]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/mc146818rtc.c
hw/char/cmsdk-apb-timer: Implement CMSDK APB timer device
[mirror_qemu.git] / hw / timer / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
26 #include "qemu/bcd.h"
27 #include "hw/hw.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/replay.h"
31 #include "hw/timer/mc146818rtc.h"
32 #include "qapi/visitor.h"
33 #include "qapi-event.h"
34 #include "qmp-commands.h"
35
36 #ifdef TARGET_I386
37 #include "hw/i386/apic.h"
38 #endif
39
40 //#define DEBUG_CMOS
41 //#define DEBUG_COALESCED
42
43 #ifdef DEBUG_CMOS
44 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
45 #else
46 # define CMOS_DPRINTF(format, ...) do { } while (0)
47 #endif
48
49 #ifdef DEBUG_COALESCED
50 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
51 #else
52 # define DPRINTF_C(format, ...) do { } while (0)
53 #endif
54
55 #define SEC_PER_MIN 60
56 #define MIN_PER_HOUR 60
57 #define SEC_PER_HOUR 3600
58 #define HOUR_PER_DAY 24
59 #define SEC_PER_DAY 86400
60
61 #define RTC_REINJECT_ON_ACK_COUNT 20
62 #define RTC_CLOCK_RATE 32768
63 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
64
65 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
66
67 typedef struct RTCState {
68 ISADevice parent_obj;
69
70 MemoryRegion io;
71 uint8_t cmos_data[128];
72 uint8_t cmos_index;
73 int32_t base_year;
74 uint64_t base_rtc;
75 uint64_t last_update;
76 int64_t offset;
77 qemu_irq irq;
78 int it_shift;
79 /* periodic timer */
80 QEMUTimer *periodic_timer;
81 int64_t next_periodic_time;
82 /* update-ended timer */
83 QEMUTimer *update_timer;
84 uint64_t next_alarm_time;
85 uint16_t irq_reinject_on_ack_count;
86 uint32_t irq_coalesced;
87 uint32_t period;
88 QEMUTimer *coalesced_timer;
89 Notifier clock_reset_notifier;
90 LostTickPolicy lost_tick_policy;
91 Notifier suspend_notifier;
92 QLIST_ENTRY(RTCState) link;
93 } RTCState;
94
95 static void rtc_set_time(RTCState *s);
96 static void rtc_update_time(RTCState *s);
97 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
98 static inline int rtc_from_bcd(RTCState *s, int a);
99 static uint64_t get_next_alarm(RTCState *s);
100
101 static inline bool rtc_running(RTCState *s)
102 {
103 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
104 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
105 }
106
107 static uint64_t get_guest_rtc_ns(RTCState *s)
108 {
109 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
110
111 return s->base_rtc * NANOSECONDS_PER_SECOND +
112 guest_clock - s->last_update + s->offset;
113 }
114
115 static void rtc_coalesced_timer_update(RTCState *s)
116 {
117 if (s->irq_coalesced == 0) {
118 timer_del(s->coalesced_timer);
119 } else {
120 /* divide each RTC interval to 2 - 8 smaller intervals */
121 int c = MIN(s->irq_coalesced, 7) + 1;
122 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
123 periodic_clock_to_ns(s->period / c);
124 timer_mod(s->coalesced_timer, next_clock);
125 }
126 }
127
128 static QLIST_HEAD(, RTCState) rtc_devices =
129 QLIST_HEAD_INITIALIZER(rtc_devices);
130
131 #ifdef TARGET_I386
132 void qmp_rtc_reset_reinjection(Error **errp)
133 {
134 RTCState *s;
135
136 QLIST_FOREACH(s, &rtc_devices, link) {
137 s->irq_coalesced = 0;
138 }
139 }
140
141 static bool rtc_policy_slew_deliver_irq(RTCState *s)
142 {
143 apic_reset_irq_delivered();
144 qemu_irq_raise(s->irq);
145 return apic_get_irq_delivered();
146 }
147
148 static void rtc_coalesced_timer(void *opaque)
149 {
150 RTCState *s = opaque;
151
152 if (s->irq_coalesced != 0) {
153 s->cmos_data[RTC_REG_C] |= 0xc0;
154 DPRINTF_C("cmos: injecting from timer\n");
155 if (rtc_policy_slew_deliver_irq(s)) {
156 s->irq_coalesced--;
157 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
158 s->irq_coalesced);
159 }
160 }
161
162 rtc_coalesced_timer_update(s);
163 }
164 #else
165 static bool rtc_policy_slew_deliver_irq(RTCState *s)
166 {
167 assert(0);
168 return false;
169 }
170 #endif
171
172 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
173 {
174 int period_code;
175
176 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
177 return 0;
178 }
179
180 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
181
182 return periodic_period_to_clock(period_code);
183 }
184
185 /*
186 * handle periodic timer. @old_period indicates the periodic timer update
187 * is just due to period adjustment.
188 */
189 static void
190 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
191 {
192 uint32_t period;
193 int64_t cur_clock, next_irq_clock, lost_clock = 0;
194
195 period = rtc_periodic_clock_ticks(s);
196
197 if (period) {
198 /* compute 32 khz clock */
199 cur_clock =
200 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
201
202 /*
203 * if the periodic timer's update is due to period re-configuration,
204 * we should count the clock since last interrupt.
205 */
206 if (old_period) {
207 int64_t last_periodic_clock, next_periodic_clock;
208
209 next_periodic_clock = muldiv64(s->next_periodic_time,
210 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
211 last_periodic_clock = next_periodic_clock - old_period;
212 lost_clock = cur_clock - last_periodic_clock;
213 assert(lost_clock >= 0);
214 }
215
216 /*
217 * s->irq_coalesced can change for two reasons:
218 *
219 * a) if one or more periodic timer interrupts have been lost,
220 * lost_clock will be more that a period.
221 *
222 * b) when the period may be reconfigured, we expect the OS to
223 * treat delayed tick as the new period. So, when switching
224 * from a shorter to a longer period, scale down the missing,
225 * because the OS will treat past delayed ticks as longer
226 * (leftovers are put back into lost_clock). When switching
227 * to a shorter period, scale up the missing ticks since the
228 * OS handler will treat past delayed ticks as shorter.
229 */
230 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
231 uint32_t old_irq_coalesced = s->irq_coalesced;
232
233 s->period = period;
234 lost_clock += old_irq_coalesced * old_period;
235 s->irq_coalesced = lost_clock / s->period;
236 lost_clock %= s->period;
237 if (old_irq_coalesced != s->irq_coalesced ||
238 old_period != s->period) {
239 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
240 "period scaled from %d to %d\n", old_irq_coalesced,
241 s->irq_coalesced, old_period, s->period);
242 rtc_coalesced_timer_update(s);
243 }
244 } else {
245 /*
246 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
247 * is not used, we should make the time progress anyway.
248 */
249 lost_clock = MIN(lost_clock, period);
250 }
251
252 assert(lost_clock >= 0 && lost_clock <= period);
253
254 next_irq_clock = cur_clock + period - lost_clock;
255 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
256 timer_mod(s->periodic_timer, s->next_periodic_time);
257 } else {
258 s->irq_coalesced = 0;
259 timer_del(s->periodic_timer);
260 }
261 }
262
263 static void rtc_periodic_timer(void *opaque)
264 {
265 RTCState *s = opaque;
266
267 periodic_timer_update(s, s->next_periodic_time, 0);
268 s->cmos_data[RTC_REG_C] |= REG_C_PF;
269 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
270 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
271 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
272 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
273 s->irq_reinject_on_ack_count = 0;
274 if (!rtc_policy_slew_deliver_irq(s)) {
275 s->irq_coalesced++;
276 rtc_coalesced_timer_update(s);
277 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
278 s->irq_coalesced);
279 }
280 } else
281 qemu_irq_raise(s->irq);
282 }
283 }
284
285 /* handle update-ended timer */
286 static void check_update_timer(RTCState *s)
287 {
288 uint64_t next_update_time;
289 uint64_t guest_nsec;
290 int next_alarm_sec;
291
292 /* From the data sheet: "Holding the dividers in reset prevents
293 * interrupts from operating, while setting the SET bit allows"
294 * them to occur. However, it will prevent an alarm interrupt
295 * from occurring, because the time of day is not updated.
296 */
297 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
298 timer_del(s->update_timer);
299 return;
300 }
301 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
302 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
303 timer_del(s->update_timer);
304 return;
305 }
306 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
307 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
308 timer_del(s->update_timer);
309 return;
310 }
311
312 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
313 /* if UF is clear, reprogram to next second */
314 next_update_time = qemu_clock_get_ns(rtc_clock)
315 + NANOSECONDS_PER_SECOND - guest_nsec;
316
317 /* Compute time of next alarm. One second is already accounted
318 * for in next_update_time.
319 */
320 next_alarm_sec = get_next_alarm(s);
321 s->next_alarm_time = next_update_time +
322 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
323
324 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
325 /* UF is set, but AF is clear. Program the timer to target
326 * the alarm time. */
327 next_update_time = s->next_alarm_time;
328 }
329 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
330 timer_mod(s->update_timer, next_update_time);
331 }
332 }
333
334 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
335 {
336 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
337 hour %= 12;
338 if (s->cmos_data[RTC_HOURS] & 0x80) {
339 hour += 12;
340 }
341 }
342 return hour;
343 }
344
345 static uint64_t get_next_alarm(RTCState *s)
346 {
347 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
348 int32_t hour, min, sec;
349
350 rtc_update_time(s);
351
352 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
353 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
354 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
355 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
356
357 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
358 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
359 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
360 cur_hour = convert_hour(s, cur_hour);
361
362 if (alarm_hour == -1) {
363 alarm_hour = cur_hour;
364 if (alarm_min == -1) {
365 alarm_min = cur_min;
366 if (alarm_sec == -1) {
367 alarm_sec = cur_sec + 1;
368 } else if (cur_sec > alarm_sec) {
369 alarm_min++;
370 }
371 } else if (cur_min == alarm_min) {
372 if (alarm_sec == -1) {
373 alarm_sec = cur_sec + 1;
374 } else {
375 if (cur_sec > alarm_sec) {
376 alarm_hour++;
377 }
378 }
379 if (alarm_sec == SEC_PER_MIN) {
380 /* wrap to next hour, minutes is not in don't care mode */
381 alarm_sec = 0;
382 alarm_hour++;
383 }
384 } else if (cur_min > alarm_min) {
385 alarm_hour++;
386 }
387 } else if (cur_hour == alarm_hour) {
388 if (alarm_min == -1) {
389 alarm_min = cur_min;
390 if (alarm_sec == -1) {
391 alarm_sec = cur_sec + 1;
392 } else if (cur_sec > alarm_sec) {
393 alarm_min++;
394 }
395
396 if (alarm_sec == SEC_PER_MIN) {
397 alarm_sec = 0;
398 alarm_min++;
399 }
400 /* wrap to next day, hour is not in don't care mode */
401 alarm_min %= MIN_PER_HOUR;
402 } else if (cur_min == alarm_min) {
403 if (alarm_sec == -1) {
404 alarm_sec = cur_sec + 1;
405 }
406 /* wrap to next day, hours+minutes not in don't care mode */
407 alarm_sec %= SEC_PER_MIN;
408 }
409 }
410
411 /* values that are still don't care fire at the next min/sec */
412 if (alarm_min == -1) {
413 alarm_min = 0;
414 }
415 if (alarm_sec == -1) {
416 alarm_sec = 0;
417 }
418
419 /* keep values in range */
420 if (alarm_sec == SEC_PER_MIN) {
421 alarm_sec = 0;
422 alarm_min++;
423 }
424 if (alarm_min == MIN_PER_HOUR) {
425 alarm_min = 0;
426 alarm_hour++;
427 }
428 alarm_hour %= HOUR_PER_DAY;
429
430 hour = alarm_hour - cur_hour;
431 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
432 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
433 return sec <= 0 ? sec + SEC_PER_DAY : sec;
434 }
435
436 static void rtc_update_timer(void *opaque)
437 {
438 RTCState *s = opaque;
439 int32_t irqs = REG_C_UF;
440 int32_t new_irqs;
441
442 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
443
444 /* UIP might have been latched, update time and clear it. */
445 rtc_update_time(s);
446 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
447
448 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
449 irqs |= REG_C_AF;
450 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
451 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
452 }
453 }
454
455 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
456 s->cmos_data[RTC_REG_C] |= irqs;
457 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
458 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
459 qemu_irq_raise(s->irq);
460 }
461 check_update_timer(s);
462 }
463
464 static void cmos_ioport_write(void *opaque, hwaddr addr,
465 uint64_t data, unsigned size)
466 {
467 RTCState *s = opaque;
468 uint32_t old_period;
469 bool update_periodic_timer;
470
471 if ((addr & 1) == 0) {
472 s->cmos_index = data & 0x7f;
473 } else {
474 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
475 s->cmos_index, data);
476 switch(s->cmos_index) {
477 case RTC_SECONDS_ALARM:
478 case RTC_MINUTES_ALARM:
479 case RTC_HOURS_ALARM:
480 s->cmos_data[s->cmos_index] = data;
481 check_update_timer(s);
482 break;
483 case RTC_IBM_PS2_CENTURY_BYTE:
484 s->cmos_index = RTC_CENTURY;
485 /* fall through */
486 case RTC_CENTURY:
487 case RTC_SECONDS:
488 case RTC_MINUTES:
489 case RTC_HOURS:
490 case RTC_DAY_OF_WEEK:
491 case RTC_DAY_OF_MONTH:
492 case RTC_MONTH:
493 case RTC_YEAR:
494 s->cmos_data[s->cmos_index] = data;
495 /* if in set mode, do not update the time */
496 if (rtc_running(s)) {
497 rtc_set_time(s);
498 check_update_timer(s);
499 }
500 break;
501 case RTC_REG_A:
502 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
503 old_period = rtc_periodic_clock_ticks(s);
504
505 if ((data & 0x60) == 0x60) {
506 if (rtc_running(s)) {
507 rtc_update_time(s);
508 }
509 /* What happens to UIP when divider reset is enabled is
510 * unclear from the datasheet. Shouldn't matter much
511 * though.
512 */
513 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
514 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
515 (data & 0x70) <= 0x20) {
516 /* when the divider reset is removed, the first update cycle
517 * begins one-half second later*/
518 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
519 s->offset = 500000000;
520 rtc_set_time(s);
521 }
522 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
523 }
524 /* UIP bit is read only */
525 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
526 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
527
528 if (update_periodic_timer) {
529 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
530 old_period);
531 }
532
533 check_update_timer(s);
534 break;
535 case RTC_REG_B:
536 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
537 & REG_B_PIE;
538 old_period = rtc_periodic_clock_ticks(s);
539
540 if (data & REG_B_SET) {
541 /* update cmos to when the rtc was stopping */
542 if (rtc_running(s)) {
543 rtc_update_time(s);
544 }
545 /* set mode: reset UIP mode */
546 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
547 data &= ~REG_B_UIE;
548 } else {
549 /* if disabling set mode, update the time */
550 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
551 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
552 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
553 rtc_set_time(s);
554 }
555 }
556 /* if an interrupt flag is already set when the interrupt
557 * becomes enabled, raise an interrupt immediately. */
558 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
559 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
560 qemu_irq_raise(s->irq);
561 } else {
562 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
563 qemu_irq_lower(s->irq);
564 }
565 s->cmos_data[RTC_REG_B] = data;
566
567 if (update_periodic_timer) {
568 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
569 old_period);
570 }
571
572 check_update_timer(s);
573 break;
574 case RTC_REG_C:
575 case RTC_REG_D:
576 /* cannot write to them */
577 break;
578 default:
579 s->cmos_data[s->cmos_index] = data;
580 break;
581 }
582 }
583 }
584
585 static inline int rtc_to_bcd(RTCState *s, int a)
586 {
587 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
588 return a;
589 } else {
590 return ((a / 10) << 4) | (a % 10);
591 }
592 }
593
594 static inline int rtc_from_bcd(RTCState *s, int a)
595 {
596 if ((a & 0xc0) == 0xc0) {
597 return -1;
598 }
599 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
600 return a;
601 } else {
602 return ((a >> 4) * 10) + (a & 0x0f);
603 }
604 }
605
606 static void rtc_get_time(RTCState *s, struct tm *tm)
607 {
608 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
609 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
610 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
611 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
612 tm->tm_hour %= 12;
613 if (s->cmos_data[RTC_HOURS] & 0x80) {
614 tm->tm_hour += 12;
615 }
616 }
617 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
618 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
619 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
620 tm->tm_year =
621 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
622 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
623 }
624
625 static void rtc_set_time(RTCState *s)
626 {
627 struct tm tm;
628
629 rtc_get_time(s, &tm);
630 s->base_rtc = mktimegm(&tm);
631 s->last_update = qemu_clock_get_ns(rtc_clock);
632
633 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
634 }
635
636 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
637 {
638 int year;
639
640 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
641 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
642 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
643 /* 24 hour format */
644 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
645 } else {
646 /* 12 hour format */
647 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
648 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
649 if (tm->tm_hour >= 12)
650 s->cmos_data[RTC_HOURS] |= 0x80;
651 }
652 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
653 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
654 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
655 year = tm->tm_year + 1900 - s->base_year;
656 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
657 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
658 }
659
660 static void rtc_update_time(RTCState *s)
661 {
662 struct tm ret;
663 time_t guest_sec;
664 int64_t guest_nsec;
665
666 guest_nsec = get_guest_rtc_ns(s);
667 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
668 gmtime_r(&guest_sec, &ret);
669
670 /* Is SET flag of Register B disabled? */
671 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
672 rtc_set_cmos(s, &ret);
673 }
674 }
675
676 static int update_in_progress(RTCState *s)
677 {
678 int64_t guest_nsec;
679
680 if (!rtc_running(s)) {
681 return 0;
682 }
683 if (timer_pending(s->update_timer)) {
684 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
685 /* Latch UIP until the timer expires. */
686 if (qemu_clock_get_ns(rtc_clock) >=
687 (next_update_time - UIP_HOLD_LENGTH)) {
688 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
689 return 1;
690 }
691 }
692
693 guest_nsec = get_guest_rtc_ns(s);
694 /* UIP bit will be set at last 244us of every second. */
695 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
696 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
697 return 1;
698 }
699 return 0;
700 }
701
702 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
703 unsigned size)
704 {
705 RTCState *s = opaque;
706 int ret;
707 if ((addr & 1) == 0) {
708 return 0xff;
709 } else {
710 switch(s->cmos_index) {
711 case RTC_IBM_PS2_CENTURY_BYTE:
712 s->cmos_index = RTC_CENTURY;
713 /* fall through */
714 case RTC_CENTURY:
715 case RTC_SECONDS:
716 case RTC_MINUTES:
717 case RTC_HOURS:
718 case RTC_DAY_OF_WEEK:
719 case RTC_DAY_OF_MONTH:
720 case RTC_MONTH:
721 case RTC_YEAR:
722 /* if not in set mode, calibrate cmos before
723 * reading*/
724 if (rtc_running(s)) {
725 rtc_update_time(s);
726 }
727 ret = s->cmos_data[s->cmos_index];
728 break;
729 case RTC_REG_A:
730 if (update_in_progress(s)) {
731 s->cmos_data[s->cmos_index] |= REG_A_UIP;
732 } else {
733 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
734 }
735 ret = s->cmos_data[s->cmos_index];
736 break;
737 case RTC_REG_C:
738 ret = s->cmos_data[s->cmos_index];
739 qemu_irq_lower(s->irq);
740 s->cmos_data[RTC_REG_C] = 0x00;
741 if (ret & (REG_C_UF | REG_C_AF)) {
742 check_update_timer(s);
743 }
744
745 if(s->irq_coalesced &&
746 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
747 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
748 s->irq_reinject_on_ack_count++;
749 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
750 DPRINTF_C("cmos: injecting on ack\n");
751 if (rtc_policy_slew_deliver_irq(s)) {
752 s->irq_coalesced--;
753 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
754 s->irq_coalesced);
755 }
756 }
757 break;
758 default:
759 ret = s->cmos_data[s->cmos_index];
760 break;
761 }
762 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
763 s->cmos_index, ret);
764 return ret;
765 }
766 }
767
768 void rtc_set_memory(ISADevice *dev, int addr, int val)
769 {
770 RTCState *s = MC146818_RTC(dev);
771 if (addr >= 0 && addr <= 127)
772 s->cmos_data[addr] = val;
773 }
774
775 int rtc_get_memory(ISADevice *dev, int addr)
776 {
777 RTCState *s = MC146818_RTC(dev);
778 assert(addr >= 0 && addr <= 127);
779 return s->cmos_data[addr];
780 }
781
782 static void rtc_set_date_from_host(ISADevice *dev)
783 {
784 RTCState *s = MC146818_RTC(dev);
785 struct tm tm;
786
787 qemu_get_timedate(&tm, 0);
788
789 s->base_rtc = mktimegm(&tm);
790 s->last_update = qemu_clock_get_ns(rtc_clock);
791 s->offset = 0;
792
793 /* set the CMOS date */
794 rtc_set_cmos(s, &tm);
795 }
796
797 static void rtc_pre_save(void *opaque)
798 {
799 RTCState *s = opaque;
800
801 rtc_update_time(s);
802 }
803
804 static int rtc_post_load(void *opaque, int version_id)
805 {
806 RTCState *s = opaque;
807
808 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
809 rtc_set_time(s);
810 s->offset = 0;
811 check_update_timer(s);
812 }
813
814 /* The periodic timer is deterministic in record/replay mode,
815 * so there is no need to update it after loading the vmstate.
816 * Reading RTC here would misalign record and replay.
817 */
818 if (replay_mode == REPLAY_MODE_NONE) {
819 uint64_t now = qemu_clock_get_ns(rtc_clock);
820 if (now < s->next_periodic_time ||
821 now > (s->next_periodic_time + get_max_clock_jump())) {
822 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
823 }
824 }
825
826 if (version_id >= 2) {
827 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
828 rtc_coalesced_timer_update(s);
829 }
830 }
831 return 0;
832 }
833
834 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
835 {
836 RTCState *s = (RTCState *)opaque;
837 return s->irq_reinject_on_ack_count != 0;
838 }
839
840 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
841 .name = "mc146818rtc/irq_reinject_on_ack_count",
842 .version_id = 1,
843 .minimum_version_id = 1,
844 .needed = rtc_irq_reinject_on_ack_count_needed,
845 .fields = (VMStateField[]) {
846 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
847 VMSTATE_END_OF_LIST()
848 }
849 };
850
851 static const VMStateDescription vmstate_rtc = {
852 .name = "mc146818rtc",
853 .version_id = 3,
854 .minimum_version_id = 1,
855 .pre_save = rtc_pre_save,
856 .post_load = rtc_post_load,
857 .fields = (VMStateField[]) {
858 VMSTATE_BUFFER(cmos_data, RTCState),
859 VMSTATE_UINT8(cmos_index, RTCState),
860 VMSTATE_UNUSED(7*4),
861 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
862 VMSTATE_INT64(next_periodic_time, RTCState),
863 VMSTATE_UNUSED(3*8),
864 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
865 VMSTATE_UINT32_V(period, RTCState, 2),
866 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
867 VMSTATE_UINT64_V(last_update, RTCState, 3),
868 VMSTATE_INT64_V(offset, RTCState, 3),
869 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
870 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
871 VMSTATE_END_OF_LIST()
872 },
873 .subsections = (const VMStateDescription*[]) {
874 &vmstate_rtc_irq_reinject_on_ack_count,
875 NULL
876 }
877 };
878
879 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
880 {
881 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
882 int64_t now = *(int64_t *)data;
883
884 rtc_set_date_from_host(ISA_DEVICE(s));
885 periodic_timer_update(s, now, 0);
886 check_update_timer(s);
887
888 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
889 rtc_coalesced_timer_update(s);
890 }
891 }
892
893 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
894 BIOS will read it and start S3 resume at POST Entry */
895 static void rtc_notify_suspend(Notifier *notifier, void *data)
896 {
897 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
898 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
899 }
900
901 static void rtc_reset(void *opaque)
902 {
903 RTCState *s = opaque;
904
905 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
906 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
907 check_update_timer(s);
908
909 qemu_irq_lower(s->irq);
910
911 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
912 s->irq_coalesced = 0;
913 s->irq_reinject_on_ack_count = 0;
914 }
915 }
916
917 static const MemoryRegionOps cmos_ops = {
918 .read = cmos_ioport_read,
919 .write = cmos_ioport_write,
920 .impl = {
921 .min_access_size = 1,
922 .max_access_size = 1,
923 },
924 .endianness = DEVICE_LITTLE_ENDIAN,
925 };
926
927 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
928 {
929 RTCState *s = MC146818_RTC(obj);
930
931 rtc_update_time(s);
932 rtc_get_time(s, current_tm);
933 }
934
935 static void rtc_realizefn(DeviceState *dev, Error **errp)
936 {
937 ISADevice *isadev = ISA_DEVICE(dev);
938 RTCState *s = MC146818_RTC(dev);
939 int base = 0x70;
940
941 s->cmos_data[RTC_REG_A] = 0x26;
942 s->cmos_data[RTC_REG_B] = 0x02;
943 s->cmos_data[RTC_REG_C] = 0x00;
944 s->cmos_data[RTC_REG_D] = 0x80;
945
946 /* This is for historical reasons. The default base year qdev property
947 * was set to 2000 for most machine types before the century byte was
948 * implemented.
949 *
950 * This if statement means that the century byte will be always 0
951 * (at least until 2079...) for base_year = 1980, but will be set
952 * correctly for base_year = 2000.
953 */
954 if (s->base_year == 2000) {
955 s->base_year = 0;
956 }
957
958 rtc_set_date_from_host(isadev);
959
960 switch (s->lost_tick_policy) {
961 #ifdef TARGET_I386
962 case LOST_TICK_POLICY_SLEW:
963 s->coalesced_timer =
964 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
965 break;
966 #endif
967 case LOST_TICK_POLICY_DISCARD:
968 break;
969 default:
970 error_setg(errp, "Invalid lost tick policy.");
971 return;
972 }
973
974 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
975 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
976 check_update_timer(s);
977
978 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
979 qemu_clock_register_reset_notifier(rtc_clock,
980 &s->clock_reset_notifier);
981
982 s->suspend_notifier.notify = rtc_notify_suspend;
983 qemu_register_suspend_notifier(&s->suspend_notifier);
984
985 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
986 isa_register_ioport(isadev, &s->io, base);
987
988 qdev_set_legacy_instance_id(dev, base, 3);
989 qemu_register_reset(rtc_reset, s);
990
991 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
992
993 object_property_add_alias(qdev_get_machine(), "rtc-time",
994 OBJECT(s), "date", NULL);
995
996 qdev_init_gpio_out(dev, &s->irq, 1);
997 }
998
999 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
1000 {
1001 DeviceState *dev;
1002 ISADevice *isadev;
1003 RTCState *s;
1004
1005 isadev = isa_create(bus, TYPE_MC146818_RTC);
1006 dev = DEVICE(isadev);
1007 s = MC146818_RTC(isadev);
1008 qdev_prop_set_int32(dev, "base_year", base_year);
1009 qdev_init_nofail(dev);
1010 if (intercept_irq) {
1011 qdev_connect_gpio_out(dev, 0, intercept_irq);
1012 } else {
1013 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
1014 }
1015 QLIST_INSERT_HEAD(&rtc_devices, s, link);
1016
1017 return isadev;
1018 }
1019
1020 static Property mc146818rtc_properties[] = {
1021 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
1022 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
1023 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
1024 DEFINE_PROP_END_OF_LIST(),
1025 };
1026
1027 static void rtc_resetdev(DeviceState *d)
1028 {
1029 RTCState *s = MC146818_RTC(d);
1030
1031 /* Reason: VM do suspend self will set 0xfe
1032 * Reset any values other than 0xfe(Guest suspend case) */
1033 if (s->cmos_data[0x0f] != 0xfe) {
1034 s->cmos_data[0x0f] = 0x00;
1035 }
1036 }
1037
1038 static void rtc_class_initfn(ObjectClass *klass, void *data)
1039 {
1040 DeviceClass *dc = DEVICE_CLASS(klass);
1041
1042 dc->realize = rtc_realizefn;
1043 dc->reset = rtc_resetdev;
1044 dc->vmsd = &vmstate_rtc;
1045 dc->props = mc146818rtc_properties;
1046 /* Reason: needs to be wired up by rtc_init() */
1047 dc->user_creatable = false;
1048 }
1049
1050 static void rtc_finalize(Object *obj)
1051 {
1052 object_property_del(qdev_get_machine(), "rtc", NULL);
1053 }
1054
1055 static const TypeInfo mc146818rtc_info = {
1056 .name = TYPE_MC146818_RTC,
1057 .parent = TYPE_ISA_DEVICE,
1058 .instance_size = sizeof(RTCState),
1059 .class_init = rtc_class_initfn,
1060 .instance_finalize = rtc_finalize,
1061 };
1062
1063 static void mc146818rtc_register_types(void)
1064 {
1065 type_register_static(&mc146818rtc_info);
1066 }
1067
1068 type_init(mc146818rtc_register_types)