]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/slavio_timer.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / timer / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/timer.h"
27 #include "hw/ptimer.h"
28 #include "hw/sysbus.h"
29 #include "trace.h"
30 #include "qemu/main-loop.h"
31 #include "qemu/module.h"
32
33 /*
34 * Registers of hardware timer in sun4m.
35 *
36 * This is the timer/counter part of chip STP2001 (Slave I/O), also
37 * produced as NCR89C105. See
38 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
39 *
40 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
41 * are zero. Bit 31 is 1 when count has been reached.
42 *
43 * Per-CPU timers interrupt local CPU, system timer uses normal
44 * interrupt routing.
45 *
46 */
47
48 #define MAX_CPUS 16
49
50 typedef struct CPUTimerState {
51 qemu_irq irq;
52 ptimer_state *timer;
53 uint32_t count, counthigh, reached;
54 /* processor only */
55 uint32_t run;
56 uint64_t limit;
57 } CPUTimerState;
58
59 #define TYPE_SLAVIO_TIMER "slavio_timer"
60 #define SLAVIO_TIMER(obj) \
61 OBJECT_CHECK(SLAVIO_TIMERState, (obj), TYPE_SLAVIO_TIMER)
62
63 typedef struct SLAVIO_TIMERState {
64 SysBusDevice parent_obj;
65
66 uint32_t num_cpus;
67 uint32_t cputimer_mode;
68 CPUTimerState cputimer[MAX_CPUS + 1];
69 } SLAVIO_TIMERState;
70
71 typedef struct TimerContext {
72 MemoryRegion iomem;
73 SLAVIO_TIMERState *s;
74 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
75 } TimerContext;
76
77 #define SYS_TIMER_SIZE 0x14
78 #define CPU_TIMER_SIZE 0x10
79
80 #define TIMER_LIMIT 0
81 #define TIMER_COUNTER 1
82 #define TIMER_COUNTER_NORST 2
83 #define TIMER_STATUS 3
84 #define TIMER_MODE 4
85
86 #define TIMER_COUNT_MASK32 0xfffffe00
87 #define TIMER_LIMIT_MASK32 0x7fffffff
88 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
89 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
90 #define TIMER_REACHED 0x80000000
91 #define TIMER_PERIOD 500ULL // 500ns
92 #define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
93 #define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
94
95 static int slavio_timer_is_user(TimerContext *tc)
96 {
97 SLAVIO_TIMERState *s = tc->s;
98 unsigned int timer_index = tc->timer_index;
99
100 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
101 }
102
103 // Update count, set irq, update expire_time
104 // Convert from ptimer countdown units
105 static void slavio_timer_get_out(CPUTimerState *t)
106 {
107 uint64_t count, limit;
108
109 if (t->limit == 0) { /* free-run system or processor counter */
110 limit = TIMER_MAX_COUNT32;
111 } else {
112 limit = t->limit;
113 }
114 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
115
116 trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
117 t->count = count & TIMER_COUNT_MASK32;
118 t->counthigh = count >> 32;
119 }
120
121 // timer callback
122 static void slavio_timer_irq(void *opaque)
123 {
124 TimerContext *tc = opaque;
125 SLAVIO_TIMERState *s = tc->s;
126 CPUTimerState *t = &s->cputimer[tc->timer_index];
127
128 slavio_timer_get_out(t);
129 trace_slavio_timer_irq(t->counthigh, t->count);
130 /* if limit is 0 (free-run), there will be no match */
131 if (t->limit != 0) {
132 t->reached = TIMER_REACHED;
133 }
134 /* there is no interrupt if user timer or free-run */
135 if (!slavio_timer_is_user(tc) && t->limit != 0) {
136 qemu_irq_raise(t->irq);
137 }
138 }
139
140 static uint64_t slavio_timer_mem_readl(void *opaque, hwaddr addr,
141 unsigned size)
142 {
143 TimerContext *tc = opaque;
144 SLAVIO_TIMERState *s = tc->s;
145 uint32_t saddr, ret;
146 unsigned int timer_index = tc->timer_index;
147 CPUTimerState *t = &s->cputimer[timer_index];
148
149 saddr = addr >> 2;
150 switch (saddr) {
151 case TIMER_LIMIT:
152 // read limit (system counter mode) or read most signifying
153 // part of counter (user mode)
154 if (slavio_timer_is_user(tc)) {
155 // read user timer MSW
156 slavio_timer_get_out(t);
157 ret = t->counthigh | t->reached;
158 } else {
159 // read limit
160 // clear irq
161 qemu_irq_lower(t->irq);
162 t->reached = 0;
163 ret = t->limit & TIMER_LIMIT_MASK32;
164 }
165 break;
166 case TIMER_COUNTER:
167 // read counter and reached bit (system mode) or read lsbits
168 // of counter (user mode)
169 slavio_timer_get_out(t);
170 if (slavio_timer_is_user(tc)) { // read user timer LSW
171 ret = t->count & TIMER_MAX_COUNT64;
172 } else { // read limit
173 ret = (t->count & TIMER_MAX_COUNT32) |
174 t->reached;
175 }
176 break;
177 case TIMER_STATUS:
178 // only available in processor counter/timer
179 // read start/stop status
180 if (timer_index > 0) {
181 ret = t->run;
182 } else {
183 ret = 0;
184 }
185 break;
186 case TIMER_MODE:
187 // only available in system counter
188 // read user/system mode
189 ret = s->cputimer_mode;
190 break;
191 default:
192 trace_slavio_timer_mem_readl_invalid(addr);
193 ret = 0;
194 break;
195 }
196 trace_slavio_timer_mem_readl(addr, ret);
197 return ret;
198 }
199
200 static void slavio_timer_mem_writel(void *opaque, hwaddr addr,
201 uint64_t val, unsigned size)
202 {
203 TimerContext *tc = opaque;
204 SLAVIO_TIMERState *s = tc->s;
205 uint32_t saddr;
206 unsigned int timer_index = tc->timer_index;
207 CPUTimerState *t = &s->cputimer[timer_index];
208
209 trace_slavio_timer_mem_writel(addr, val);
210 saddr = addr >> 2;
211 switch (saddr) {
212 case TIMER_LIMIT:
213 if (slavio_timer_is_user(tc)) {
214 uint64_t count;
215
216 // set user counter MSW, reset counter
217 t->limit = TIMER_MAX_COUNT64;
218 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
219 t->reached = 0;
220 count = ((uint64_t)t->counthigh << 32) | t->count;
221 trace_slavio_timer_mem_writel_limit(timer_index, count);
222 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
223 } else {
224 // set limit, reset counter
225 qemu_irq_lower(t->irq);
226 t->limit = val & TIMER_MAX_COUNT32;
227 if (t->timer) {
228 if (t->limit == 0) { /* free-run */
229 ptimer_set_limit(t->timer,
230 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
231 } else {
232 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
233 }
234 }
235 }
236 break;
237 case TIMER_COUNTER:
238 if (slavio_timer_is_user(tc)) {
239 uint64_t count;
240
241 // set user counter LSW, reset counter
242 t->limit = TIMER_MAX_COUNT64;
243 t->count = val & TIMER_MAX_COUNT64;
244 t->reached = 0;
245 count = ((uint64_t)t->counthigh) << 32 | t->count;
246 trace_slavio_timer_mem_writel_limit(timer_index, count);
247 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
248 } else {
249 trace_slavio_timer_mem_writel_counter_invalid();
250 }
251 break;
252 case TIMER_COUNTER_NORST:
253 // set limit without resetting counter
254 t->limit = val & TIMER_MAX_COUNT32;
255 if (t->limit == 0) { /* free-run */
256 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
257 } else {
258 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
259 }
260 break;
261 case TIMER_STATUS:
262 if (slavio_timer_is_user(tc)) {
263 // start/stop user counter
264 if (val & 1) {
265 trace_slavio_timer_mem_writel_status_start(timer_index);
266 ptimer_run(t->timer, 0);
267 } else {
268 trace_slavio_timer_mem_writel_status_stop(timer_index);
269 ptimer_stop(t->timer);
270 }
271 }
272 t->run = val & 1;
273 break;
274 case TIMER_MODE:
275 if (timer_index == 0) {
276 unsigned int i;
277
278 for (i = 0; i < s->num_cpus; i++) {
279 unsigned int processor = 1 << i;
280 CPUTimerState *curr_timer = &s->cputimer[i + 1];
281
282 // check for a change in timer mode for this processor
283 if ((val & processor) != (s->cputimer_mode & processor)) {
284 if (val & processor) { // counter -> user timer
285 qemu_irq_lower(curr_timer->irq);
286 // counters are always running
287 if (!curr_timer->run) {
288 ptimer_stop(curr_timer->timer);
289 }
290 // user timer limit is always the same
291 curr_timer->limit = TIMER_MAX_COUNT64;
292 ptimer_set_limit(curr_timer->timer,
293 LIMIT_TO_PERIODS(curr_timer->limit),
294 1);
295 // set this processors user timer bit in config
296 // register
297 s->cputimer_mode |= processor;
298 trace_slavio_timer_mem_writel_mode_user(timer_index);
299 } else { // user timer -> counter
300 // start the counter
301 ptimer_run(curr_timer->timer, 0);
302 // clear this processors user timer bit in config
303 // register
304 s->cputimer_mode &= ~processor;
305 trace_slavio_timer_mem_writel_mode_counter(timer_index);
306 }
307 }
308 }
309 } else {
310 trace_slavio_timer_mem_writel_mode_invalid();
311 }
312 break;
313 default:
314 trace_slavio_timer_mem_writel_invalid(addr);
315 break;
316 }
317 }
318
319 static const MemoryRegionOps slavio_timer_mem_ops = {
320 .read = slavio_timer_mem_readl,
321 .write = slavio_timer_mem_writel,
322 .endianness = DEVICE_NATIVE_ENDIAN,
323 .valid = {
324 .min_access_size = 4,
325 .max_access_size = 4,
326 },
327 };
328
329 static const VMStateDescription vmstate_timer = {
330 .name ="timer",
331 .version_id = 3,
332 .minimum_version_id = 3,
333 .fields = (VMStateField[]) {
334 VMSTATE_UINT64(limit, CPUTimerState),
335 VMSTATE_UINT32(count, CPUTimerState),
336 VMSTATE_UINT32(counthigh, CPUTimerState),
337 VMSTATE_UINT32(reached, CPUTimerState),
338 VMSTATE_UINT32(run , CPUTimerState),
339 VMSTATE_PTIMER(timer, CPUTimerState),
340 VMSTATE_END_OF_LIST()
341 }
342 };
343
344 static const VMStateDescription vmstate_slavio_timer = {
345 .name ="slavio_timer",
346 .version_id = 3,
347 .minimum_version_id = 3,
348 .fields = (VMStateField[]) {
349 VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
350 vmstate_timer, CPUTimerState),
351 VMSTATE_END_OF_LIST()
352 }
353 };
354
355 static void slavio_timer_reset(DeviceState *d)
356 {
357 SLAVIO_TIMERState *s = SLAVIO_TIMER(d);
358 unsigned int i;
359 CPUTimerState *curr_timer;
360
361 for (i = 0; i <= MAX_CPUS; i++) {
362 curr_timer = &s->cputimer[i];
363 curr_timer->limit = 0;
364 curr_timer->count = 0;
365 curr_timer->reached = 0;
366 if (i <= s->num_cpus) {
367 ptimer_set_limit(curr_timer->timer,
368 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
369 ptimer_run(curr_timer->timer, 0);
370 curr_timer->run = 1;
371 }
372 }
373 s->cputimer_mode = 0;
374 }
375
376 static void slavio_timer_init(Object *obj)
377 {
378 SLAVIO_TIMERState *s = SLAVIO_TIMER(obj);
379 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
380 QEMUBH *bh;
381 unsigned int i;
382 TimerContext *tc;
383
384 for (i = 0; i <= MAX_CPUS; i++) {
385 uint64_t size;
386 char timer_name[20];
387
388 tc = g_malloc0(sizeof(TimerContext));
389 tc->s = s;
390 tc->timer_index = i;
391
392 bh = qemu_bh_new(slavio_timer_irq, tc);
393 s->cputimer[i].timer = ptimer_init(bh, PTIMER_POLICY_DEFAULT);
394 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
395
396 size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE;
397 snprintf(timer_name, sizeof(timer_name), "timer-%i", i);
398 memory_region_init_io(&tc->iomem, obj, &slavio_timer_mem_ops, tc,
399 timer_name, size);
400 sysbus_init_mmio(dev, &tc->iomem);
401
402 sysbus_init_irq(dev, &s->cputimer[i].irq);
403 }
404 }
405
406 static Property slavio_timer_properties[] = {
407 DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0),
408 DEFINE_PROP_END_OF_LIST(),
409 };
410
411 static void slavio_timer_class_init(ObjectClass *klass, void *data)
412 {
413 DeviceClass *dc = DEVICE_CLASS(klass);
414
415 dc->reset = slavio_timer_reset;
416 dc->vmsd = &vmstate_slavio_timer;
417 dc->props = slavio_timer_properties;
418 }
419
420 static const TypeInfo slavio_timer_info = {
421 .name = TYPE_SLAVIO_TIMER,
422 .parent = TYPE_SYS_BUS_DEVICE,
423 .instance_size = sizeof(SLAVIO_TIMERState),
424 .instance_init = slavio_timer_init,
425 .class_init = slavio_timer_class_init,
426 };
427
428 static void slavio_timer_register_types(void)
429 {
430 type_register_static(&slavio_timer_info);
431 }
432
433 type_init(slavio_timer_register_types)