]> git.proxmox.com Git - mirror_qemu.git/blob - hw/usb/hcd-musb.c
0bb5c7b19e88656fb1c1e7e7560e45d0f3a06929
[mirror_qemu.git] / hw / usb / hcd-musb.c
1 /*
2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * Only host-mode and non-DMA accesses are currently supported.
22 */
23 #include "qemu-common.h"
24 #include "qemu-timer.h"
25 #include "hw/usb.h"
26 #include "hw/irq.h"
27 #include "hw/hw.h"
28
29 /* Common USB registers */
30 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
31 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
32
33 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
34 #define MUSB_HDRC_INTRRX 0x04
35 #define MUSB_HDRC_INTRTXE 0x06
36 #define MUSB_HDRC_INTRRXE 0x08
37 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
38 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
39 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
40 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
41 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
42
43 /* Per-EP registers in indexed mode */
44 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
45
46 /* EP FIFOs */
47 #define MUSB_HDRC_FIFO 0x20
48
49 /* Additional Control Registers */
50 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
51
52 /* These are indexed */
53 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
54 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
55 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
56 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
57
58 /* Some more registers */
59 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
60 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
61
62 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
63 /* ULPI pass-through */
64 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
65 #define MUSB_HDRC_ULPI_REGDATA 0x74
66 #define MUSB_HDRC_ULPI_REGADDR 0x75
67 #define MUSB_HDRC_ULPI_REGCTL 0x76
68
69 /* Extended config & PHY control */
70 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
71 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
72 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
73 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
74 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
75 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
76 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
77
78 /* Per-EP BUSCTL registers */
79 #define MUSB_HDRC_BUSCTL 0x80
80
81 /* Per-EP registers in flat mode */
82 #define MUSB_HDRC_EP 0x100
83
84 /* offsets to registers in flat model */
85 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
86 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
87 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
88 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
89 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
91 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
92 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
93 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
94 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
95 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
96 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
97 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
98 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
99 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
100
101 /* "Bus control" registers */
102 #define MUSB_HDRC_TXFUNCADDR 0x00
103 #define MUSB_HDRC_TXHUBADDR 0x02
104 #define MUSB_HDRC_TXHUBPORT 0x03
105
106 #define MUSB_HDRC_RXFUNCADDR 0x04
107 #define MUSB_HDRC_RXHUBADDR 0x06
108 #define MUSB_HDRC_RXHUBPORT 0x07
109
110 /*
111 * MUSBHDRC Register bit masks
112 */
113
114 /* POWER */
115 #define MGC_M_POWER_ISOUPDATE 0x80
116 #define MGC_M_POWER_SOFTCONN 0x40
117 #define MGC_M_POWER_HSENAB 0x20
118 #define MGC_M_POWER_HSMODE 0x10
119 #define MGC_M_POWER_RESET 0x08
120 #define MGC_M_POWER_RESUME 0x04
121 #define MGC_M_POWER_SUSPENDM 0x02
122 #define MGC_M_POWER_ENSUSPEND 0x01
123
124 /* INTRUSB */
125 #define MGC_M_INTR_SUSPEND 0x01
126 #define MGC_M_INTR_RESUME 0x02
127 #define MGC_M_INTR_RESET 0x04
128 #define MGC_M_INTR_BABBLE 0x04
129 #define MGC_M_INTR_SOF 0x08
130 #define MGC_M_INTR_CONNECT 0x10
131 #define MGC_M_INTR_DISCONNECT 0x20
132 #define MGC_M_INTR_SESSREQ 0x40
133 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
134 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
135
136 /* DEVCTL */
137 #define MGC_M_DEVCTL_BDEVICE 0x80
138 #define MGC_M_DEVCTL_FSDEV 0x40
139 #define MGC_M_DEVCTL_LSDEV 0x20
140 #define MGC_M_DEVCTL_VBUS 0x18
141 #define MGC_S_DEVCTL_VBUS 3
142 #define MGC_M_DEVCTL_HM 0x04
143 #define MGC_M_DEVCTL_HR 0x02
144 #define MGC_M_DEVCTL_SESSION 0x01
145
146 /* TESTMODE */
147 #define MGC_M_TEST_FORCE_HOST 0x80
148 #define MGC_M_TEST_FIFO_ACCESS 0x40
149 #define MGC_M_TEST_FORCE_FS 0x20
150 #define MGC_M_TEST_FORCE_HS 0x10
151 #define MGC_M_TEST_PACKET 0x08
152 #define MGC_M_TEST_K 0x04
153 #define MGC_M_TEST_J 0x02
154 #define MGC_M_TEST_SE0_NAK 0x01
155
156 /* CSR0 */
157 #define MGC_M_CSR0_FLUSHFIFO 0x0100
158 #define MGC_M_CSR0_TXPKTRDY 0x0002
159 #define MGC_M_CSR0_RXPKTRDY 0x0001
160
161 /* CSR0 in Peripheral mode */
162 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
163 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
164 #define MGC_M_CSR0_P_SENDSTALL 0x0020
165 #define MGC_M_CSR0_P_SETUPEND 0x0010
166 #define MGC_M_CSR0_P_DATAEND 0x0008
167 #define MGC_M_CSR0_P_SENTSTALL 0x0004
168
169 /* CSR0 in Host mode */
170 #define MGC_M_CSR0_H_NO_PING 0x0800
171 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
172 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
173 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
174 #define MGC_M_CSR0_H_STATUSPKT 0x0040
175 #define MGC_M_CSR0_H_REQPKT 0x0020
176 #define MGC_M_CSR0_H_ERROR 0x0010
177 #define MGC_M_CSR0_H_SETUPPKT 0x0008
178 #define MGC_M_CSR0_H_RXSTALL 0x0004
179
180 /* CONFIGDATA */
181 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
182 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
183 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
184 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
185 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
186 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
187 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
188 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
189
190 /* TXCSR in Peripheral and Host mode */
191 #define MGC_M_TXCSR_AUTOSET 0x8000
192 #define MGC_M_TXCSR_ISO 0x4000
193 #define MGC_M_TXCSR_MODE 0x2000
194 #define MGC_M_TXCSR_DMAENAB 0x1000
195 #define MGC_M_TXCSR_FRCDATATOG 0x0800
196 #define MGC_M_TXCSR_DMAMODE 0x0400
197 #define MGC_M_TXCSR_CLRDATATOG 0x0040
198 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
199 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
200 #define MGC_M_TXCSR_TXPKTRDY 0x0001
201
202 /* TXCSR in Peripheral mode */
203 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
204 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
205 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
206 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
207
208 /* TXCSR in Host mode */
209 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
210 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
211 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
212 #define MGC_M_TXCSR_H_RXSTALL 0x0020
213 #define MGC_M_TXCSR_H_ERROR 0x0004
214
215 /* RXCSR in Peripheral and Host mode */
216 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
217 #define MGC_M_RXCSR_DMAENAB 0x2000
218 #define MGC_M_RXCSR_DISNYET 0x1000
219 #define MGC_M_RXCSR_DMAMODE 0x0800
220 #define MGC_M_RXCSR_INCOMPRX 0x0100
221 #define MGC_M_RXCSR_CLRDATATOG 0x0080
222 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
223 #define MGC_M_RXCSR_DATAERROR 0x0008
224 #define MGC_M_RXCSR_FIFOFULL 0x0002
225 #define MGC_M_RXCSR_RXPKTRDY 0x0001
226
227 /* RXCSR in Peripheral mode */
228 #define MGC_M_RXCSR_P_ISO 0x4000
229 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
230 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
231 #define MGC_M_RXCSR_P_OVERRUN 0x0004
232
233 /* RXCSR in Host mode */
234 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
235 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
236 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
237 #define MGC_M_RXCSR_H_RXSTALL 0x0040
238 #define MGC_M_RXCSR_H_REQPKT 0x0020
239 #define MGC_M_RXCSR_H_ERROR 0x0004
240
241 /* HUBADDR */
242 #define MGC_M_HUBADDR_MULTI_TT 0x80
243
244 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
245 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
247 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
248 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
249 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
250 #define MGC_M_ULPI_REGCTL_REG 0x01
251
252 /* #define MUSB_DEBUG */
253
254 #ifdef MUSB_DEBUG
255 #define TRACE(fmt,...) fprintf(stderr, "%s@%d: " fmt "\n", __FUNCTION__, \
256 __LINE__, ##__VA_ARGS__)
257 #else
258 #define TRACE(...)
259 #endif
260
261
262 static void musb_attach(USBPort *port);
263 static void musb_detach(USBPort *port);
264 static void musb_child_detach(USBPort *port, USBDevice *child);
265 static void musb_schedule_cb(USBPort *port, USBPacket *p);
266 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev);
267
268 static USBPortOps musb_port_ops = {
269 .attach = musb_attach,
270 .detach = musb_detach,
271 .child_detach = musb_child_detach,
272 .complete = musb_schedule_cb,
273 };
274
275 static USBBusOps musb_bus_ops = {
276 };
277
278 typedef struct MUSBPacket MUSBPacket;
279 typedef struct MUSBEndPoint MUSBEndPoint;
280
281 struct MUSBPacket {
282 USBPacket p;
283 MUSBEndPoint *ep;
284 int dir;
285 };
286
287 struct MUSBEndPoint {
288 uint16_t faddr[2];
289 uint8_t haddr[2];
290 uint8_t hport[2];
291 uint16_t csr[2];
292 uint16_t maxp[2];
293 uint16_t rxcount;
294 uint8_t type[2];
295 uint8_t interval[2];
296 uint8_t config;
297 uint8_t fifosize;
298 int timeout[2]; /* Always in microframes */
299
300 uint8_t *buf[2];
301 int fifolen[2];
302 int fifostart[2];
303 int fifoaddr[2];
304 MUSBPacket packey[2];
305 int status[2];
306 int ext_size[2];
307
308 /* For callbacks' use */
309 int epnum;
310 int interrupt[2];
311 MUSBState *musb;
312 USBCallback *delayed_cb[2];
313 QEMUTimer *intv_timer[2];
314 };
315
316 struct MUSBState {
317 qemu_irq irqs[musb_irq_max];
318 USBBus bus;
319 USBPort port;
320
321 int idx;
322 uint8_t devctl;
323 uint8_t power;
324 uint8_t faddr;
325
326 uint8_t intr;
327 uint8_t mask;
328 uint16_t tx_intr;
329 uint16_t tx_mask;
330 uint16_t rx_intr;
331 uint16_t rx_mask;
332
333 int setup_len;
334 int session;
335
336 uint8_t buf[0x8000];
337
338 /* Duplicating the world since 2008!... probably we should have 32
339 * logical, single endpoints instead. */
340 MUSBEndPoint ep[16];
341 };
342
343 void musb_reset(MUSBState *s)
344 {
345 int i;
346
347 s->faddr = 0x00;
348 s->devctl = 0;
349 s->power = MGC_M_POWER_HSENAB;
350 s->tx_intr = 0x0000;
351 s->rx_intr = 0x0000;
352 s->tx_mask = 0xffff;
353 s->rx_mask = 0xffff;
354 s->intr = 0x00;
355 s->mask = 0x06;
356 s->idx = 0;
357
358 s->setup_len = 0;
359 s->session = 0;
360 memset(s->buf, 0, sizeof(s->buf));
361
362 /* TODO: _DW */
363 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
364 for (i = 0; i < 16; i ++) {
365 s->ep[i].fifosize = 64;
366 s->ep[i].maxp[0] = 0x40;
367 s->ep[i].maxp[1] = 0x40;
368 s->ep[i].musb = s;
369 s->ep[i].epnum = i;
370 usb_packet_init(&s->ep[i].packey[0].p);
371 usb_packet_init(&s->ep[i].packey[1].p);
372 }
373 }
374
375 struct MUSBState *musb_init(DeviceState *parent_device, int gpio_base)
376 {
377 MUSBState *s = g_malloc0(sizeof(*s));
378 int i;
379
380 for (i = 0; i < musb_irq_max; i++) {
381 s->irqs[i] = qdev_get_gpio_in(parent_device, gpio_base + i);
382 }
383
384 musb_reset(s);
385
386 usb_bus_new(&s->bus, &musb_bus_ops, parent_device);
387 usb_register_port(&s->bus, &s->port, s, 0, &musb_port_ops,
388 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
389
390 return s;
391 }
392
393 static void musb_vbus_set(MUSBState *s, int level)
394 {
395 if (level)
396 s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
397 else
398 s->devctl &= ~MGC_M_DEVCTL_VBUS;
399
400 qemu_set_irq(s->irqs[musb_set_vbus], level);
401 }
402
403 static void musb_intr_set(MUSBState *s, int line, int level)
404 {
405 if (!level) {
406 s->intr &= ~(1 << line);
407 qemu_irq_lower(s->irqs[line]);
408 } else if (s->mask & (1 << line)) {
409 s->intr |= 1 << line;
410 qemu_irq_raise(s->irqs[line]);
411 }
412 }
413
414 static void musb_tx_intr_set(MUSBState *s, int line, int level)
415 {
416 if (!level) {
417 s->tx_intr &= ~(1 << line);
418 if (!s->tx_intr)
419 qemu_irq_lower(s->irqs[musb_irq_tx]);
420 } else if (s->tx_mask & (1 << line)) {
421 s->tx_intr |= 1 << line;
422 qemu_irq_raise(s->irqs[musb_irq_tx]);
423 }
424 }
425
426 static void musb_rx_intr_set(MUSBState *s, int line, int level)
427 {
428 if (line) {
429 if (!level) {
430 s->rx_intr &= ~(1 << line);
431 if (!s->rx_intr)
432 qemu_irq_lower(s->irqs[musb_irq_rx]);
433 } else if (s->rx_mask & (1 << line)) {
434 s->rx_intr |= 1 << line;
435 qemu_irq_raise(s->irqs[musb_irq_rx]);
436 }
437 } else
438 musb_tx_intr_set(s, line, level);
439 }
440
441 uint32_t musb_core_intr_get(MUSBState *s)
442 {
443 return (s->rx_intr << 15) | s->tx_intr;
444 }
445
446 void musb_core_intr_clear(MUSBState *s, uint32_t mask)
447 {
448 if (s->rx_intr) {
449 s->rx_intr &= mask >> 15;
450 if (!s->rx_intr)
451 qemu_irq_lower(s->irqs[musb_irq_rx]);
452 }
453
454 if (s->tx_intr) {
455 s->tx_intr &= mask & 0xffff;
456 if (!s->tx_intr)
457 qemu_irq_lower(s->irqs[musb_irq_tx]);
458 }
459 }
460
461 void musb_set_size(MUSBState *s, int epnum, int size, int is_tx)
462 {
463 s->ep[epnum].ext_size[!is_tx] = size;
464 s->ep[epnum].fifostart[0] = 0;
465 s->ep[epnum].fifostart[1] = 0;
466 s->ep[epnum].fifolen[0] = 0;
467 s->ep[epnum].fifolen[1] = 0;
468 }
469
470 static void musb_session_update(MUSBState *s, int prev_dev, int prev_sess)
471 {
472 int detect_prev = prev_dev && prev_sess;
473 int detect = !!s->port.dev && s->session;
474
475 if (detect && !detect_prev) {
476 /* Let's skip the ID pin sense and VBUS sense formalities and
477 * and signal a successful SRP directly. This should work at least
478 * for the Linux driver stack. */
479 musb_intr_set(s, musb_irq_connect, 1);
480
481 if (s->port.dev->speed == USB_SPEED_LOW) {
482 s->devctl &= ~MGC_M_DEVCTL_FSDEV;
483 s->devctl |= MGC_M_DEVCTL_LSDEV;
484 } else {
485 s->devctl |= MGC_M_DEVCTL_FSDEV;
486 s->devctl &= ~MGC_M_DEVCTL_LSDEV;
487 }
488
489 /* A-mode? */
490 s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
491
492 /* Host-mode bit? */
493 s->devctl |= MGC_M_DEVCTL_HM;
494 #if 1
495 musb_vbus_set(s, 1);
496 #endif
497 } else if (!detect && detect_prev) {
498 #if 1
499 musb_vbus_set(s, 0);
500 #endif
501 }
502 }
503
504 /* Attach or detach a device on our only port. */
505 static void musb_attach(USBPort *port)
506 {
507 MUSBState *s = (MUSBState *) port->opaque;
508
509 musb_intr_set(s, musb_irq_vbus_request, 1);
510 musb_session_update(s, 0, s->session);
511 }
512
513 static void musb_detach(USBPort *port)
514 {
515 MUSBState *s = (MUSBState *) port->opaque;
516
517 musb_async_cancel_device(s, port->dev);
518
519 musb_intr_set(s, musb_irq_disconnect, 1);
520 musb_session_update(s, 1, s->session);
521 }
522
523 static void musb_child_detach(USBPort *port, USBDevice *child)
524 {
525 MUSBState *s = (MUSBState *) port->opaque;
526
527 musb_async_cancel_device(s, child);
528 }
529
530 static void musb_cb_tick0(void *opaque)
531 {
532 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
533
534 ep->delayed_cb[0](&ep->packey[0].p, opaque);
535 }
536
537 static void musb_cb_tick1(void *opaque)
538 {
539 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
540
541 ep->delayed_cb[1](&ep->packey[1].p, opaque);
542 }
543
544 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
545
546 static void musb_schedule_cb(USBPort *port, USBPacket *packey)
547 {
548 MUSBPacket *p = container_of(packey, MUSBPacket, p);
549 MUSBEndPoint *ep = p->ep;
550 int dir = p->dir;
551 int timeout = 0;
552
553 if (ep->status[dir] == USB_RET_NAK)
554 timeout = ep->timeout[dir];
555 else if (ep->interrupt[dir])
556 timeout = 8;
557 else
558 return musb_cb_tick(ep);
559
560 if (!ep->intv_timer[dir])
561 ep->intv_timer[dir] = qemu_new_timer_ns(vm_clock, musb_cb_tick, ep);
562
563 qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock_ns(vm_clock) +
564 muldiv64(timeout, get_ticks_per_sec(), 8000));
565 }
566
567 static int musb_timeout(int ttype, int speed, int val)
568 {
569 #if 1
570 return val << 3;
571 #endif
572
573 switch (ttype) {
574 case USB_ENDPOINT_XFER_CONTROL:
575 if (val < 2)
576 return 0;
577 else if (speed == USB_SPEED_HIGH)
578 return 1 << (val - 1);
579 else
580 return 8 << (val - 1);
581
582 case USB_ENDPOINT_XFER_INT:
583 if (speed == USB_SPEED_HIGH)
584 if (val < 2)
585 return 0;
586 else
587 return 1 << (val - 1);
588 else
589 return val << 3;
590
591 case USB_ENDPOINT_XFER_BULK:
592 case USB_ENDPOINT_XFER_ISOC:
593 if (val < 2)
594 return 0;
595 else if (speed == USB_SPEED_HIGH)
596 return 1 << (val - 1);
597 else
598 return 8 << (val - 1);
599 /* TODO: what with low-speed Bulk and Isochronous? */
600 }
601
602 hw_error("bad interval\n");
603 }
604
605 static void musb_packet(MUSBState *s, MUSBEndPoint *ep,
606 int epnum, int pid, int len, USBCallback cb, int dir)
607 {
608 USBDevice *dev;
609 USBEndpoint *uep;
610 int ret;
611 int idx = epnum && dir;
612 int ttype;
613
614 /* ep->type[0,1] contains:
615 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
616 * in bits 5:4 the transfer type (BULK / INT)
617 * in bits 3:0 the EP num
618 */
619 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
620
621 ep->timeout[dir] = musb_timeout(ttype,
622 ep->type[idx] >> 6, ep->interval[idx]);
623 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
624 ep->delayed_cb[dir] = cb;
625
626 /* A wild guess on the FADDR semantics... */
627 dev = usb_find_device(&s->port, ep->faddr[idx]);
628 uep = usb_ep_get(dev, pid, ep->type[idx] & 0xf);
629 usb_packet_setup(&ep->packey[dir].p, pid, uep,
630 (dev->addr << 16) | (uep->nr << 8) | pid);
631 usb_packet_addbuf(&ep->packey[dir].p, ep->buf[idx], len);
632 ep->packey[dir].ep = ep;
633 ep->packey[dir].dir = dir;
634
635 ret = usb_handle_packet(dev, &ep->packey[dir].p);
636
637 if (ret == USB_RET_ASYNC) {
638 ep->status[dir] = len;
639 return;
640 }
641
642 ep->status[dir] = ret;
643 musb_schedule_cb(&s->port, &ep->packey[dir].p);
644 }
645
646 static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
647 {
648 /* Unfortunately we can't use packey->devep because that's the remote
649 * endpoint number and may be different than our local. */
650 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
651 int epnum = ep->epnum;
652 MUSBState *s = ep->musb;
653
654 ep->fifostart[0] = 0;
655 ep->fifolen[0] = 0;
656 #ifdef CLEAR_NAK
657 if (ep->status[0] != USB_RET_NAK) {
658 #endif
659 if (epnum)
660 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
661 else
662 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
663 #ifdef CLEAR_NAK
664 }
665 #endif
666
667 /* Clear all of the error bits first */
668 if (epnum)
669 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
670 MGC_M_TXCSR_H_NAKTIMEOUT);
671 else
672 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
673 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
674
675 if (ep->status[0] == USB_RET_STALL) {
676 /* Command not supported by target! */
677 ep->status[0] = 0;
678
679 if (epnum)
680 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
681 else
682 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
683 }
684
685 if (ep->status[0] == USB_RET_NAK) {
686 ep->status[0] = 0;
687
688 /* NAK timeouts are only generated in Bulk transfers and
689 * Data-errors in Isochronous. */
690 if (ep->interrupt[0]) {
691 return;
692 }
693
694 if (epnum)
695 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
696 else
697 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
698 }
699
700 if (ep->status[0] < 0) {
701 if (ep->status[0] == USB_RET_BABBLE)
702 musb_intr_set(s, musb_irq_rst_babble, 1);
703
704 /* Pretend we've tried three times already and failed (in
705 * case of USB_TOKEN_SETUP). */
706 if (epnum)
707 ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
708 else
709 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
710
711 musb_tx_intr_set(s, epnum, 1);
712 return;
713 }
714 /* TODO: check len for over/underruns of an OUT packet? */
715
716 #ifdef SETUPLEN_HACK
717 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
718 s->setup_len = ep->packey[0].data[6];
719 #endif
720
721 /* In DMA mode: if no error, assert DMA request for this EP,
722 * and skip the interrupt. */
723 musb_tx_intr_set(s, epnum, 1);
724 }
725
726 static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
727 {
728 /* Unfortunately we can't use packey->devep because that's the remote
729 * endpoint number and may be different than our local. */
730 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
731 int epnum = ep->epnum;
732 MUSBState *s = ep->musb;
733
734 ep->fifostart[1] = 0;
735 ep->fifolen[1] = 0;
736
737 #ifdef CLEAR_NAK
738 if (ep->status[1] != USB_RET_NAK) {
739 #endif
740 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
741 if (!epnum)
742 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
743 #ifdef CLEAR_NAK
744 }
745 #endif
746
747 /* Clear all of the imaginable error bits first */
748 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
749 MGC_M_RXCSR_DATAERROR);
750 if (!epnum)
751 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
752 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
753
754 if (ep->status[1] == USB_RET_STALL) {
755 ep->status[1] = 0;
756 packey->result = 0;
757
758 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
759 if (!epnum)
760 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
761 }
762
763 if (ep->status[1] == USB_RET_NAK) {
764 ep->status[1] = 0;
765
766 /* NAK timeouts are only generated in Bulk transfers and
767 * Data-errors in Isochronous. */
768 if (ep->interrupt[1])
769 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
770 packey->iov.size, musb_rx_packet_complete, 1);
771
772 ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
773 if (!epnum)
774 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
775 }
776
777 if (ep->status[1] < 0) {
778 if (ep->status[1] == USB_RET_BABBLE) {
779 musb_intr_set(s, musb_irq_rst_babble, 1);
780 return;
781 }
782
783 /* Pretend we've tried three times already and failed (in
784 * case of a control transfer). */
785 ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
786 if (!epnum)
787 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
788
789 musb_rx_intr_set(s, epnum, 1);
790 return;
791 }
792 /* TODO: check len for over/underruns of an OUT packet? */
793 /* TODO: perhaps make use of e->ext_size[1] here. */
794
795 packey->result = ep->status[1];
796
797 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
798 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
799 if (!epnum)
800 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
801
802 ep->rxcount = packey->result; /* XXX: MIN(packey->len, ep->maxp[1]); */
803 /* In DMA mode: assert DMA request for this EP */
804 }
805
806 /* Only if DMA has not been asserted */
807 musb_rx_intr_set(s, epnum, 1);
808 }
809
810 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev)
811 {
812 int ep, dir;
813
814 for (ep = 0; ep < 16; ep++) {
815 for (dir = 0; dir < 2; dir++) {
816 if (!usb_packet_is_inflight(&s->ep[ep].packey[dir].p) ||
817 s->ep[ep].packey[dir].p.ep->dev != dev) {
818 continue;
819 }
820 usb_cancel_packet(&s->ep[ep].packey[dir].p);
821 /* status updates needed here? */
822 }
823 }
824 }
825
826 static void musb_tx_rdy(MUSBState *s, int epnum)
827 {
828 MUSBEndPoint *ep = s->ep + epnum;
829 int pid;
830 int total, valid = 0;
831 TRACE("start %d, len %d", ep->fifostart[0], ep->fifolen[0] );
832 ep->fifostart[0] += ep->fifolen[0];
833 ep->fifolen[0] = 0;
834
835 /* XXX: how's the total size of the packet retrieved exactly in
836 * the generic case? */
837 total = ep->maxp[0] & 0x3ff;
838
839 if (ep->ext_size[0]) {
840 total = ep->ext_size[0];
841 ep->ext_size[0] = 0;
842 valid = 1;
843 }
844
845 /* If the packet is not fully ready yet, wait for a next segment. */
846 if (epnum && (ep->fifostart[0]) < total)
847 return;
848
849 if (!valid)
850 total = ep->fifostart[0];
851
852 pid = USB_TOKEN_OUT;
853 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
854 pid = USB_TOKEN_SETUP;
855 if (total != 8) {
856 TRACE("illegal SETUPPKT length of %i bytes", total);
857 }
858 /* Controller should retry SETUP packets three times on errors
859 * but it doesn't make sense for us to do that. */
860 }
861
862 return musb_packet(s, ep, epnum, pid,
863 total, musb_tx_packet_complete, 0);
864 }
865
866 static void musb_rx_req(MUSBState *s, int epnum)
867 {
868 MUSBEndPoint *ep = s->ep + epnum;
869 int total;
870
871 /* If we already have a packet, which didn't fit into the
872 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
873 if (ep->packey[1].p.pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
874 (ep->fifostart[1]) + ep->rxcount <
875 ep->packey[1].p.iov.size) {
876 TRACE("0x%08x, %d", ep->fifostart[1], ep->rxcount );
877 ep->fifostart[1] += ep->rxcount;
878 ep->fifolen[1] = 0;
879
880 ep->rxcount = MIN(ep->packey[0].p.iov.size - (ep->fifostart[1]),
881 ep->maxp[1]);
882
883 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
884 if (!epnum)
885 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
886
887 /* Clear all of the error bits first */
888 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
889 MGC_M_RXCSR_DATAERROR);
890 if (!epnum)
891 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
892 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
893
894 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
895 if (!epnum)
896 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
897 musb_rx_intr_set(s, epnum, 1);
898 return;
899 }
900
901 /* The driver sets maxp[1] to 64 or less because it knows the hardware
902 * FIFO is this deep. Bigger packets get split in
903 * usb_generic_handle_packet but we can also do the splitting locally
904 * for performance. It turns out we can also have a bigger FIFO and
905 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
906 * OK with single packets of even 32KB and we avoid splitting, however
907 * usb_msd.c sometimes sends a packet bigger than what Linux expects
908 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
909 * hides this overrun from Linux. Up to 4096 everything is fine
910 * though. Currently this is disabled.
911 *
912 * XXX: mind ep->fifosize. */
913 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
914
915 #ifdef SETUPLEN_HACK
916 /* Why should *we* do that instead of Linux? */
917 if (!epnum) {
918 if (ep->packey[0].p.devaddr == 2) {
919 total = MIN(s->setup_len, 8);
920 } else {
921 total = MIN(s->setup_len, 64);
922 }
923 s->setup_len -= total;
924 }
925 #endif
926
927 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
928 total, musb_rx_packet_complete, 1);
929 }
930
931 static uint8_t musb_read_fifo(MUSBEndPoint *ep)
932 {
933 uint8_t value;
934 if (ep->fifolen[1] >= 64) {
935 /* We have a FIFO underrun */
936 TRACE("EP%d FIFO is now empty, stop reading", ep->epnum);
937 return 0x00000000;
938 }
939 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
940 * (if AUTOREQ is set) */
941
942 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
943 value=ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
944 TRACE("EP%d 0x%02x, %d", ep->epnum, value, ep->fifolen[1] );
945 return value;
946 }
947
948 static void musb_write_fifo(MUSBEndPoint *ep, uint8_t value)
949 {
950 TRACE("EP%d = %02x", ep->epnum, value);
951 if (ep->fifolen[0] >= 64) {
952 /* We have a FIFO overrun */
953 TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep->epnum);
954 return;
955 }
956
957 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
958 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
959 }
960
961 static void musb_ep_frame_cancel(MUSBEndPoint *ep, int dir)
962 {
963 if (ep->intv_timer[dir])
964 qemu_del_timer(ep->intv_timer[dir]);
965 }
966
967 /* Bus control */
968 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
969 {
970 MUSBState *s = (MUSBState *) opaque;
971
972 switch (addr) {
973 /* For USB2.0 HS hubs only */
974 case MUSB_HDRC_TXHUBADDR:
975 return s->ep[ep].haddr[0];
976 case MUSB_HDRC_TXHUBPORT:
977 return s->ep[ep].hport[0];
978 case MUSB_HDRC_RXHUBADDR:
979 return s->ep[ep].haddr[1];
980 case MUSB_HDRC_RXHUBPORT:
981 return s->ep[ep].hport[1];
982
983 default:
984 TRACE("unknown register 0x%02x", addr);
985 return 0x00;
986 };
987 }
988
989 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
990 {
991 MUSBState *s = (MUSBState *) opaque;
992
993 switch (addr) {
994 case MUSB_HDRC_TXFUNCADDR:
995 s->ep[ep].faddr[0] = value;
996 break;
997 case MUSB_HDRC_RXFUNCADDR:
998 s->ep[ep].faddr[1] = value;
999 break;
1000 case MUSB_HDRC_TXHUBADDR:
1001 s->ep[ep].haddr[0] = value;
1002 break;
1003 case MUSB_HDRC_TXHUBPORT:
1004 s->ep[ep].hport[0] = value;
1005 break;
1006 case MUSB_HDRC_RXHUBADDR:
1007 s->ep[ep].haddr[1] = value;
1008 break;
1009 case MUSB_HDRC_RXHUBPORT:
1010 s->ep[ep].hport[1] = value;
1011 break;
1012
1013 default:
1014 TRACE("unknown register 0x%02x", addr);
1015 break;
1016 };
1017 }
1018
1019 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
1020 {
1021 MUSBState *s = (MUSBState *) opaque;
1022
1023 switch (addr) {
1024 case MUSB_HDRC_TXFUNCADDR:
1025 return s->ep[ep].faddr[0];
1026 case MUSB_HDRC_RXFUNCADDR:
1027 return s->ep[ep].faddr[1];
1028
1029 default:
1030 return musb_busctl_readb(s, ep, addr) |
1031 (musb_busctl_readb(s, ep, addr | 1) << 8);
1032 };
1033 }
1034
1035 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
1036 {
1037 MUSBState *s = (MUSBState *) opaque;
1038
1039 switch (addr) {
1040 case MUSB_HDRC_TXFUNCADDR:
1041 s->ep[ep].faddr[0] = value;
1042 break;
1043 case MUSB_HDRC_RXFUNCADDR:
1044 s->ep[ep].faddr[1] = value;
1045 break;
1046
1047 default:
1048 musb_busctl_writeb(s, ep, addr, value & 0xff);
1049 musb_busctl_writeb(s, ep, addr | 1, value >> 8);
1050 };
1051 }
1052
1053 /* Endpoint control */
1054 static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
1055 {
1056 MUSBState *s = (MUSBState *) opaque;
1057
1058 switch (addr) {
1059 case MUSB_HDRC_TXTYPE:
1060 return s->ep[ep].type[0];
1061 case MUSB_HDRC_TXINTERVAL:
1062 return s->ep[ep].interval[0];
1063 case MUSB_HDRC_RXTYPE:
1064 return s->ep[ep].type[1];
1065 case MUSB_HDRC_RXINTERVAL:
1066 return s->ep[ep].interval[1];
1067 case (MUSB_HDRC_FIFOSIZE & ~1):
1068 return 0x00;
1069 case MUSB_HDRC_FIFOSIZE:
1070 return ep ? s->ep[ep].fifosize : s->ep[ep].config;
1071 case MUSB_HDRC_RXCOUNT:
1072 return s->ep[ep].rxcount;
1073
1074 default:
1075 TRACE("unknown register 0x%02x", addr);
1076 return 0x00;
1077 };
1078 }
1079
1080 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
1081 {
1082 MUSBState *s = (MUSBState *) opaque;
1083
1084 switch (addr) {
1085 case MUSB_HDRC_TXTYPE:
1086 s->ep[ep].type[0] = value;
1087 break;
1088 case MUSB_HDRC_TXINTERVAL:
1089 s->ep[ep].interval[0] = value;
1090 musb_ep_frame_cancel(&s->ep[ep], 0);
1091 break;
1092 case MUSB_HDRC_RXTYPE:
1093 s->ep[ep].type[1] = value;
1094 break;
1095 case MUSB_HDRC_RXINTERVAL:
1096 s->ep[ep].interval[1] = value;
1097 musb_ep_frame_cancel(&s->ep[ep], 1);
1098 break;
1099 case (MUSB_HDRC_FIFOSIZE & ~1):
1100 break;
1101 case MUSB_HDRC_FIFOSIZE:
1102 TRACE("somebody messes with fifosize (now %i bytes)", value);
1103 s->ep[ep].fifosize = value;
1104 break;
1105 default:
1106 TRACE("unknown register 0x%02x", addr);
1107 break;
1108 };
1109 }
1110
1111 static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
1112 {
1113 MUSBState *s = (MUSBState *) opaque;
1114 uint16_t ret;
1115
1116 switch (addr) {
1117 case MUSB_HDRC_TXMAXP:
1118 return s->ep[ep].maxp[0];
1119 case MUSB_HDRC_TXCSR:
1120 return s->ep[ep].csr[0];
1121 case MUSB_HDRC_RXMAXP:
1122 return s->ep[ep].maxp[1];
1123 case MUSB_HDRC_RXCSR:
1124 ret = s->ep[ep].csr[1];
1125
1126 /* TODO: This and other bits probably depend on
1127 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1128 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
1129 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
1130
1131 return ret;
1132 case MUSB_HDRC_RXCOUNT:
1133 return s->ep[ep].rxcount;
1134
1135 default:
1136 return musb_ep_readb(s, ep, addr) |
1137 (musb_ep_readb(s, ep, addr | 1) << 8);
1138 };
1139 }
1140
1141 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
1142 {
1143 MUSBState *s = (MUSBState *) opaque;
1144
1145 switch (addr) {
1146 case MUSB_HDRC_TXMAXP:
1147 s->ep[ep].maxp[0] = value;
1148 break;
1149 case MUSB_HDRC_TXCSR:
1150 if (ep) {
1151 s->ep[ep].csr[0] &= value & 0xa6;
1152 s->ep[ep].csr[0] |= value & 0xff59;
1153 } else {
1154 s->ep[ep].csr[0] &= value & 0x85;
1155 s->ep[ep].csr[0] |= value & 0xf7a;
1156 }
1157
1158 musb_ep_frame_cancel(&s->ep[ep], 0);
1159
1160 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
1161 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
1162 s->ep[ep].fifolen[0] = 0;
1163 s->ep[ep].fifostart[0] = 0;
1164 if (ep)
1165 s->ep[ep].csr[0] &=
1166 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
1167 else
1168 s->ep[ep].csr[0] &=
1169 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
1170 }
1171 if (
1172 (ep &&
1173 #ifdef CLEAR_NAK
1174 (value & MGC_M_TXCSR_TXPKTRDY) &&
1175 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
1176 #else
1177 (value & MGC_M_TXCSR_TXPKTRDY)) ||
1178 #endif
1179 (!ep &&
1180 #ifdef CLEAR_NAK
1181 (value & MGC_M_CSR0_TXPKTRDY) &&
1182 !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
1183 #else
1184 (value & MGC_M_CSR0_TXPKTRDY)))
1185 #endif
1186 musb_tx_rdy(s, ep);
1187 if (!ep &&
1188 (value & MGC_M_CSR0_H_REQPKT) &&
1189 #ifdef CLEAR_NAK
1190 !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
1191 MGC_M_CSR0_RXPKTRDY)))
1192 #else
1193 !(value & MGC_M_CSR0_RXPKTRDY))
1194 #endif
1195 musb_rx_req(s, ep);
1196 break;
1197
1198 case MUSB_HDRC_RXMAXP:
1199 s->ep[ep].maxp[1] = value;
1200 break;
1201 case MUSB_HDRC_RXCSR:
1202 /* (DMA mode only) */
1203 if (
1204 (value & MGC_M_RXCSR_H_AUTOREQ) &&
1205 !(value & MGC_M_RXCSR_RXPKTRDY) &&
1206 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
1207 value |= MGC_M_RXCSR_H_REQPKT;
1208
1209 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
1210 s->ep[ep].csr[1] |= value & 0xfeb0;
1211
1212 musb_ep_frame_cancel(&s->ep[ep], 1);
1213
1214 if (value & MGC_M_RXCSR_FLUSHFIFO) {
1215 s->ep[ep].fifolen[1] = 0;
1216 s->ep[ep].fifostart[1] = 0;
1217 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
1218 /* If double buffering and we have two packets ready, flush
1219 * only the first one and set up the fifo at the second packet. */
1220 }
1221 #ifdef CLEAR_NAK
1222 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
1223 #else
1224 if (value & MGC_M_RXCSR_H_REQPKT)
1225 #endif
1226 musb_rx_req(s, ep);
1227 break;
1228 case MUSB_HDRC_RXCOUNT:
1229 s->ep[ep].rxcount = value;
1230 break;
1231
1232 default:
1233 musb_ep_writeb(s, ep, addr, value & 0xff);
1234 musb_ep_writeb(s, ep, addr | 1, value >> 8);
1235 };
1236 }
1237
1238 /* Generic control */
1239 static uint32_t musb_readb(void *opaque, target_phys_addr_t addr)
1240 {
1241 MUSBState *s = (MUSBState *) opaque;
1242 int ep, i;
1243 uint8_t ret;
1244
1245 switch (addr) {
1246 case MUSB_HDRC_FADDR:
1247 return s->faddr;
1248 case MUSB_HDRC_POWER:
1249 return s->power;
1250 case MUSB_HDRC_INTRUSB:
1251 ret = s->intr;
1252 for (i = 0; i < sizeof(ret) * 8; i ++)
1253 if (ret & (1 << i))
1254 musb_intr_set(s, i, 0);
1255 return ret;
1256 case MUSB_HDRC_INTRUSBE:
1257 return s->mask;
1258 case MUSB_HDRC_INDEX:
1259 return s->idx;
1260 case MUSB_HDRC_TESTMODE:
1261 return 0x00;
1262
1263 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1264 return musb_ep_readb(s, s->idx, addr & 0xf);
1265
1266 case MUSB_HDRC_DEVCTL:
1267 return s->devctl;
1268
1269 case MUSB_HDRC_TXFIFOSZ:
1270 case MUSB_HDRC_RXFIFOSZ:
1271 case MUSB_HDRC_VCTRL:
1272 /* TODO */
1273 return 0x00;
1274
1275 case MUSB_HDRC_HWVERS:
1276 return (1 << 10) | 400;
1277
1278 case (MUSB_HDRC_VCTRL | 1):
1279 case (MUSB_HDRC_HWVERS | 1):
1280 case (MUSB_HDRC_DEVCTL | 1):
1281 return 0x00;
1282
1283 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1284 ep = (addr >> 3) & 0xf;
1285 return musb_busctl_readb(s, ep, addr & 0x7);
1286
1287 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1288 ep = (addr >> 4) & 0xf;
1289 return musb_ep_readb(s, ep, addr & 0xf);
1290
1291 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1292 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1293 return musb_read_fifo(s->ep + ep);
1294
1295 default:
1296 TRACE("unknown register 0x%02x", (int) addr);
1297 return 0x00;
1298 };
1299 }
1300
1301 static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value)
1302 {
1303 MUSBState *s = (MUSBState *) opaque;
1304 int ep;
1305
1306 switch (addr) {
1307 case MUSB_HDRC_FADDR:
1308 s->faddr = value & 0x7f;
1309 break;
1310 case MUSB_HDRC_POWER:
1311 s->power = (value & 0xef) | (s->power & 0x10);
1312 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1313 if ((value & MGC_M_POWER_RESET) && s->port.dev) {
1314 usb_device_reset(s->port.dev);
1315 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1316 if ((value & MGC_M_POWER_HSENAB) &&
1317 s->port.dev->speed == USB_SPEED_HIGH)
1318 s->power |= MGC_M_POWER_HSMODE; /* Success */
1319 /* Restart frame counting. */
1320 }
1321 if (value & MGC_M_POWER_SUSPENDM) {
1322 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1323 * is set, also go into low power mode. Frame counting stops. */
1324 /* XXX: Cleared when the interrupt register is read */
1325 }
1326 if (value & MGC_M_POWER_RESUME) {
1327 /* Wait 20ms and signal resuming on the bus. Frame counting
1328 * restarts. */
1329 }
1330 break;
1331 case MUSB_HDRC_INTRUSB:
1332 break;
1333 case MUSB_HDRC_INTRUSBE:
1334 s->mask = value & 0xff;
1335 break;
1336 case MUSB_HDRC_INDEX:
1337 s->idx = value & 0xf;
1338 break;
1339 case MUSB_HDRC_TESTMODE:
1340 break;
1341
1342 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1343 musb_ep_writeb(s, s->idx, addr & 0xf, value);
1344 break;
1345
1346 case MUSB_HDRC_DEVCTL:
1347 s->session = !!(value & MGC_M_DEVCTL_SESSION);
1348 musb_session_update(s,
1349 !!s->port.dev,
1350 !!(s->devctl & MGC_M_DEVCTL_SESSION));
1351
1352 /* It seems this is the only R/W bit in this register? */
1353 s->devctl &= ~MGC_M_DEVCTL_SESSION;
1354 s->devctl |= value & MGC_M_DEVCTL_SESSION;
1355 break;
1356
1357 case MUSB_HDRC_TXFIFOSZ:
1358 case MUSB_HDRC_RXFIFOSZ:
1359 case MUSB_HDRC_VCTRL:
1360 /* TODO */
1361 break;
1362
1363 case (MUSB_HDRC_VCTRL | 1):
1364 case (MUSB_HDRC_DEVCTL | 1):
1365 break;
1366
1367 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1368 ep = (addr >> 3) & 0xf;
1369 musb_busctl_writeb(s, ep, addr & 0x7, value);
1370 break;
1371
1372 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1373 ep = (addr >> 4) & 0xf;
1374 musb_ep_writeb(s, ep, addr & 0xf, value);
1375 break;
1376
1377 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1378 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1379 musb_write_fifo(s->ep + ep, value & 0xff);
1380 break;
1381
1382 default:
1383 TRACE("unknown register 0x%02x", (int) addr);
1384 break;
1385 };
1386 }
1387
1388 static uint32_t musb_readh(void *opaque, target_phys_addr_t addr)
1389 {
1390 MUSBState *s = (MUSBState *) opaque;
1391 int ep, i;
1392 uint16_t ret;
1393
1394 switch (addr) {
1395 case MUSB_HDRC_INTRTX:
1396 ret = s->tx_intr;
1397 /* Auto clear */
1398 for (i = 0; i < sizeof(ret) * 8; i ++)
1399 if (ret & (1 << i))
1400 musb_tx_intr_set(s, i, 0);
1401 return ret;
1402 case MUSB_HDRC_INTRRX:
1403 ret = s->rx_intr;
1404 /* Auto clear */
1405 for (i = 0; i < sizeof(ret) * 8; i ++)
1406 if (ret & (1 << i))
1407 musb_rx_intr_set(s, i, 0);
1408 return ret;
1409 case MUSB_HDRC_INTRTXE:
1410 return s->tx_mask;
1411 case MUSB_HDRC_INTRRXE:
1412 return s->rx_mask;
1413
1414 case MUSB_HDRC_FRAME:
1415 /* TODO */
1416 return 0x0000;
1417 case MUSB_HDRC_TXFIFOADDR:
1418 return s->ep[s->idx].fifoaddr[0];
1419 case MUSB_HDRC_RXFIFOADDR:
1420 return s->ep[s->idx].fifoaddr[1];
1421
1422 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1423 return musb_ep_readh(s, s->idx, addr & 0xf);
1424
1425 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1426 ep = (addr >> 3) & 0xf;
1427 return musb_busctl_readh(s, ep, addr & 0x7);
1428
1429 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1430 ep = (addr >> 4) & 0xf;
1431 return musb_ep_readh(s, ep, addr & 0xf);
1432
1433 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1434 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1435 return (musb_read_fifo(s->ep + ep) | musb_read_fifo(s->ep + ep) << 8);
1436
1437 default:
1438 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
1439 };
1440 }
1441
1442 static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value)
1443 {
1444 MUSBState *s = (MUSBState *) opaque;
1445 int ep;
1446
1447 switch (addr) {
1448 case MUSB_HDRC_INTRTXE:
1449 s->tx_mask = value;
1450 /* XXX: the masks seem to apply on the raising edge like with
1451 * edge-triggered interrupts, thus no need to update. I may be
1452 * wrong though. */
1453 break;
1454 case MUSB_HDRC_INTRRXE:
1455 s->rx_mask = value;
1456 break;
1457
1458 case MUSB_HDRC_FRAME:
1459 /* TODO */
1460 break;
1461 case MUSB_HDRC_TXFIFOADDR:
1462 s->ep[s->idx].fifoaddr[0] = value;
1463 s->ep[s->idx].buf[0] =
1464 s->buf + ((value << 3) & 0x7ff );
1465 break;
1466 case MUSB_HDRC_RXFIFOADDR:
1467 s->ep[s->idx].fifoaddr[1] = value;
1468 s->ep[s->idx].buf[1] =
1469 s->buf + ((value << 3) & 0x7ff);
1470 break;
1471
1472 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1473 musb_ep_writeh(s, s->idx, addr & 0xf, value);
1474 break;
1475
1476 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1477 ep = (addr >> 3) & 0xf;
1478 musb_busctl_writeh(s, ep, addr & 0x7, value);
1479 break;
1480
1481 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1482 ep = (addr >> 4) & 0xf;
1483 musb_ep_writeh(s, ep, addr & 0xf, value);
1484 break;
1485
1486 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1487 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1488 musb_write_fifo(s->ep + ep, value & 0xff);
1489 musb_write_fifo(s->ep + ep, (value >> 8) & 0xff);
1490 break;
1491
1492 default:
1493 musb_writeb(s, addr, value & 0xff);
1494 musb_writeb(s, addr | 1, value >> 8);
1495 };
1496 }
1497
1498 static uint32_t musb_readw(void *opaque, target_phys_addr_t addr)
1499 {
1500 MUSBState *s = (MUSBState *) opaque;
1501 int ep;
1502
1503 switch (addr) {
1504 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1505 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1506 return ( musb_read_fifo(s->ep + ep) |
1507 musb_read_fifo(s->ep + ep) << 8 |
1508 musb_read_fifo(s->ep + ep) << 16 |
1509 musb_read_fifo(s->ep + ep) << 24 );
1510 default:
1511 TRACE("unknown register 0x%02x", (int) addr);
1512 return 0x00000000;
1513 };
1514 }
1515
1516 static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value)
1517 {
1518 MUSBState *s = (MUSBState *) opaque;
1519 int ep;
1520
1521 switch (addr) {
1522 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1523 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1524 musb_write_fifo(s->ep + ep, value & 0xff);
1525 musb_write_fifo(s->ep + ep, (value >> 8 ) & 0xff);
1526 musb_write_fifo(s->ep + ep, (value >> 16) & 0xff);
1527 musb_write_fifo(s->ep + ep, (value >> 24) & 0xff);
1528 break;
1529 default:
1530 TRACE("unknown register 0x%02x", (int) addr);
1531 break;
1532 };
1533 }
1534
1535 CPUReadMemoryFunc * const musb_read[] = {
1536 musb_readb,
1537 musb_readh,
1538 musb_readw,
1539 };
1540
1541 CPUWriteMemoryFunc * const musb_write[] = {
1542 musb_writeb,
1543 musb_writeh,
1544 musb_writew,
1545 };