]> git.proxmox.com Git - mirror_qemu.git/blob - hw/usb/core.c
Merge remote-tracking branch 'kraxel/usb.61' into staging
[mirror_qemu.git] / hw / usb / core.c
1 /*
2 * QEMU USB emulation
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 *
6 * 2008 Generic packet handler rewrite by Max Krasnyansky
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26 #include "qemu-common.h"
27 #include "hw/usb.h"
28 #include "iov.h"
29 #include "trace.h"
30
31 void usb_attach(USBPort *port)
32 {
33 USBDevice *dev = port->dev;
34
35 assert(dev != NULL);
36 assert(dev->attached);
37 assert(dev->state == USB_STATE_NOTATTACHED);
38 port->ops->attach(port);
39 dev->state = USB_STATE_ATTACHED;
40 usb_device_handle_attach(dev);
41 }
42
43 void usb_detach(USBPort *port)
44 {
45 USBDevice *dev = port->dev;
46
47 assert(dev != NULL);
48 assert(dev->state != USB_STATE_NOTATTACHED);
49 port->ops->detach(port);
50 dev->state = USB_STATE_NOTATTACHED;
51 }
52
53 void usb_port_reset(USBPort *port)
54 {
55 USBDevice *dev = port->dev;
56
57 assert(dev != NULL);
58 usb_detach(port);
59 usb_attach(port);
60 usb_device_reset(dev);
61 }
62
63 void usb_device_reset(USBDevice *dev)
64 {
65 if (dev == NULL || !dev->attached) {
66 return;
67 }
68 dev->remote_wakeup = 0;
69 dev->addr = 0;
70 dev->state = USB_STATE_DEFAULT;
71 usb_device_handle_reset(dev);
72 }
73
74 void usb_wakeup(USBEndpoint *ep)
75 {
76 USBDevice *dev = ep->dev;
77 USBBus *bus = usb_bus_from_device(dev);
78
79 if (dev->remote_wakeup && dev->port && dev->port->ops->wakeup) {
80 dev->port->ops->wakeup(dev->port);
81 }
82 if (bus->ops->wakeup_endpoint) {
83 bus->ops->wakeup_endpoint(bus, ep);
84 }
85 }
86
87 /**********************/
88
89 /* generic USB device helpers (you are not forced to use them when
90 writing your USB device driver, but they help handling the
91 protocol)
92 */
93
94 #define SETUP_STATE_IDLE 0
95 #define SETUP_STATE_SETUP 1
96 #define SETUP_STATE_DATA 2
97 #define SETUP_STATE_ACK 3
98 #define SETUP_STATE_PARAM 4
99
100 static int do_token_setup(USBDevice *s, USBPacket *p)
101 {
102 int request, value, index;
103 int ret = 0;
104
105 if (p->iov.size != 8) {
106 return USB_RET_STALL;
107 }
108
109 usb_packet_copy(p, s->setup_buf, p->iov.size);
110 p->result = 0;
111 s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6];
112 s->setup_index = 0;
113
114 request = (s->setup_buf[0] << 8) | s->setup_buf[1];
115 value = (s->setup_buf[3] << 8) | s->setup_buf[2];
116 index = (s->setup_buf[5] << 8) | s->setup_buf[4];
117
118 if (s->setup_buf[0] & USB_DIR_IN) {
119 ret = usb_device_handle_control(s, p, request, value, index,
120 s->setup_len, s->data_buf);
121 if (ret == USB_RET_ASYNC) {
122 s->setup_state = SETUP_STATE_SETUP;
123 return USB_RET_ASYNC;
124 }
125 if (ret < 0)
126 return ret;
127
128 if (ret < s->setup_len)
129 s->setup_len = ret;
130 s->setup_state = SETUP_STATE_DATA;
131 } else {
132 if (s->setup_len > sizeof(s->data_buf)) {
133 fprintf(stderr,
134 "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n",
135 s->setup_len, sizeof(s->data_buf));
136 return USB_RET_STALL;
137 }
138 if (s->setup_len == 0)
139 s->setup_state = SETUP_STATE_ACK;
140 else
141 s->setup_state = SETUP_STATE_DATA;
142 }
143
144 return ret;
145 }
146
147 static int do_token_in(USBDevice *s, USBPacket *p)
148 {
149 int request, value, index;
150 int ret = 0;
151
152 assert(p->ep->nr == 0);
153
154 request = (s->setup_buf[0] << 8) | s->setup_buf[1];
155 value = (s->setup_buf[3] << 8) | s->setup_buf[2];
156 index = (s->setup_buf[5] << 8) | s->setup_buf[4];
157
158 switch(s->setup_state) {
159 case SETUP_STATE_ACK:
160 if (!(s->setup_buf[0] & USB_DIR_IN)) {
161 ret = usb_device_handle_control(s, p, request, value, index,
162 s->setup_len, s->data_buf);
163 if (ret == USB_RET_ASYNC) {
164 return USB_RET_ASYNC;
165 }
166 s->setup_state = SETUP_STATE_IDLE;
167 if (ret > 0)
168 return 0;
169 return ret;
170 }
171
172 /* return 0 byte */
173 return 0;
174
175 case SETUP_STATE_DATA:
176 if (s->setup_buf[0] & USB_DIR_IN) {
177 int len = s->setup_len - s->setup_index;
178 if (len > p->iov.size) {
179 len = p->iov.size;
180 }
181 usb_packet_copy(p, s->data_buf + s->setup_index, len);
182 s->setup_index += len;
183 if (s->setup_index >= s->setup_len)
184 s->setup_state = SETUP_STATE_ACK;
185 return len;
186 }
187
188 s->setup_state = SETUP_STATE_IDLE;
189 return USB_RET_STALL;
190
191 default:
192 return USB_RET_STALL;
193 }
194 }
195
196 static int do_token_out(USBDevice *s, USBPacket *p)
197 {
198 assert(p->ep->nr == 0);
199
200 switch(s->setup_state) {
201 case SETUP_STATE_ACK:
202 if (s->setup_buf[0] & USB_DIR_IN) {
203 s->setup_state = SETUP_STATE_IDLE;
204 /* transfer OK */
205 } else {
206 /* ignore additional output */
207 }
208 return 0;
209
210 case SETUP_STATE_DATA:
211 if (!(s->setup_buf[0] & USB_DIR_IN)) {
212 int len = s->setup_len - s->setup_index;
213 if (len > p->iov.size) {
214 len = p->iov.size;
215 }
216 usb_packet_copy(p, s->data_buf + s->setup_index, len);
217 s->setup_index += len;
218 if (s->setup_index >= s->setup_len)
219 s->setup_state = SETUP_STATE_ACK;
220 return len;
221 }
222
223 s->setup_state = SETUP_STATE_IDLE;
224 return USB_RET_STALL;
225
226 default:
227 return USB_RET_STALL;
228 }
229 }
230
231 static int do_parameter(USBDevice *s, USBPacket *p)
232 {
233 int request, value, index;
234 int i, ret = 0;
235
236 for (i = 0; i < 8; i++) {
237 s->setup_buf[i] = p->parameter >> (i*8);
238 }
239
240 s->setup_state = SETUP_STATE_PARAM;
241 s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6];
242 s->setup_index = 0;
243
244 request = (s->setup_buf[0] << 8) | s->setup_buf[1];
245 value = (s->setup_buf[3] << 8) | s->setup_buf[2];
246 index = (s->setup_buf[5] << 8) | s->setup_buf[4];
247
248 if (s->setup_len > sizeof(s->data_buf)) {
249 fprintf(stderr,
250 "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n",
251 s->setup_len, sizeof(s->data_buf));
252 return USB_RET_STALL;
253 }
254
255 if (p->pid == USB_TOKEN_OUT) {
256 usb_packet_copy(p, s->data_buf, s->setup_len);
257 }
258
259 ret = usb_device_handle_control(s, p, request, value, index,
260 s->setup_len, s->data_buf);
261 if (ret < 0) {
262 return ret;
263 }
264
265 if (ret < s->setup_len) {
266 s->setup_len = ret;
267 }
268 if (p->pid == USB_TOKEN_IN) {
269 usb_packet_copy(p, s->data_buf, s->setup_len);
270 }
271
272 return ret;
273 }
274
275 /* ctrl complete function for devices which use usb_generic_handle_packet and
276 may return USB_RET_ASYNC from their handle_control callback. Device code
277 which does this *must* call this function instead of the normal
278 usb_packet_complete to complete their async control packets. */
279 void usb_generic_async_ctrl_complete(USBDevice *s, USBPacket *p)
280 {
281 if (p->result < 0) {
282 s->setup_state = SETUP_STATE_IDLE;
283 }
284
285 switch (s->setup_state) {
286 case SETUP_STATE_SETUP:
287 if (p->result < s->setup_len) {
288 s->setup_len = p->result;
289 }
290 s->setup_state = SETUP_STATE_DATA;
291 p->result = 8;
292 break;
293
294 case SETUP_STATE_ACK:
295 s->setup_state = SETUP_STATE_IDLE;
296 p->result = 0;
297 break;
298
299 case SETUP_STATE_PARAM:
300 if (p->result < s->setup_len) {
301 s->setup_len = p->result;
302 }
303 if (p->pid == USB_TOKEN_IN) {
304 p->result = 0;
305 usb_packet_copy(p, s->data_buf, s->setup_len);
306 }
307 break;
308
309 default:
310 break;
311 }
312 usb_packet_complete(s, p);
313 }
314
315 /* XXX: fix overflow */
316 int set_usb_string(uint8_t *buf, const char *str)
317 {
318 int len, i;
319 uint8_t *q;
320
321 q = buf;
322 len = strlen(str);
323 *q++ = 2 * len + 2;
324 *q++ = 3;
325 for(i = 0; i < len; i++) {
326 *q++ = str[i];
327 *q++ = 0;
328 }
329 return q - buf;
330 }
331
332 USBDevice *usb_find_device(USBPort *port, uint8_t addr)
333 {
334 USBDevice *dev = port->dev;
335
336 if (dev == NULL || !dev->attached || dev->state != USB_STATE_DEFAULT) {
337 return NULL;
338 }
339 if (dev->addr == addr) {
340 return dev;
341 }
342 return usb_device_find_device(dev, addr);
343 }
344
345 static int usb_process_one(USBPacket *p)
346 {
347 USBDevice *dev = p->ep->dev;
348
349 if (p->ep->nr == 0) {
350 /* control pipe */
351 if (p->parameter) {
352 return do_parameter(dev, p);
353 }
354 switch (p->pid) {
355 case USB_TOKEN_SETUP:
356 return do_token_setup(dev, p);
357 case USB_TOKEN_IN:
358 return do_token_in(dev, p);
359 case USB_TOKEN_OUT:
360 return do_token_out(dev, p);
361 default:
362 return USB_RET_STALL;
363 }
364 } else {
365 /* data pipe */
366 return usb_device_handle_data(dev, p);
367 }
368 }
369
370 /* Hand over a packet to a device for processing. Return value
371 USB_RET_ASYNC indicates the processing isn't finished yet, the
372 driver will call usb_packet_complete() when done processing it. */
373 int usb_handle_packet(USBDevice *dev, USBPacket *p)
374 {
375 int ret;
376
377 if (dev == NULL) {
378 return USB_RET_NODEV;
379 }
380 assert(dev == p->ep->dev);
381 assert(dev->state == USB_STATE_DEFAULT);
382 usb_packet_check_state(p, USB_PACKET_SETUP);
383 assert(p->ep != NULL);
384
385 /* Submitting a new packet clears halt */
386 if (p->ep->halted) {
387 assert(QTAILQ_EMPTY(&p->ep->queue));
388 p->ep->halted = false;
389 }
390
391 if (QTAILQ_EMPTY(&p->ep->queue) || p->ep->pipeline) {
392 ret = usb_process_one(p);
393 if (ret == USB_RET_ASYNC) {
394 usb_packet_set_state(p, USB_PACKET_ASYNC);
395 QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue);
396 } else {
397 /*
398 * When pipelining is enabled usb-devices must always return async,
399 * otherwise packets can complete out of order!
400 */
401 assert(!p->ep->pipeline);
402 p->result = ret;
403 usb_packet_set_state(p, USB_PACKET_COMPLETE);
404 }
405 } else {
406 ret = USB_RET_ASYNC;
407 usb_packet_set_state(p, USB_PACKET_QUEUED);
408 QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue);
409 }
410 return ret;
411 }
412
413 static void __usb_packet_complete(USBDevice *dev, USBPacket *p)
414 {
415 USBEndpoint *ep = p->ep;
416
417 assert(p->result != USB_RET_ASYNC && p->result != USB_RET_NAK);
418
419 if (p->result < 0) {
420 ep->halted = true;
421 }
422 usb_packet_set_state(p, USB_PACKET_COMPLETE);
423 QTAILQ_REMOVE(&ep->queue, p, queue);
424 dev->port->ops->complete(dev->port, p);
425 }
426
427 /* Notify the controller that an async packet is complete. This should only
428 be called for packets previously deferred by returning USB_RET_ASYNC from
429 handle_packet. */
430 void usb_packet_complete(USBDevice *dev, USBPacket *p)
431 {
432 USBEndpoint *ep = p->ep;
433 int ret;
434
435 usb_packet_check_state(p, USB_PACKET_ASYNC);
436 assert(QTAILQ_FIRST(&ep->queue) == p);
437 __usb_packet_complete(dev, p);
438
439 while (!ep->halted && !QTAILQ_EMPTY(&ep->queue)) {
440 p = QTAILQ_FIRST(&ep->queue);
441 if (p->state == USB_PACKET_ASYNC) {
442 break;
443 }
444 usb_packet_check_state(p, USB_PACKET_QUEUED);
445 ret = usb_process_one(p);
446 if (ret == USB_RET_ASYNC) {
447 usb_packet_set_state(p, USB_PACKET_ASYNC);
448 break;
449 }
450 p->result = ret;
451 __usb_packet_complete(ep->dev, p);
452 }
453 }
454
455 /* Cancel an active packet. The packed must have been deferred by
456 returning USB_RET_ASYNC from handle_packet, and not yet
457 completed. */
458 void usb_cancel_packet(USBPacket * p)
459 {
460 bool callback = (p->state == USB_PACKET_ASYNC);
461 assert(usb_packet_is_inflight(p));
462 usb_packet_set_state(p, USB_PACKET_CANCELED);
463 QTAILQ_REMOVE(&p->ep->queue, p, queue);
464 if (callback) {
465 usb_device_cancel_packet(p->ep->dev, p);
466 }
467 }
468
469
470 void usb_packet_init(USBPacket *p)
471 {
472 qemu_iovec_init(&p->iov, 1);
473 }
474
475 static const char *usb_packet_state_name(USBPacketState state)
476 {
477 static const char *name[] = {
478 [USB_PACKET_UNDEFINED] = "undef",
479 [USB_PACKET_SETUP] = "setup",
480 [USB_PACKET_QUEUED] = "queued",
481 [USB_PACKET_ASYNC] = "async",
482 [USB_PACKET_COMPLETE] = "complete",
483 [USB_PACKET_CANCELED] = "canceled",
484 };
485 if (state < ARRAY_SIZE(name)) {
486 return name[state];
487 }
488 return "INVALID";
489 }
490
491 void usb_packet_check_state(USBPacket *p, USBPacketState expected)
492 {
493 USBDevice *dev;
494 USBBus *bus;
495
496 if (p->state == expected) {
497 return;
498 }
499 dev = p->ep->dev;
500 bus = usb_bus_from_device(dev);
501 trace_usb_packet_state_fault(bus->busnr, dev->port->path, p->ep->nr, p,
502 usb_packet_state_name(p->state),
503 usb_packet_state_name(expected));
504 assert(!"usb packet state check failed");
505 }
506
507 void usb_packet_set_state(USBPacket *p, USBPacketState state)
508 {
509 if (p->ep) {
510 USBDevice *dev = p->ep->dev;
511 USBBus *bus = usb_bus_from_device(dev);
512 trace_usb_packet_state_change(bus->busnr, dev->port->path, p->ep->nr, p,
513 usb_packet_state_name(p->state),
514 usb_packet_state_name(state));
515 } else {
516 trace_usb_packet_state_change(-1, "", -1, p,
517 usb_packet_state_name(p->state),
518 usb_packet_state_name(state));
519 }
520 p->state = state;
521 }
522
523 void usb_packet_setup(USBPacket *p, int pid, USBEndpoint *ep, uint64_t id)
524 {
525 assert(!usb_packet_is_inflight(p));
526 assert(p->iov.iov != NULL);
527 p->id = id;
528 p->pid = pid;
529 p->ep = ep;
530 p->result = 0;
531 p->parameter = 0;
532 qemu_iovec_reset(&p->iov);
533 usb_packet_set_state(p, USB_PACKET_SETUP);
534 }
535
536 void usb_packet_addbuf(USBPacket *p, void *ptr, size_t len)
537 {
538 qemu_iovec_add(&p->iov, ptr, len);
539 }
540
541 void usb_packet_copy(USBPacket *p, void *ptr, size_t bytes)
542 {
543 assert(p->result >= 0);
544 assert(p->result + bytes <= p->iov.size);
545 switch (p->pid) {
546 case USB_TOKEN_SETUP:
547 case USB_TOKEN_OUT:
548 iov_to_buf(p->iov.iov, p->iov.niov, p->result, ptr, bytes);
549 break;
550 case USB_TOKEN_IN:
551 iov_from_buf(p->iov.iov, p->iov.niov, p->result, ptr, bytes);
552 break;
553 default:
554 fprintf(stderr, "%s: invalid pid: %x\n", __func__, p->pid);
555 abort();
556 }
557 p->result += bytes;
558 }
559
560 void usb_packet_skip(USBPacket *p, size_t bytes)
561 {
562 assert(p->result >= 0);
563 assert(p->result + bytes <= p->iov.size);
564 if (p->pid == USB_TOKEN_IN) {
565 iov_memset(p->iov.iov, p->iov.niov, p->result, 0, bytes);
566 }
567 p->result += bytes;
568 }
569
570 void usb_packet_cleanup(USBPacket *p)
571 {
572 assert(!usb_packet_is_inflight(p));
573 qemu_iovec_destroy(&p->iov);
574 }
575
576 void usb_ep_reset(USBDevice *dev)
577 {
578 int ep;
579
580 dev->ep_ctl.nr = 0;
581 dev->ep_ctl.type = USB_ENDPOINT_XFER_CONTROL;
582 dev->ep_ctl.ifnum = 0;
583 dev->ep_ctl.dev = dev;
584 dev->ep_ctl.pipeline = false;
585 for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
586 dev->ep_in[ep].nr = ep + 1;
587 dev->ep_out[ep].nr = ep + 1;
588 dev->ep_in[ep].pid = USB_TOKEN_IN;
589 dev->ep_out[ep].pid = USB_TOKEN_OUT;
590 dev->ep_in[ep].type = USB_ENDPOINT_XFER_INVALID;
591 dev->ep_out[ep].type = USB_ENDPOINT_XFER_INVALID;
592 dev->ep_in[ep].ifnum = USB_INTERFACE_INVALID;
593 dev->ep_out[ep].ifnum = USB_INTERFACE_INVALID;
594 dev->ep_in[ep].dev = dev;
595 dev->ep_out[ep].dev = dev;
596 dev->ep_in[ep].pipeline = false;
597 dev->ep_out[ep].pipeline = false;
598 }
599 }
600
601 void usb_ep_init(USBDevice *dev)
602 {
603 int ep;
604
605 usb_ep_reset(dev);
606 QTAILQ_INIT(&dev->ep_ctl.queue);
607 for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
608 QTAILQ_INIT(&dev->ep_in[ep].queue);
609 QTAILQ_INIT(&dev->ep_out[ep].queue);
610 }
611 }
612
613 void usb_ep_dump(USBDevice *dev)
614 {
615 static const char *tname[] = {
616 [USB_ENDPOINT_XFER_CONTROL] = "control",
617 [USB_ENDPOINT_XFER_ISOC] = "isoc",
618 [USB_ENDPOINT_XFER_BULK] = "bulk",
619 [USB_ENDPOINT_XFER_INT] = "int",
620 };
621 int ifnum, ep, first;
622
623 fprintf(stderr, "Device \"%s\", config %d\n",
624 dev->product_desc, dev->configuration);
625 for (ifnum = 0; ifnum < 16; ifnum++) {
626 first = 1;
627 for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
628 if (dev->ep_in[ep].type != USB_ENDPOINT_XFER_INVALID &&
629 dev->ep_in[ep].ifnum == ifnum) {
630 if (first) {
631 first = 0;
632 fprintf(stderr, " Interface %d, alternative %d\n",
633 ifnum, dev->altsetting[ifnum]);
634 }
635 fprintf(stderr, " Endpoint %d, IN, %s, %d max\n", ep,
636 tname[dev->ep_in[ep].type],
637 dev->ep_in[ep].max_packet_size);
638 }
639 if (dev->ep_out[ep].type != USB_ENDPOINT_XFER_INVALID &&
640 dev->ep_out[ep].ifnum == ifnum) {
641 if (first) {
642 first = 0;
643 fprintf(stderr, " Interface %d, alternative %d\n",
644 ifnum, dev->altsetting[ifnum]);
645 }
646 fprintf(stderr, " Endpoint %d, OUT, %s, %d max\n", ep,
647 tname[dev->ep_out[ep].type],
648 dev->ep_out[ep].max_packet_size);
649 }
650 }
651 }
652 fprintf(stderr, "--\n");
653 }
654
655 struct USBEndpoint *usb_ep_get(USBDevice *dev, int pid, int ep)
656 {
657 struct USBEndpoint *eps;
658
659 if (dev == NULL) {
660 return NULL;
661 }
662 eps = (pid == USB_TOKEN_IN) ? dev->ep_in : dev->ep_out;
663 if (ep == 0) {
664 return &dev->ep_ctl;
665 }
666 assert(pid == USB_TOKEN_IN || pid == USB_TOKEN_OUT);
667 assert(ep > 0 && ep <= USB_MAX_ENDPOINTS);
668 return eps + ep - 1;
669 }
670
671 uint8_t usb_ep_get_type(USBDevice *dev, int pid, int ep)
672 {
673 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
674 return uep->type;
675 }
676
677 void usb_ep_set_type(USBDevice *dev, int pid, int ep, uint8_t type)
678 {
679 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
680 uep->type = type;
681 }
682
683 uint8_t usb_ep_get_ifnum(USBDevice *dev, int pid, int ep)
684 {
685 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
686 return uep->ifnum;
687 }
688
689 void usb_ep_set_ifnum(USBDevice *dev, int pid, int ep, uint8_t ifnum)
690 {
691 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
692 uep->ifnum = ifnum;
693 }
694
695 void usb_ep_set_max_packet_size(USBDevice *dev, int pid, int ep,
696 uint16_t raw)
697 {
698 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
699 int size, microframes;
700
701 size = raw & 0x7ff;
702 switch ((raw >> 11) & 3) {
703 case 1:
704 microframes = 2;
705 break;
706 case 2:
707 microframes = 3;
708 break;
709 default:
710 microframes = 1;
711 break;
712 }
713 uep->max_packet_size = size * microframes;
714 }
715
716 int usb_ep_get_max_packet_size(USBDevice *dev, int pid, int ep)
717 {
718 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
719 return uep->max_packet_size;
720 }
721
722 void usb_ep_set_pipeline(USBDevice *dev, int pid, int ep, bool enabled)
723 {
724 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
725 uep->pipeline = enabled;
726 }