]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/hpet.c
Merge remote-tracking branch 'remotes/ehabkost/tags/machine-next-pull-request' into...
[mirror_qemu.git] / hw / timer / hpet.c
1 /*
2 * High Precision Event Timer emulation
3 *
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
6 *
7 * Authors: Beth Kon <bkon@us.ibm.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * *****************************************************************
23 *
24 * This driver attempts to emulate an HPET device in software.
25 */
26
27 #include "qemu/osdep.h"
28 #include "hw/i386/pc.h"
29 #include "hw/irq.h"
30 #include "qapi/error.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/sysbus.h"
35 #include "hw/rtc/mc146818rtc.h"
36 #include "hw/rtc/mc146818rtc_regs.h"
37 #include "migration/vmstate.h"
38 #include "hw/timer/i8254.h"
39 #include "exec/address-spaces.h"
40 #include "qom/object.h"
41
42 //#define HPET_DEBUG
43 #ifdef HPET_DEBUG
44 #define DPRINTF printf
45 #else
46 #define DPRINTF(...)
47 #endif
48
49 #define HPET_MSI_SUPPORT 0
50
51 OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
52
53 struct HPETState;
54 typedef struct HPETTimer { /* timers */
55 uint8_t tn; /*timer number*/
56 QEMUTimer *qemu_timer;
57 struct HPETState *state;
58 /* Memory-mapped, software visible timer registers */
59 uint64_t config; /* configuration/cap */
60 uint64_t cmp; /* comparator */
61 uint64_t fsb; /* FSB route */
62 /* Hidden register state */
63 uint64_t period; /* Last value written to comparator */
64 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
65 * mode. Next pop will be actual timer expiration.
66 */
67 } HPETTimer;
68
69 struct HPETState {
70 /*< private >*/
71 SysBusDevice parent_obj;
72 /*< public >*/
73
74 MemoryRegion iomem;
75 uint64_t hpet_offset;
76 bool hpet_offset_saved;
77 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
78 uint32_t flags;
79 uint8_t rtc_irq_level;
80 qemu_irq pit_enabled;
81 uint8_t num_timers;
82 uint32_t intcap;
83 HPETTimer timer[HPET_MAX_TIMERS];
84
85 /* Memory-mapped, software visible registers */
86 uint64_t capability; /* capabilities */
87 uint64_t config; /* configuration */
88 uint64_t isr; /* interrupt status reg */
89 uint64_t hpet_counter; /* main counter */
90 uint8_t hpet_id; /* instance id */
91 };
92
93 static uint32_t hpet_in_legacy_mode(HPETState *s)
94 {
95 return s->config & HPET_CFG_LEGACY;
96 }
97
98 static uint32_t timer_int_route(struct HPETTimer *timer)
99 {
100 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
101 }
102
103 static uint32_t timer_fsb_route(HPETTimer *t)
104 {
105 return t->config & HPET_TN_FSB_ENABLE;
106 }
107
108 static uint32_t hpet_enabled(HPETState *s)
109 {
110 return s->config & HPET_CFG_ENABLE;
111 }
112
113 static uint32_t timer_is_periodic(HPETTimer *t)
114 {
115 return t->config & HPET_TN_PERIODIC;
116 }
117
118 static uint32_t timer_enabled(HPETTimer *t)
119 {
120 return t->config & HPET_TN_ENABLE;
121 }
122
123 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
124 {
125 return ((int32_t)(b - a) < 0);
126 }
127
128 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
129 {
130 return ((int64_t)(b - a) < 0);
131 }
132
133 static uint64_t ticks_to_ns(uint64_t value)
134 {
135 return value * HPET_CLK_PERIOD;
136 }
137
138 static uint64_t ns_to_ticks(uint64_t value)
139 {
140 return value / HPET_CLK_PERIOD;
141 }
142
143 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
144 {
145 new &= mask;
146 new |= old & ~mask;
147 return new;
148 }
149
150 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
151 {
152 return (!(old & mask) && (new & mask));
153 }
154
155 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
156 {
157 return ((old & mask) && !(new & mask));
158 }
159
160 static uint64_t hpet_get_ticks(HPETState *s)
161 {
162 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
163 }
164
165 /*
166 * calculate diff between comparator value and current ticks
167 */
168 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
169 {
170
171 if (t->config & HPET_TN_32BIT) {
172 uint32_t diff, cmp;
173
174 cmp = (uint32_t)t->cmp;
175 diff = cmp - (uint32_t)current;
176 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
177 return (uint64_t)diff;
178 } else {
179 uint64_t diff, cmp;
180
181 cmp = t->cmp;
182 diff = cmp - current;
183 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
184 return diff;
185 }
186 }
187
188 static void update_irq(struct HPETTimer *timer, int set)
189 {
190 uint64_t mask;
191 HPETState *s;
192 int route;
193
194 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
195 /* if LegacyReplacementRoute bit is set, HPET specification requires
196 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
197 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
198 */
199 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
200 } else {
201 route = timer_int_route(timer);
202 }
203 s = timer->state;
204 mask = 1 << timer->tn;
205 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
206 s->isr &= ~mask;
207 if (!timer_fsb_route(timer)) {
208 qemu_irq_lower(s->irqs[route]);
209 }
210 } else if (timer_fsb_route(timer)) {
211 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
212 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
213 NULL);
214 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
215 s->isr |= mask;
216 qemu_irq_raise(s->irqs[route]);
217 } else {
218 s->isr &= ~mask;
219 qemu_irq_pulse(s->irqs[route]);
220 }
221 }
222
223 static int hpet_pre_save(void *opaque)
224 {
225 HPETState *s = opaque;
226
227 /* save current counter value */
228 if (hpet_enabled(s)) {
229 s->hpet_counter = hpet_get_ticks(s);
230 }
231
232 return 0;
233 }
234
235 static int hpet_pre_load(void *opaque)
236 {
237 HPETState *s = opaque;
238
239 /* version 1 only supports 3, later versions will load the actual value */
240 s->num_timers = HPET_MIN_TIMERS;
241 return 0;
242 }
243
244 static bool hpet_validate_num_timers(void *opaque, int version_id)
245 {
246 HPETState *s = opaque;
247
248 if (s->num_timers < HPET_MIN_TIMERS) {
249 return false;
250 } else if (s->num_timers > HPET_MAX_TIMERS) {
251 return false;
252 }
253 return true;
254 }
255
256 static int hpet_post_load(void *opaque, int version_id)
257 {
258 HPETState *s = opaque;
259
260 /* Recalculate the offset between the main counter and guest time */
261 if (!s->hpet_offset_saved) {
262 s->hpet_offset = ticks_to_ns(s->hpet_counter)
263 - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
264 }
265
266 /* Push number of timers into capability returned via HPET_ID */
267 s->capability &= ~HPET_ID_NUM_TIM_MASK;
268 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
269 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
270
271 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
272 s->flags &= ~(1 << HPET_MSI_SUPPORT);
273 if (s->timer[0].config & HPET_TN_FSB_CAP) {
274 s->flags |= 1 << HPET_MSI_SUPPORT;
275 }
276 return 0;
277 }
278
279 static bool hpet_offset_needed(void *opaque)
280 {
281 HPETState *s = opaque;
282
283 return hpet_enabled(s) && s->hpet_offset_saved;
284 }
285
286 static bool hpet_rtc_irq_level_needed(void *opaque)
287 {
288 HPETState *s = opaque;
289
290 return s->rtc_irq_level != 0;
291 }
292
293 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
294 .name = "hpet/rtc_irq_level",
295 .version_id = 1,
296 .minimum_version_id = 1,
297 .needed = hpet_rtc_irq_level_needed,
298 .fields = (VMStateField[]) {
299 VMSTATE_UINT8(rtc_irq_level, HPETState),
300 VMSTATE_END_OF_LIST()
301 }
302 };
303
304 static const VMStateDescription vmstate_hpet_offset = {
305 .name = "hpet/offset",
306 .version_id = 1,
307 .minimum_version_id = 1,
308 .needed = hpet_offset_needed,
309 .fields = (VMStateField[]) {
310 VMSTATE_UINT64(hpet_offset, HPETState),
311 VMSTATE_END_OF_LIST()
312 }
313 };
314
315 static const VMStateDescription vmstate_hpet_timer = {
316 .name = "hpet_timer",
317 .version_id = 1,
318 .minimum_version_id = 1,
319 .fields = (VMStateField[]) {
320 VMSTATE_UINT8(tn, HPETTimer),
321 VMSTATE_UINT64(config, HPETTimer),
322 VMSTATE_UINT64(cmp, HPETTimer),
323 VMSTATE_UINT64(fsb, HPETTimer),
324 VMSTATE_UINT64(period, HPETTimer),
325 VMSTATE_UINT8(wrap_flag, HPETTimer),
326 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
327 VMSTATE_END_OF_LIST()
328 }
329 };
330
331 static const VMStateDescription vmstate_hpet = {
332 .name = "hpet",
333 .version_id = 2,
334 .minimum_version_id = 1,
335 .pre_save = hpet_pre_save,
336 .pre_load = hpet_pre_load,
337 .post_load = hpet_post_load,
338 .fields = (VMStateField[]) {
339 VMSTATE_UINT64(config, HPETState),
340 VMSTATE_UINT64(isr, HPETState),
341 VMSTATE_UINT64(hpet_counter, HPETState),
342 VMSTATE_UINT8_V(num_timers, HPETState, 2),
343 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
344 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
345 vmstate_hpet_timer, HPETTimer),
346 VMSTATE_END_OF_LIST()
347 },
348 .subsections = (const VMStateDescription*[]) {
349 &vmstate_hpet_rtc_irq_level,
350 &vmstate_hpet_offset,
351 NULL
352 }
353 };
354
355 /*
356 * timer expiration callback
357 */
358 static void hpet_timer(void *opaque)
359 {
360 HPETTimer *t = opaque;
361 uint64_t diff;
362
363 uint64_t period = t->period;
364 uint64_t cur_tick = hpet_get_ticks(t->state);
365
366 if (timer_is_periodic(t) && period != 0) {
367 if (t->config & HPET_TN_32BIT) {
368 while (hpet_time_after(cur_tick, t->cmp)) {
369 t->cmp = (uint32_t)(t->cmp + t->period);
370 }
371 } else {
372 while (hpet_time_after64(cur_tick, t->cmp)) {
373 t->cmp += period;
374 }
375 }
376 diff = hpet_calculate_diff(t, cur_tick);
377 timer_mod(t->qemu_timer,
378 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
379 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
380 if (t->wrap_flag) {
381 diff = hpet_calculate_diff(t, cur_tick);
382 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
383 (int64_t)ticks_to_ns(diff));
384 t->wrap_flag = 0;
385 }
386 }
387 update_irq(t, 1);
388 }
389
390 static void hpet_set_timer(HPETTimer *t)
391 {
392 uint64_t diff;
393 uint32_t wrap_diff; /* how many ticks until we wrap? */
394 uint64_t cur_tick = hpet_get_ticks(t->state);
395
396 /* whenever new timer is being set up, make sure wrap_flag is 0 */
397 t->wrap_flag = 0;
398 diff = hpet_calculate_diff(t, cur_tick);
399
400 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
401 * counter wraps in addition to an interrupt with comparator match.
402 */
403 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
404 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
405 if (wrap_diff < (uint32_t)diff) {
406 diff = wrap_diff;
407 t->wrap_flag = 1;
408 }
409 }
410 timer_mod(t->qemu_timer,
411 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
412 }
413
414 static void hpet_del_timer(HPETTimer *t)
415 {
416 timer_del(t->qemu_timer);
417 update_irq(t, 0);
418 }
419
420 #ifdef HPET_DEBUG
421 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
422 {
423 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
424 return 0;
425 }
426
427 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
428 {
429 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
430 return 0;
431 }
432 #endif
433
434 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
435 unsigned size)
436 {
437 HPETState *s = opaque;
438 uint64_t cur_tick, index;
439
440 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
441 index = addr;
442 /*address range of all TN regs*/
443 if (index >= 0x100 && index <= 0x3ff) {
444 uint8_t timer_id = (addr - 0x100) / 0x20;
445 HPETTimer *timer = &s->timer[timer_id];
446
447 if (timer_id > s->num_timers) {
448 DPRINTF("qemu: timer id out of range\n");
449 return 0;
450 }
451
452 switch ((addr - 0x100) % 0x20) {
453 case HPET_TN_CFG:
454 return timer->config;
455 case HPET_TN_CFG + 4: // Interrupt capabilities
456 return timer->config >> 32;
457 case HPET_TN_CMP: // comparator register
458 return timer->cmp;
459 case HPET_TN_CMP + 4:
460 return timer->cmp >> 32;
461 case HPET_TN_ROUTE:
462 return timer->fsb;
463 case HPET_TN_ROUTE + 4:
464 return timer->fsb >> 32;
465 default:
466 DPRINTF("qemu: invalid hpet_ram_readl\n");
467 break;
468 }
469 } else {
470 switch (index) {
471 case HPET_ID:
472 return s->capability;
473 case HPET_PERIOD:
474 return s->capability >> 32;
475 case HPET_CFG:
476 return s->config;
477 case HPET_CFG + 4:
478 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
479 return 0;
480 case HPET_COUNTER:
481 if (hpet_enabled(s)) {
482 cur_tick = hpet_get_ticks(s);
483 } else {
484 cur_tick = s->hpet_counter;
485 }
486 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
487 return cur_tick;
488 case HPET_COUNTER + 4:
489 if (hpet_enabled(s)) {
490 cur_tick = hpet_get_ticks(s);
491 } else {
492 cur_tick = s->hpet_counter;
493 }
494 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
495 return cur_tick >> 32;
496 case HPET_STATUS:
497 return s->isr;
498 default:
499 DPRINTF("qemu: invalid hpet_ram_readl\n");
500 break;
501 }
502 }
503 return 0;
504 }
505
506 static void hpet_ram_write(void *opaque, hwaddr addr,
507 uint64_t value, unsigned size)
508 {
509 int i;
510 HPETState *s = opaque;
511 uint64_t old_val, new_val, val, index;
512
513 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
514 index = addr;
515 old_val = hpet_ram_read(opaque, addr, 4);
516 new_val = value;
517
518 /*address range of all TN regs*/
519 if (index >= 0x100 && index <= 0x3ff) {
520 uint8_t timer_id = (addr - 0x100) / 0x20;
521 HPETTimer *timer = &s->timer[timer_id];
522
523 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
524 if (timer_id > s->num_timers) {
525 DPRINTF("qemu: timer id out of range\n");
526 return;
527 }
528 switch ((addr - 0x100) % 0x20) {
529 case HPET_TN_CFG:
530 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
531 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
532 update_irq(timer, 0);
533 }
534 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
535 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
536 if (new_val & HPET_TN_32BIT) {
537 timer->cmp = (uint32_t)timer->cmp;
538 timer->period = (uint32_t)timer->period;
539 }
540 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
541 hpet_enabled(s)) {
542 hpet_set_timer(timer);
543 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
544 hpet_del_timer(timer);
545 }
546 break;
547 case HPET_TN_CFG + 4: // Interrupt capabilities
548 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
549 break;
550 case HPET_TN_CMP: // comparator register
551 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
552 if (timer->config & HPET_TN_32BIT) {
553 new_val = (uint32_t)new_val;
554 }
555 if (!timer_is_periodic(timer)
556 || (timer->config & HPET_TN_SETVAL)) {
557 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
558 }
559 if (timer_is_periodic(timer)) {
560 /*
561 * FIXME: Clamp period to reasonable min value?
562 * Clamp period to reasonable max value
563 */
564 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
565 timer->period =
566 (timer->period & 0xffffffff00000000ULL) | new_val;
567 }
568 timer->config &= ~HPET_TN_SETVAL;
569 if (hpet_enabled(s)) {
570 hpet_set_timer(timer);
571 }
572 break;
573 case HPET_TN_CMP + 4: // comparator register high order
574 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
575 if (!timer_is_periodic(timer)
576 || (timer->config & HPET_TN_SETVAL)) {
577 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
578 } else {
579 /*
580 * FIXME: Clamp period to reasonable min value?
581 * Clamp period to reasonable max value
582 */
583 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
584 timer->period =
585 (timer->period & 0xffffffffULL) | new_val << 32;
586 }
587 timer->config &= ~HPET_TN_SETVAL;
588 if (hpet_enabled(s)) {
589 hpet_set_timer(timer);
590 }
591 break;
592 case HPET_TN_ROUTE:
593 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
594 break;
595 case HPET_TN_ROUTE + 4:
596 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
597 break;
598 default:
599 DPRINTF("qemu: invalid hpet_ram_writel\n");
600 break;
601 }
602 return;
603 } else {
604 switch (index) {
605 case HPET_ID:
606 return;
607 case HPET_CFG:
608 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
609 s->config = (s->config & 0xffffffff00000000ULL) | val;
610 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
611 /* Enable main counter and interrupt generation. */
612 s->hpet_offset =
613 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
614 for (i = 0; i < s->num_timers; i++) {
615 if ((&s->timer[i])->cmp != ~0ULL) {
616 hpet_set_timer(&s->timer[i]);
617 }
618 }
619 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
620 /* Halt main counter and disable interrupt generation. */
621 s->hpet_counter = hpet_get_ticks(s);
622 for (i = 0; i < s->num_timers; i++) {
623 hpet_del_timer(&s->timer[i]);
624 }
625 }
626 /* i8254 and RTC output pins are disabled
627 * when HPET is in legacy mode */
628 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
629 qemu_set_irq(s->pit_enabled, 0);
630 qemu_irq_lower(s->irqs[0]);
631 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
632 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
633 qemu_irq_lower(s->irqs[0]);
634 qemu_set_irq(s->pit_enabled, 1);
635 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
636 }
637 break;
638 case HPET_CFG + 4:
639 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
640 break;
641 case HPET_STATUS:
642 val = new_val & s->isr;
643 for (i = 0; i < s->num_timers; i++) {
644 if (val & (1 << i)) {
645 update_irq(&s->timer[i], 0);
646 }
647 }
648 break;
649 case HPET_COUNTER:
650 if (hpet_enabled(s)) {
651 DPRINTF("qemu: Writing counter while HPET enabled!\n");
652 }
653 s->hpet_counter =
654 (s->hpet_counter & 0xffffffff00000000ULL) | value;
655 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
656 value, s->hpet_counter);
657 break;
658 case HPET_COUNTER + 4:
659 if (hpet_enabled(s)) {
660 DPRINTF("qemu: Writing counter while HPET enabled!\n");
661 }
662 s->hpet_counter =
663 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
664 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
665 value, s->hpet_counter);
666 break;
667 default:
668 DPRINTF("qemu: invalid hpet_ram_writel\n");
669 break;
670 }
671 }
672 }
673
674 static const MemoryRegionOps hpet_ram_ops = {
675 .read = hpet_ram_read,
676 .write = hpet_ram_write,
677 .valid = {
678 .min_access_size = 4,
679 .max_access_size = 4,
680 },
681 .endianness = DEVICE_NATIVE_ENDIAN,
682 };
683
684 static void hpet_reset(DeviceState *d)
685 {
686 HPETState *s = HPET(d);
687 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
688 int i;
689
690 for (i = 0; i < s->num_timers; i++) {
691 HPETTimer *timer = &s->timer[i];
692
693 hpet_del_timer(timer);
694 timer->cmp = ~0ULL;
695 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
696 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
697 timer->config |= HPET_TN_FSB_CAP;
698 }
699 /* advertise availability of ioapic int */
700 timer->config |= (uint64_t)s->intcap << 32;
701 timer->period = 0ULL;
702 timer->wrap_flag = 0;
703 }
704
705 qemu_set_irq(s->pit_enabled, 1);
706 s->hpet_counter = 0ULL;
707 s->hpet_offset = 0ULL;
708 s->config = 0ULL;
709 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
710 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
711
712 /* to document that the RTC lowers its output on reset as well */
713 s->rtc_irq_level = 0;
714 }
715
716 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
717 {
718 HPETState *s = HPET(opaque);
719
720 if (n == HPET_LEGACY_PIT_INT) {
721 if (!hpet_in_legacy_mode(s)) {
722 qemu_set_irq(s->irqs[0], level);
723 }
724 } else {
725 s->rtc_irq_level = level;
726 if (!hpet_in_legacy_mode(s)) {
727 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
728 }
729 }
730 }
731
732 static void hpet_init(Object *obj)
733 {
734 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
735 HPETState *s = HPET(obj);
736
737 /* HPET Area */
738 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
739 sysbus_init_mmio(sbd, &s->iomem);
740 }
741
742 static void hpet_realize(DeviceState *dev, Error **errp)
743 {
744 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
745 HPETState *s = HPET(dev);
746 int i;
747 HPETTimer *timer;
748
749 if (!s->intcap) {
750 warn_report("Hpet's intcap not initialized");
751 }
752 if (hpet_cfg.count == UINT8_MAX) {
753 /* first instance */
754 hpet_cfg.count = 0;
755 }
756
757 if (hpet_cfg.count == 8) {
758 error_setg(errp, "Only 8 instances of HPET is allowed");
759 return;
760 }
761
762 s->hpet_id = hpet_cfg.count++;
763
764 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
765 sysbus_init_irq(sbd, &s->irqs[i]);
766 }
767
768 if (s->num_timers < HPET_MIN_TIMERS) {
769 s->num_timers = HPET_MIN_TIMERS;
770 } else if (s->num_timers > HPET_MAX_TIMERS) {
771 s->num_timers = HPET_MAX_TIMERS;
772 }
773 for (i = 0; i < HPET_MAX_TIMERS; i++) {
774 timer = &s->timer[i];
775 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
776 timer->tn = i;
777 timer->state = s;
778 }
779
780 /* 64-bit main counter; LegacyReplacementRoute. */
781 s->capability = 0x8086a001ULL;
782 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
783 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
784
785 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
786 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
787 }
788
789 static Property hpet_device_properties[] = {
790 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
791 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
792 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
793 DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
794 DEFINE_PROP_END_OF_LIST(),
795 };
796
797 static void hpet_device_class_init(ObjectClass *klass, void *data)
798 {
799 DeviceClass *dc = DEVICE_CLASS(klass);
800
801 dc->realize = hpet_realize;
802 dc->reset = hpet_reset;
803 dc->vmsd = &vmstate_hpet;
804 device_class_set_props(dc, hpet_device_properties);
805 }
806
807 static const TypeInfo hpet_device_info = {
808 .name = TYPE_HPET,
809 .parent = TYPE_SYS_BUS_DEVICE,
810 .instance_size = sizeof(HPETState),
811 .instance_init = hpet_init,
812 .class_init = hpet_device_class_init,
813 };
814
815 static void hpet_register_types(void)
816 {
817 type_register_static(&hpet_device_info);
818 }
819
820 type_init(hpet_register_types)