 } else if (s->num_timers > HPET_MAX_TIMERS) {
253 return false;
254 }
255 return true;
256 }
257
258 static int hpet_post_load(void *opaque, int version_id)
259 {
260 HPETState *s = opaque;
261
262 /* Recalculate the offset between the main counter and guest time */
263 if (!s->hpet_offset_saved) {
264 s->hpet_offset = ticks_to_ns(s->hpet_counter)
265 - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
266 }
267
268 /* Push number of timers into capability returned via HPET_ID */
269 s->capability &= ~HPET_ID_NUM_TIM_MASK;
270 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
271 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
272
273 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
274 s->flags &= ~(1 << HPET_MSI_SUPPORT);
275 if (s->timer[0].config & HPET_TN_FSB_CAP) {
276 s->flags |= 1 << HPET_MSI_SUPPORT;
277 }
278 return 0;
279 }
280
281 static bool hpet_offset_needed(void *opaque)
282 {
283 HPETState *s = opaque;
284
285 return hpet_enabled(s) && s->hpet_offset_saved;
286 }
287
288 static bool hpet_rtc_irq_level_needed(void *opaque)
289 {
290 HPETState *s = opaque;
291
292 return s->rtc_irq_level != 0;
293 }
294
295 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
296 .name = "hpet/rtc_irq_level",
297 .version_id = 1,
298 .minimum_version_id = 1,
299 .needed = hpet_rtc_irq_level_needed,
300 .fields = (VMStateField[]) {
301 VMSTATE_UINT8(rtc_irq_level, HPETState),
302 VMSTATE_END_OF_LIST()
303 }
304 };
305
306 static const VMStateDescription vmstate_hpet_offset = {
307 .name = "hpet/offset",
308 .version_id = 1,
309 .minimum_version_id = 1,
310 .needed = hpet_offset_needed,
311 .fields = (VMStateField[]) {
312 VMSTATE_UINT64(hpet_offset, HPETState),
313 VMSTATE_END_OF_LIST()
314 }
315 };
316
317 static const VMStateDescription vmstate_hpet_timer = {
318 .name = "hpet_timer",
319 .version_id = 1,
320 .minimum_version_id = 1,
321 .fields = (VMStateField[]) {
322 VMSTATE_UINT8(tn, HPETTimer),
323 VMSTATE_UINT64(config, HPETTimer),
324 VMSTATE_UINT64(cmp, HPETTimer),
325 VMSTATE_UINT64(fsb, HPETTimer),
326 VMSTATE_UINT64(period, HPETTimer),
327 VMSTATE_UINT8(wrap_flag, HPETTimer),
328 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
329 VMSTATE_END_OF_LIST()
330 }
331 };
332
333 static const VMStateDescription vmstate_hpet = {
334 .name = "hpet",
335 .version_id = 2,
336 .minimum_version_id = 1,
337 .pre_save = hpet_pre_save,
338 .pre_load = hpet_pre_load,
339 .post_load = hpet_post_load,
340 .fields = (VMStateField[]) {
341 VMSTATE_UINT64(config, HPETState),
342 VMSTATE_UINT64(isr, HPETState),
343 VMSTATE_UINT64(hpet_counter, HPETState),
344 VMSTATE_UINT8_V(num_timers, HPETState, 2),
345 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
346 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
347 vmstate_hpet_timer, HPETTimer),
348 VMSTATE_END_OF_LIST()
349 },
350 .subsections = (const VMStateDescription*[]) {
351 &vmstate_hpet_rtc_irq_level,
352 &vmstate_hpet_offset,
353 NULL
354 }
355 };
356
357 /*
358 * timer expiration callback
359 */
360 static void hpet_timer(void *opaque)
361 {
362 HPETTimer *t = opaque;
363 uint64_t diff;
364
365 uint64_t period = t->period;
366 uint64_t cur_tick = hpet_get_ticks(t->state);
367
368 if (timer_is_periodic(t) && period != 0) {
369 if (t->config & HPET_TN_32BIT) {
370 while (hpet_time_after(cur_tick, t->cmp)) {
371 t->cmp = (uint32_t)(t->cmp + t->period);
372 }
373 } else {
374 while (hpet_time_after64(cur_tick, t->cmp)) {
375 t->cmp += period;
376 }
377 }
378 diff = hpet_calculate_diff(t, cur_tick);
379 timer_mod(t->qemu_timer,
380 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
381 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
382 if (t->wrap_flag) {
383 diff = hpet_calculate_diff(t, cur_tick);
384 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
385 (int64_t)ticks_to_ns(diff));
386 t->wrap_flag = 0;
387 }
388 }
389 update_irq(t, 1);
390 }
391
392 static void hpet_set_timer(HPETTimer *t)
393 {
394 uint64_t diff;
395 uint32_t wrap_diff; /* how many ticks until we wrap? */
396 uint64_t cur_tick = hpet_get_ticks(t->state);
397
398 /* whenever new timer is being set up, make sure wrap_flag is 0 */
399 t->wrap_flag = 0;
400 diff = hpet_calculate_diff(t, cur_tick);
401
402 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
403 * counter wraps in addition to an interrupt with comparator match.
404 */
405 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
406 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
407 if (wrap_diff < (uint32_t)diff) {
408 diff = wrap_diff;
409 t->wrap_flag = 1;
410 }
411 }
412 timer_mod(t->qemu_timer,
413 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
414 }
415
416 static void hpet_del_timer(HPETTimer *t)
417 {
418 timer_del(t->qemu_timer);
419 update_irq(t, 0);
420 }
421
422 #ifdef HPET_DEBUG
423 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
424 {
425 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
426 return 0;
427 }
428
429 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
430 {
431 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
432 return 0;
433 }
434 #endif
435
436 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
437 unsigned size)
438 {
439 HPETState *s = opaque;
440 uint64_t cur_tick, index;
441
442 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
443 index = addr;
444 /*address range of all TN regs*/
445 if (index >= 0x100 && index <= 0x3ff) {
446 uint8_t timer_id = (addr - 0x100) / 0x20;
447 HPETTimer *timer = &s->timer[timer_id];
448
449 if (timer_id > s->num_timers) {
450 DPRINTF("qemu: timer id out of range\n");
451 return 0;
452 }
453
454 switch ((addr - 0x100) % 0x20) {
455 case HPET_TN_CFG:
456 return timer->config;
457 case HPET_TN_CFG + 4: // Interrupt capabilities
458 return timer->config >> 32;
459 case HPET_TN_CMP: // comparator register
460 return timer->cmp;
461 case HPET_TN_CMP + 4:
462 return timer->cmp >> 32;
463 case HPET_TN_ROUTE:
464 return timer->fsb;
465 case HPET_TN_ROUTE + 4:
466 return timer->fsb >> 32;
467 default:
468 DPRINTF("qemu: invalid hpet_ram_readl\n");
469 break;
470 }
471 } else {
472 switch (index) {
473 case HPET_ID:
474 return s->capability;
475 case HPET_PERIOD:
476 return s->capability >> 32;
477 case HPET_CFG:
478 return s->config;
479 case HPET_CFG + 4:
480 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
481 return 0;
482 case HPET_COUNTER:
483 if (hpet_enabled(s)) {
484 cur_tick = hpet_get_ticks(s);
485 } else {
486 cur_tick = s->hpet_counter;
487 }
488 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
489 return cur_tick;
490 case HPET_COUNTER + 4:
491 if (hpet_enabled(s)) {
492 cur_tick = hpet_get_ticks(s);
493 } else {
494 cur_tick = s->hpet_counter;
495 }
496 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
497 return cur_tick >> 32;
498 case HPET_STATUS:
499 return s->isr;
500 default:
501 DPRINTF("qemu: invalid hpet_ram_readl\n");
502 break;
503 }
504 }
505 return 0;
506 }
507
508 static void hpet_ram_write(void *opaque, hwaddr addr,
509 uint64_t value, unsigned size)
510 {
511 int i;
512 HPETState *s = opaque;
513 uint64_t old_val, new_val, val, index;
514
515 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
516 index = addr;
517 old_val = hpet_ram_read(opaque, addr, 4);
518 new_val = value;
519
520 /*address range of all TN regs*/
521 if (index >= 0x100 && index <= 0x3ff) {
522 uint8_t timer_id = (addr - 0x100) / 0x20;
523 HPETTimer *timer = &s->timer[timer_id];
524
525 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
526 if (timer_id > s->num_timers) {
527 DPRINTF("qemu: timer id out of range\n");
528 return;
529 }
530 switch ((addr - 0x100) % 0x20) {
531 case HPET_TN_CFG:
532 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
533 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
534 update_irq(timer, 0);
535 }
536 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
537 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
538 if (new_val & HPET_TN_32BIT) {
539 timer->cmp = (uint32_t)timer->cmp;
540 timer->period = (uint32_t)timer->period;
541 }
542 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
543 hpet_enabled(s)) {
544 hpet_set_timer(timer);
545 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
546 hpet_del_timer(timer);
547 }
548 break;
549 case HPET_TN_CFG + 4: // Interrupt capabilities
550 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
551 break;
552 case HPET_TN_CMP: // comparator register
553 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
554 if (timer->config & HPET_TN_32BIT) {
555 new_val = (uint32_t)new_val;
556 }
557 if (!timer_is_periodic(timer)
558 || (timer->config & HPET_TN_SETVAL)) {
559 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
560 }
561 if (timer_is_periodic(timer)) {
562 /*
563 * FIXME: Clamp period to reasonable min value?
564 * Clamp period to reasonable max value
565 */
566 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
567 timer->period =
568 (timer->period & 0xffffffff00000000ULL) | new_val;
569 }
570 timer->config &= ~HPET_TN_SETVAL;
571 if (hpet_enabled(s)) {
572 hpet_set_timer(timer);
573 }
574 break;
575 case HPET_TN_CMP + 4: // comparator register high order
576 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
577 if (!timer_is_periodic(timer)
578 || (timer->config & HPET_TN_SETVAL)) {
579 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
580 } else {
581 /*
582 * FIXME: Clamp period to reasonable min value?
583 * Clamp period to reasonable max value
584 */
585 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
586 timer->period =
587 (timer->period & 0xffffffffULL) | new_val << 32;
588 }
589 timer->config &= ~HPET_TN_SETVAL;
590 if (hpet_enabled(s)) {
591 hpet_set_timer(timer);
592 }
593 break;
594 case HPET_TN_ROUTE:
595 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
596 break;
597 case HPET_TN_ROUTE + 4:
598 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
599 break;
600 default:
601 DPRINTF("qemu: invalid hpet_ram_writel\n");
602 break;
603 }
604 return;
605 } else {
606 switch (index) {
607 case HPET_ID:
608 return;
609 case HPET_CFG:
610 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
611 s->config = (s->config & 0xffffffff00000000ULL) | val;
612 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
613 /* Enable main counter and interrupt generation. */
614 s->hpet_offset =
615 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
616 for (i = 0; i < s->num_timers; i++) {
617 if ((&s->timer[i])->cmp != ~0ULL) {
618 hpet_set_timer(&s->timer[i]);
619 }
620 }
621 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
622 /* Halt main counter and disable interrupt generation. */
623 s->hpet_counter = hpet_get_ticks(s);
624 for (i = 0; i < s->num_timers; i++) {
625 hpet_del_timer(&s->timer[i]);
626 }
627 }
628 /* i8254 and RTC output pins are disabled
629 * when HPET is in legacy mode */
630 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
631 qemu_set_irq(s->pit_enabled, 0);
632 qemu_irq_lower(s->irqs[0]);
633 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
634 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
635 qemu_irq_lower(s->irqs[0]);
636 qemu_set_irq(s->pit_enabled, 1);
637 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
638 }
639 break;
640 case HPET_CFG + 4:
641 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
642 break;
643 case HPET_STATUS:
644 val = new_val & s->isr;
645 for (i = 0; i < s->num_timers; i++) {
646 if (val & (1 << i)) {
647 update_irq(&s->timer[i], 0);
648 }
649 }
650 break;
651 case HPET_COUNTER:
652 if (hpet_enabled(s)) {
653 DPRINTF("qemu: Writing counter while HPET enabled!\n");
654 }
655 s->hpet_counter =
656 (s->hpet_counter & 0xffffffff00000000ULL) | value;
657 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
658 value, s->hpet_counter);
659 break;
660 case HPET_COUNTER + 4:
661 if (hpet_enabled(s)) {
662 DPRINTF("qemu: Writing counter while HPET enabled!\n");
663 }
664 s->hpet_counter =
665 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
666 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
667 value, s->hpet_counter);
668 break;
669 default:
670 DPRINTF("qemu: invalid hpet_ram_writel\n");
671 break;
672 }
673 }
674 }
675
676 static const MemoryRegionOps hpet_ram_ops = {
677 .read = hpet_ram_read,
678 .write = hpet_ram_write,
679 .valid = {
680 .min_access_size = 4,
681 .max_access_size = 4,
682 },
683 .endianness = DEVICE_NATIVE_ENDIAN,
684 };
685
686 static void hpet_reset(DeviceState *d)
687 {
688 HPETState *s = HPET(d);
689 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
690 int i;
691
692 for (i = 0; i < s->num_timers; i++) {
693 HPETTimer *timer = &s->timer[i];
694
695 hpet_del_timer(timer);
696 timer->cmp = ~0ULL;
697 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
698 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
699 timer->config |= HPET_TN_FSB_CAP;
700 }
701 /* advertise availability of ioapic int */
702 timer->config |= (uint64_t)s->intcap << 32;
703 timer->period = 0ULL;
704 timer->wrap_flag = 0;
705 }
706
707 qemu_set_irq(s->pit_enabled, 1);
708 s->hpet_counter = 0ULL;
709 s->hpet_offset = 0ULL;
710 s->config = 0ULL;
711 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
712 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
713
714 /* to document that the RTC lowers its output on reset as well */
715 s->rtc_irq_level = 0;
716 }
717
718 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
719 {
720 HPETState *s = HPET(opaque);
721
722 if (n == HPET_LEGACY_PIT_INT) {
723 if (!hpet_in_legacy_mode(s)) {
724 qemu_set_irq(s->irqs[0], level);
725 }
726 } else {
727 s->rtc_irq_level = level;
728 if (!hpet_in_legacy_mode(s)) {
729 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
730 }
731 }
732 }
733
734 static void hpet_init(Object *obj)
735 {
736 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
737 HPETState *s = HPET(obj);
738
739 /* HPET Area */
740 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
741 sysbus_init_mmio(sbd, &s->iomem);
742 }
743
744 static void hpet_realize(DeviceState *dev, Error **errp)
745 {
746 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
747 HPETState *s = HPET(dev);
748 int i;
749 HPETTimer *timer;
750
751 if (!s->intcap) {
752 warn_report("Hpet's intcap not initialized");
753 }
754 if (hpet_cfg.count == UINT8_MAX) {
755 /* first instance */
756 hpet_cfg.count = 0;
757 }
758
759 if (hpet_cfg.count == 8) {
760 error_setg(errp, "Only 8 instances of HPET is allowed");
761 return;
762 }
763
764 s->hpet_id = hpet_cfg.count++;
765
766 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
767 sysbus_init_irq(sbd, &s->irqs[i]);
768 }
769
770 if (s->num_timers < HPET_MIN_TIMERS) {
771 s->num_timers = HPET_MIN_TIMERS;
772 } else if (s->num_timers > HPET_MAX_TIMERS) {
773 s->num_timers = HPET_MAX_TIMERS;
774 }
775 for (i = 0; i < HPET_MAX_TIMERS; i++) {
776 timer = &s->timer[i];
777 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
778 timer->tn = i;
779 timer->state = s;
780 }
781
782 /* 64-bit main counter; LegacyReplacementRoute. */
783 s->capability = 0x8086a001ULL;
784 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
785 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
786
787 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
788 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
789 }
790
791 static Property hpet_device_properties[] = {
792 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
793 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
794 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
795 DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
796 DEFINE_PROP_END_OF_LIST(),
797 };
798
799 static void hpet_device_class_init(ObjectClass *klass, void *data)
800 {
801 DeviceClass *dc = DEVICE_CLASS(klass);
802
803 dc->realize = hpet_realize;
804 dc->reset = hpet_reset;
805 dc->vmsd = &vmstate_hpet;
806 device_class_set_props(dc, hpet_device_properties);
807 }
808
809 static const TypeInfo hpet_device_info = {
810 .name = TYPE_HPET,
811 .parent = TYPE_SYS_BUS_DEVICE,
812 .instance_size = sizeof(HPETState),
813 .instance_init = hpet_init,
814 .class_init = hpet_device_class_init,
815 };
816
817 static void hpet_register_types(void)
818 {
819 type_register_static(&hpet_device_info);
820 }
821
822 type_init(hpet_register_types)