]> git.proxmox.com Git - mirror_qemu.git/blob - hw/usb/hcd-xhci.c
usb-xhci: fix bit test
[mirror_qemu.git] / hw / usb / hcd-xhci.c
1 /*
2 * USB xHCI controller emulation
3 *
4 * Copyright (c) 2011 Securiforest
5 * Date: 2011-05-11 ; Author: Hector Martin <hector@marcansoft.com>
6 * Based on usb-ohci.c, emulates Renesas NEC USB 3.0
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21 #include "hw/hw.h"
22 #include "qemu-timer.h"
23 #include "hw/usb.h"
24 #include "hw/pci.h"
25 #include "hw/msi.h"
26
27 //#define DEBUG_XHCI
28 //#define DEBUG_DATA
29
30 #ifdef DEBUG_XHCI
31 #define DPRINTF(...) fprintf(stderr, __VA_ARGS__)
32 #else
33 #define DPRINTF(...) do {} while (0)
34 #endif
35 #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \
36 __func__, __LINE__); abort(); } while (0)
37
38 #define MAXSLOTS 8
39 #define MAXINTRS 1
40
41 #define USB2_PORTS 4
42 #define USB3_PORTS 4
43
44 #define MAXPORTS (USB2_PORTS+USB3_PORTS)
45
46 #define TD_QUEUE 24
47 #define BG_XFERS 8
48 #define BG_PKTS 8
49
50 /* Very pessimistic, let's hope it's enough for all cases */
51 #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS)
52 /* Do not deliver ER Full events. NEC's driver does some things not bound
53 * to the specs when it gets them */
54 #define ER_FULL_HACK
55
56 #define LEN_CAP 0x40
57 #define OFF_OPER LEN_CAP
58 #define LEN_OPER (0x400 + 0x10 * MAXPORTS)
59 #define OFF_RUNTIME ((OFF_OPER + LEN_OPER + 0x20) & ~0x1f)
60 #define LEN_RUNTIME (0x20 + MAXINTRS * 0x20)
61 #define OFF_DOORBELL (OFF_RUNTIME + LEN_RUNTIME)
62 #define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20)
63
64 /* must be power of 2 */
65 #define LEN_REGS 0x2000
66
67 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS
68 # error Increase LEN_REGS
69 #endif
70
71 #if MAXINTRS > 1
72 # error TODO: only one interrupter supported
73 #endif
74
75 /* bit definitions */
76 #define USBCMD_RS (1<<0)
77 #define USBCMD_HCRST (1<<1)
78 #define USBCMD_INTE (1<<2)
79 #define USBCMD_HSEE (1<<3)
80 #define USBCMD_LHCRST (1<<7)
81 #define USBCMD_CSS (1<<8)
82 #define USBCMD_CRS (1<<9)
83 #define USBCMD_EWE (1<<10)
84 #define USBCMD_EU3S (1<<11)
85
86 #define USBSTS_HCH (1<<0)
87 #define USBSTS_HSE (1<<2)
88 #define USBSTS_EINT (1<<3)
89 #define USBSTS_PCD (1<<4)
90 #define USBSTS_SSS (1<<8)
91 #define USBSTS_RSS (1<<9)
92 #define USBSTS_SRE (1<<10)
93 #define USBSTS_CNR (1<<11)
94 #define USBSTS_HCE (1<<12)
95
96
97 #define PORTSC_CCS (1<<0)
98 #define PORTSC_PED (1<<1)
99 #define PORTSC_OCA (1<<3)
100 #define PORTSC_PR (1<<4)
101 #define PORTSC_PLS_SHIFT 5
102 #define PORTSC_PLS_MASK 0xf
103 #define PORTSC_PP (1<<9)
104 #define PORTSC_SPEED_SHIFT 10
105 #define PORTSC_SPEED_MASK 0xf
106 #define PORTSC_SPEED_FULL (1<<10)
107 #define PORTSC_SPEED_LOW (2<<10)
108 #define PORTSC_SPEED_HIGH (3<<10)
109 #define PORTSC_SPEED_SUPER (4<<10)
110 #define PORTSC_PIC_SHIFT 14
111 #define PORTSC_PIC_MASK 0x3
112 #define PORTSC_LWS (1<<16)
113 #define PORTSC_CSC (1<<17)
114 #define PORTSC_PEC (1<<18)
115 #define PORTSC_WRC (1<<19)
116 #define PORTSC_OCC (1<<20)
117 #define PORTSC_PRC (1<<21)
118 #define PORTSC_PLC (1<<22)
119 #define PORTSC_CEC (1<<23)
120 #define PORTSC_CAS (1<<24)
121 #define PORTSC_WCE (1<<25)
122 #define PORTSC_WDE (1<<26)
123 #define PORTSC_WOE (1<<27)
124 #define PORTSC_DR (1<<30)
125 #define PORTSC_WPR (1<<31)
126
127 #define CRCR_RCS (1<<0)
128 #define CRCR_CS (1<<1)
129 #define CRCR_CA (1<<2)
130 #define CRCR_CRR (1<<3)
131
132 #define IMAN_IP (1<<0)
133 #define IMAN_IE (1<<1)
134
135 #define ERDP_EHB (1<<3)
136
137 #define TRB_SIZE 16
138 typedef struct XHCITRB {
139 uint64_t parameter;
140 uint32_t status;
141 uint32_t control;
142 dma_addr_t addr;
143 bool ccs;
144 } XHCITRB;
145
146
147 typedef enum TRBType {
148 TRB_RESERVED = 0,
149 TR_NORMAL,
150 TR_SETUP,
151 TR_DATA,
152 TR_STATUS,
153 TR_ISOCH,
154 TR_LINK,
155 TR_EVDATA,
156 TR_NOOP,
157 CR_ENABLE_SLOT,
158 CR_DISABLE_SLOT,
159 CR_ADDRESS_DEVICE,
160 CR_CONFIGURE_ENDPOINT,
161 CR_EVALUATE_CONTEXT,
162 CR_RESET_ENDPOINT,
163 CR_STOP_ENDPOINT,
164 CR_SET_TR_DEQUEUE,
165 CR_RESET_DEVICE,
166 CR_FORCE_EVENT,
167 CR_NEGOTIATE_BW,
168 CR_SET_LATENCY_TOLERANCE,
169 CR_GET_PORT_BANDWIDTH,
170 CR_FORCE_HEADER,
171 CR_NOOP,
172 ER_TRANSFER = 32,
173 ER_COMMAND_COMPLETE,
174 ER_PORT_STATUS_CHANGE,
175 ER_BANDWIDTH_REQUEST,
176 ER_DOORBELL,
177 ER_HOST_CONTROLLER,
178 ER_DEVICE_NOTIFICATION,
179 ER_MFINDEX_WRAP,
180 /* vendor specific bits */
181 CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48,
182 CR_VENDOR_NEC_FIRMWARE_REVISION = 49,
183 CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50,
184 } TRBType;
185
186 #define CR_LINK TR_LINK
187
188 typedef enum TRBCCode {
189 CC_INVALID = 0,
190 CC_SUCCESS,
191 CC_DATA_BUFFER_ERROR,
192 CC_BABBLE_DETECTED,
193 CC_USB_TRANSACTION_ERROR,
194 CC_TRB_ERROR,
195 CC_STALL_ERROR,
196 CC_RESOURCE_ERROR,
197 CC_BANDWIDTH_ERROR,
198 CC_NO_SLOTS_ERROR,
199 CC_INVALID_STREAM_TYPE_ERROR,
200 CC_SLOT_NOT_ENABLED_ERROR,
201 CC_EP_NOT_ENABLED_ERROR,
202 CC_SHORT_PACKET,
203 CC_RING_UNDERRUN,
204 CC_RING_OVERRUN,
205 CC_VF_ER_FULL,
206 CC_PARAMETER_ERROR,
207 CC_BANDWIDTH_OVERRUN,
208 CC_CONTEXT_STATE_ERROR,
209 CC_NO_PING_RESPONSE_ERROR,
210 CC_EVENT_RING_FULL_ERROR,
211 CC_INCOMPATIBLE_DEVICE_ERROR,
212 CC_MISSED_SERVICE_ERROR,
213 CC_COMMAND_RING_STOPPED,
214 CC_COMMAND_ABORTED,
215 CC_STOPPED,
216 CC_STOPPED_LENGTH_INVALID,
217 CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29,
218 CC_ISOCH_BUFFER_OVERRUN = 31,
219 CC_EVENT_LOST_ERROR,
220 CC_UNDEFINED_ERROR,
221 CC_INVALID_STREAM_ID_ERROR,
222 CC_SECONDARY_BANDWIDTH_ERROR,
223 CC_SPLIT_TRANSACTION_ERROR
224 } TRBCCode;
225
226 #define TRB_C (1<<0)
227 #define TRB_TYPE_SHIFT 10
228 #define TRB_TYPE_MASK 0x3f
229 #define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK)
230
231 #define TRB_EV_ED (1<<2)
232
233 #define TRB_TR_ENT (1<<1)
234 #define TRB_TR_ISP (1<<2)
235 #define TRB_TR_NS (1<<3)
236 #define TRB_TR_CH (1<<4)
237 #define TRB_TR_IOC (1<<5)
238 #define TRB_TR_IDT (1<<6)
239 #define TRB_TR_TBC_SHIFT 7
240 #define TRB_TR_TBC_MASK 0x3
241 #define TRB_TR_BEI (1<<9)
242 #define TRB_TR_TLBPC_SHIFT 16
243 #define TRB_TR_TLBPC_MASK 0xf
244 #define TRB_TR_FRAMEID_SHIFT 20
245 #define TRB_TR_FRAMEID_MASK 0x7ff
246 #define TRB_TR_SIA (1<<31)
247
248 #define TRB_TR_DIR (1<<16)
249
250 #define TRB_CR_SLOTID_SHIFT 24
251 #define TRB_CR_SLOTID_MASK 0xff
252 #define TRB_CR_EPID_SHIFT 16
253 #define TRB_CR_EPID_MASK 0x1f
254
255 #define TRB_CR_BSR (1<<9)
256 #define TRB_CR_DC (1<<9)
257
258 #define TRB_LK_TC (1<<1)
259
260 #define EP_TYPE_MASK 0x7
261 #define EP_TYPE_SHIFT 3
262
263 #define EP_STATE_MASK 0x7
264 #define EP_DISABLED (0<<0)
265 #define EP_RUNNING (1<<0)
266 #define EP_HALTED (2<<0)
267 #define EP_STOPPED (3<<0)
268 #define EP_ERROR (4<<0)
269
270 #define SLOT_STATE_MASK 0x1f
271 #define SLOT_STATE_SHIFT 27
272 #define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK)
273 #define SLOT_ENABLED 0
274 #define SLOT_DEFAULT 1
275 #define SLOT_ADDRESSED 2
276 #define SLOT_CONFIGURED 3
277
278 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f
279 #define SLOT_CONTEXT_ENTRIES_SHIFT 27
280
281 typedef enum EPType {
282 ET_INVALID = 0,
283 ET_ISO_OUT,
284 ET_BULK_OUT,
285 ET_INTR_OUT,
286 ET_CONTROL,
287 ET_ISO_IN,
288 ET_BULK_IN,
289 ET_INTR_IN,
290 } EPType;
291
292 typedef struct XHCIRing {
293 dma_addr_t base;
294 dma_addr_t dequeue;
295 bool ccs;
296 } XHCIRing;
297
298 typedef struct XHCIPort {
299 USBPort port;
300 uint32_t portsc;
301 } XHCIPort;
302
303 struct XHCIState;
304 typedef struct XHCIState XHCIState;
305
306 typedef struct XHCITransfer {
307 XHCIState *xhci;
308 USBPacket packet;
309 bool running_async;
310 bool running_retry;
311 bool cancelled;
312 bool complete;
313 bool backgrounded;
314 unsigned int iso_pkts;
315 unsigned int slotid;
316 unsigned int epid;
317 bool in_xfer;
318 bool iso_xfer;
319 bool bg_xfer;
320
321 unsigned int trb_count;
322 unsigned int trb_alloced;
323 XHCITRB *trbs;
324
325 unsigned int data_length;
326 unsigned int data_alloced;
327 uint8_t *data;
328
329 TRBCCode status;
330
331 unsigned int pkts;
332 unsigned int pktsize;
333 unsigned int cur_pkt;
334 } XHCITransfer;
335
336 typedef struct XHCIEPContext {
337 XHCIRing ring;
338 unsigned int next_xfer;
339 unsigned int comp_xfer;
340 XHCITransfer transfers[TD_QUEUE];
341 XHCITransfer *retry;
342 bool bg_running;
343 bool bg_updating;
344 unsigned int next_bg;
345 XHCITransfer bg_transfers[BG_XFERS];
346 EPType type;
347 dma_addr_t pctx;
348 unsigned int max_psize;
349 bool has_bg;
350 uint32_t state;
351 } XHCIEPContext;
352
353 typedef struct XHCISlot {
354 bool enabled;
355 dma_addr_t ctx;
356 unsigned int port;
357 unsigned int devaddr;
358 XHCIEPContext * eps[31];
359 } XHCISlot;
360
361 typedef struct XHCIEvent {
362 TRBType type;
363 TRBCCode ccode;
364 uint64_t ptr;
365 uint32_t length;
366 uint32_t flags;
367 uint8_t slotid;
368 uint8_t epid;
369 } XHCIEvent;
370
371 struct XHCIState {
372 PCIDevice pci_dev;
373 USBBus bus;
374 qemu_irq irq;
375 MemoryRegion mem;
376 const char *name;
377 uint32_t msi;
378 unsigned int devaddr;
379
380 /* Operational Registers */
381 uint32_t usbcmd;
382 uint32_t usbsts;
383 uint32_t dnctrl;
384 uint32_t crcr_low;
385 uint32_t crcr_high;
386 uint32_t dcbaap_low;
387 uint32_t dcbaap_high;
388 uint32_t config;
389
390 XHCIPort ports[MAXPORTS];
391 XHCISlot slots[MAXSLOTS];
392
393 /* Runtime Registers */
394 uint32_t mfindex;
395 /* note: we only support one interrupter */
396 uint32_t iman;
397 uint32_t imod;
398 uint32_t erstsz;
399 uint32_t erstba_low;
400 uint32_t erstba_high;
401 uint32_t erdp_low;
402 uint32_t erdp_high;
403
404 dma_addr_t er_start;
405 uint32_t er_size;
406 bool er_pcs;
407 unsigned int er_ep_idx;
408 bool er_full;
409
410 XHCIEvent ev_buffer[EV_QUEUE];
411 unsigned int ev_buffer_put;
412 unsigned int ev_buffer_get;
413
414 XHCIRing cmd_ring;
415 };
416
417 typedef struct XHCIEvRingSeg {
418 uint32_t addr_low;
419 uint32_t addr_high;
420 uint32_t size;
421 uint32_t rsvd;
422 } XHCIEvRingSeg;
423
424 #ifdef DEBUG_XHCI
425 static const char *TRBType_names[] = {
426 [TRB_RESERVED] = "TRB_RESERVED",
427 [TR_NORMAL] = "TR_NORMAL",
428 [TR_SETUP] = "TR_SETUP",
429 [TR_DATA] = "TR_DATA",
430 [TR_STATUS] = "TR_STATUS",
431 [TR_ISOCH] = "TR_ISOCH",
432 [TR_LINK] = "TR_LINK",
433 [TR_EVDATA] = "TR_EVDATA",
434 [TR_NOOP] = "TR_NOOP",
435 [CR_ENABLE_SLOT] = "CR_ENABLE_SLOT",
436 [CR_DISABLE_SLOT] = "CR_DISABLE_SLOT",
437 [CR_ADDRESS_DEVICE] = "CR_ADDRESS_DEVICE",
438 [CR_CONFIGURE_ENDPOINT] = "CR_CONFIGURE_ENDPOINT",
439 [CR_EVALUATE_CONTEXT] = "CR_EVALUATE_CONTEXT",
440 [CR_RESET_ENDPOINT] = "CR_RESET_ENDPOINT",
441 [CR_STOP_ENDPOINT] = "CR_STOP_ENDPOINT",
442 [CR_SET_TR_DEQUEUE] = "CR_SET_TR_DEQUEUE",
443 [CR_RESET_DEVICE] = "CR_RESET_DEVICE",
444 [CR_FORCE_EVENT] = "CR_FORCE_EVENT",
445 [CR_NEGOTIATE_BW] = "CR_NEGOTIATE_BW",
446 [CR_SET_LATENCY_TOLERANCE] = "CR_SET_LATENCY_TOLERANCE",
447 [CR_GET_PORT_BANDWIDTH] = "CR_GET_PORT_BANDWIDTH",
448 [CR_FORCE_HEADER] = "CR_FORCE_HEADER",
449 [CR_NOOP] = "CR_NOOP",
450 [ER_TRANSFER] = "ER_TRANSFER",
451 [ER_COMMAND_COMPLETE] = "ER_COMMAND_COMPLETE",
452 [ER_PORT_STATUS_CHANGE] = "ER_PORT_STATUS_CHANGE",
453 [ER_BANDWIDTH_REQUEST] = "ER_BANDWIDTH_REQUEST",
454 [ER_DOORBELL] = "ER_DOORBELL",
455 [ER_HOST_CONTROLLER] = "ER_HOST_CONTROLLER",
456 [ER_DEVICE_NOTIFICATION] = "ER_DEVICE_NOTIFICATION",
457 [ER_MFINDEX_WRAP] = "ER_MFINDEX_WRAP",
458 [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE",
459 [CR_VENDOR_NEC_FIRMWARE_REVISION] = "CR_VENDOR_NEC_FIRMWARE_REVISION",
460 [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE",
461 };
462
463 static const char *lookup_name(uint32_t index, const char **list, uint32_t llen)
464 {
465 if (index >= llen || list[index] == NULL) {
466 return "???";
467 }
468 return list[index];
469 }
470
471 static const char *trb_name(XHCITRB *trb)
472 {
473 return lookup_name(TRB_TYPE(*trb), TRBType_names,
474 ARRAY_SIZE(TRBType_names));
475 }
476 #endif
477
478 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
479 unsigned int epid);
480
481 static inline dma_addr_t xhci_addr64(uint32_t low, uint32_t high)
482 {
483 if (sizeof(dma_addr_t) == 4) {
484 return low;
485 } else {
486 return low | (((dma_addr_t)high << 16) << 16);
487 }
488 }
489
490 static inline dma_addr_t xhci_mask64(uint64_t addr)
491 {
492 if (sizeof(dma_addr_t) == 4) {
493 return addr & 0xffffffff;
494 } else {
495 return addr;
496 }
497 }
498
499 static void xhci_irq_update(XHCIState *xhci)
500 {
501 int level = 0;
502
503 if (xhci->iman & IMAN_IP && xhci->iman & IMAN_IE &&
504 xhci->usbcmd & USBCMD_INTE) {
505 level = 1;
506 }
507
508 DPRINTF("xhci_irq_update(): %d\n", level);
509
510 if (xhci->msi && msi_enabled(&xhci->pci_dev)) {
511 if (level) {
512 DPRINTF("xhci_irq_update(): MSI signal\n");
513 msi_notify(&xhci->pci_dev, 0);
514 }
515 } else {
516 qemu_set_irq(xhci->irq, level);
517 }
518 }
519
520 static inline int xhci_running(XHCIState *xhci)
521 {
522 return !(xhci->usbsts & USBSTS_HCH) && !xhci->er_full;
523 }
524
525 static void xhci_die(XHCIState *xhci)
526 {
527 xhci->usbsts |= USBSTS_HCE;
528 fprintf(stderr, "xhci: asserted controller error\n");
529 }
530
531 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event)
532 {
533 XHCITRB ev_trb;
534 dma_addr_t addr;
535
536 ev_trb.parameter = cpu_to_le64(event->ptr);
537 ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24));
538 ev_trb.control = (event->slotid << 24) | (event->epid << 16) |
539 event->flags | (event->type << TRB_TYPE_SHIFT);
540 if (xhci->er_pcs) {
541 ev_trb.control |= TRB_C;
542 }
543 ev_trb.control = cpu_to_le32(ev_trb.control);
544
545 DPRINTF("xhci_write_event(): [%d] %016"PRIx64" %08x %08x %s\n",
546 xhci->er_ep_idx, ev_trb.parameter, ev_trb.status, ev_trb.control,
547 trb_name(&ev_trb));
548
549 addr = xhci->er_start + TRB_SIZE*xhci->er_ep_idx;
550 pci_dma_write(&xhci->pci_dev, addr, &ev_trb, TRB_SIZE);
551
552 xhci->er_ep_idx++;
553 if (xhci->er_ep_idx >= xhci->er_size) {
554 xhci->er_ep_idx = 0;
555 xhci->er_pcs = !xhci->er_pcs;
556 }
557 }
558
559 static void xhci_events_update(XHCIState *xhci)
560 {
561 dma_addr_t erdp;
562 unsigned int dp_idx;
563 bool do_irq = 0;
564
565 if (xhci->usbsts & USBSTS_HCH) {
566 return;
567 }
568
569 erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
570 if (erdp < xhci->er_start ||
571 erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
572 fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
573 fprintf(stderr, "xhci: ER at "DMA_ADDR_FMT" len %d\n",
574 xhci->er_start, xhci->er_size);
575 xhci_die(xhci);
576 return;
577 }
578 dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
579 assert(dp_idx < xhci->er_size);
580
581 /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus
582 * deadlocks when the ER is full. Hack it by holding off events until
583 * the driver decides to free at least half of the ring */
584 if (xhci->er_full) {
585 int er_free = dp_idx - xhci->er_ep_idx;
586 if (er_free <= 0) {
587 er_free += xhci->er_size;
588 }
589 if (er_free < (xhci->er_size/2)) {
590 DPRINTF("xhci_events_update(): event ring still "
591 "more than half full (hack)\n");
592 return;
593 }
594 }
595
596 while (xhci->ev_buffer_put != xhci->ev_buffer_get) {
597 assert(xhci->er_full);
598 if (((xhci->er_ep_idx+1) % xhci->er_size) == dp_idx) {
599 DPRINTF("xhci_events_update(): event ring full again\n");
600 #ifndef ER_FULL_HACK
601 XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
602 xhci_write_event(xhci, &full);
603 #endif
604 do_irq = 1;
605 break;
606 }
607 XHCIEvent *event = &xhci->ev_buffer[xhci->ev_buffer_get];
608 xhci_write_event(xhci, event);
609 xhci->ev_buffer_get++;
610 do_irq = 1;
611 if (xhci->ev_buffer_get == EV_QUEUE) {
612 xhci->ev_buffer_get = 0;
613 }
614 }
615
616 if (do_irq) {
617 xhci->erdp_low |= ERDP_EHB;
618 xhci->iman |= IMAN_IP;
619 xhci->usbsts |= USBSTS_EINT;
620 xhci_irq_update(xhci);
621 }
622
623 if (xhci->er_full && xhci->ev_buffer_put == xhci->ev_buffer_get) {
624 DPRINTF("xhci_events_update(): event ring no longer full\n");
625 xhci->er_full = 0;
626 }
627 return;
628 }
629
630 static void xhci_event(XHCIState *xhci, XHCIEvent *event)
631 {
632 dma_addr_t erdp;
633 unsigned int dp_idx;
634
635 if (xhci->er_full) {
636 DPRINTF("xhci_event(): ER full, queueing\n");
637 if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
638 fprintf(stderr, "xhci: event queue full, dropping event!\n");
639 return;
640 }
641 xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
642 if (xhci->ev_buffer_put == EV_QUEUE) {
643 xhci->ev_buffer_put = 0;
644 }
645 return;
646 }
647
648 erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
649 if (erdp < xhci->er_start ||
650 erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
651 fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
652 fprintf(stderr, "xhci: ER at "DMA_ADDR_FMT" len %d\n",
653 xhci->er_start, xhci->er_size);
654 xhci_die(xhci);
655 return;
656 }
657
658 dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
659 assert(dp_idx < xhci->er_size);
660
661 if ((xhci->er_ep_idx+1) % xhci->er_size == dp_idx) {
662 DPRINTF("xhci_event(): ER full, queueing\n");
663 #ifndef ER_FULL_HACK
664 XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
665 xhci_write_event(xhci, &full);
666 #endif
667 xhci->er_full = 1;
668 if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
669 fprintf(stderr, "xhci: event queue full, dropping event!\n");
670 return;
671 }
672 xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
673 if (xhci->ev_buffer_put == EV_QUEUE) {
674 xhci->ev_buffer_put = 0;
675 }
676 } else {
677 xhci_write_event(xhci, event);
678 }
679
680 xhci->erdp_low |= ERDP_EHB;
681 xhci->iman |= IMAN_IP;
682 xhci->usbsts |= USBSTS_EINT;
683
684 xhci_irq_update(xhci);
685 }
686
687 static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring,
688 dma_addr_t base)
689 {
690 ring->base = base;
691 ring->dequeue = base;
692 ring->ccs = 1;
693 }
694
695 static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb,
696 dma_addr_t *addr)
697 {
698 while (1) {
699 TRBType type;
700 pci_dma_read(&xhci->pci_dev, ring->dequeue, trb, TRB_SIZE);
701 trb->addr = ring->dequeue;
702 trb->ccs = ring->ccs;
703 le64_to_cpus(&trb->parameter);
704 le32_to_cpus(&trb->status);
705 le32_to_cpus(&trb->control);
706
707 DPRINTF("xhci: TRB fetched [" DMA_ADDR_FMT "]: "
708 "%016" PRIx64 " %08x %08x %s\n",
709 ring->dequeue, trb->parameter, trb->status, trb->control,
710 trb_name(trb));
711
712 if ((trb->control & TRB_C) != ring->ccs) {
713 return 0;
714 }
715
716 type = TRB_TYPE(*trb);
717
718 if (type != TR_LINK) {
719 if (addr) {
720 *addr = ring->dequeue;
721 }
722 ring->dequeue += TRB_SIZE;
723 return type;
724 } else {
725 ring->dequeue = xhci_mask64(trb->parameter);
726 if (trb->control & TRB_LK_TC) {
727 ring->ccs = !ring->ccs;
728 }
729 }
730 }
731 }
732
733 static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring)
734 {
735 XHCITRB trb;
736 int length = 0;
737 dma_addr_t dequeue = ring->dequeue;
738 bool ccs = ring->ccs;
739 /* hack to bundle together the two/three TDs that make a setup transfer */
740 bool control_td_set = 0;
741
742 while (1) {
743 TRBType type;
744 pci_dma_read(&xhci->pci_dev, dequeue, &trb, TRB_SIZE);
745 le64_to_cpus(&trb.parameter);
746 le32_to_cpus(&trb.status);
747 le32_to_cpus(&trb.control);
748
749 DPRINTF("xhci: TRB peeked [" DMA_ADDR_FMT "]: "
750 "%016" PRIx64 " %08x %08x\n",
751 dequeue, trb.parameter, trb.status, trb.control);
752
753 if ((trb.control & TRB_C) != ccs) {
754 return -length;
755 }
756
757 type = TRB_TYPE(trb);
758
759 if (type == TR_LINK) {
760 dequeue = xhci_mask64(trb.parameter);
761 if (trb.control & TRB_LK_TC) {
762 ccs = !ccs;
763 }
764 continue;
765 }
766
767 length += 1;
768 dequeue += TRB_SIZE;
769
770 if (type == TR_SETUP) {
771 control_td_set = 1;
772 } else if (type == TR_STATUS) {
773 control_td_set = 0;
774 }
775
776 if (!control_td_set && !(trb.control & TRB_TR_CH)) {
777 return length;
778 }
779 }
780 }
781
782 static void xhci_er_reset(XHCIState *xhci)
783 {
784 XHCIEvRingSeg seg;
785
786 /* cache the (sole) event ring segment location */
787 if (xhci->erstsz != 1) {
788 fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", xhci->erstsz);
789 xhci_die(xhci);
790 return;
791 }
792 dma_addr_t erstba = xhci_addr64(xhci->erstba_low, xhci->erstba_high);
793 pci_dma_read(&xhci->pci_dev, erstba, &seg, sizeof(seg));
794 le32_to_cpus(&seg.addr_low);
795 le32_to_cpus(&seg.addr_high);
796 le32_to_cpus(&seg.size);
797 if (seg.size < 16 || seg.size > 4096) {
798 fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size);
799 xhci_die(xhci);
800 return;
801 }
802 xhci->er_start = xhci_addr64(seg.addr_low, seg.addr_high);
803 xhci->er_size = seg.size;
804
805 xhci->er_ep_idx = 0;
806 xhci->er_pcs = 1;
807 xhci->er_full = 0;
808
809 DPRINTF("xhci: event ring:" DMA_ADDR_FMT " [%d]\n",
810 xhci->er_start, xhci->er_size);
811 }
812
813 static void xhci_run(XHCIState *xhci)
814 {
815 DPRINTF("xhci_run()\n");
816
817 xhci->usbsts &= ~USBSTS_HCH;
818 }
819
820 static void xhci_stop(XHCIState *xhci)
821 {
822 DPRINTF("xhci_stop()\n");
823 xhci->usbsts |= USBSTS_HCH;
824 xhci->crcr_low &= ~CRCR_CRR;
825 }
826
827 static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx,
828 uint32_t state)
829 {
830 uint32_t ctx[5];
831 if (epctx->state == state) {
832 return;
833 }
834
835 pci_dma_read(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx));
836 ctx[0] &= ~EP_STATE_MASK;
837 ctx[0] |= state;
838 ctx[2] = epctx->ring.dequeue | epctx->ring.ccs;
839 ctx[3] = (epctx->ring.dequeue >> 16) >> 16;
840 DPRINTF("xhci: set epctx: " DMA_ADDR_FMT " state=%d dequeue=%08x%08x\n",
841 epctx->pctx, state, ctx[3], ctx[2]);
842 pci_dma_write(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx));
843 epctx->state = state;
844 }
845
846 static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid,
847 unsigned int epid, dma_addr_t pctx,
848 uint32_t *ctx)
849 {
850 XHCISlot *slot;
851 XHCIEPContext *epctx;
852 dma_addr_t dequeue;
853 int i;
854
855 assert(slotid >= 1 && slotid <= MAXSLOTS);
856 assert(epid >= 1 && epid <= 31);
857
858 DPRINTF("xhci_enable_ep(%d, %d)\n", slotid, epid);
859
860 slot = &xhci->slots[slotid-1];
861 if (slot->eps[epid-1]) {
862 fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
863 return CC_TRB_ERROR;
864 }
865
866 epctx = g_malloc(sizeof(XHCIEPContext));
867 memset(epctx, 0, sizeof(XHCIEPContext));
868
869 slot->eps[epid-1] = epctx;
870
871 dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]);
872 xhci_ring_init(xhci, &epctx->ring, dequeue);
873 epctx->ring.ccs = ctx[2] & 1;
874
875 epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK;
876 DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type);
877 epctx->pctx = pctx;
878 epctx->max_psize = ctx[1]>>16;
879 epctx->max_psize *= 1+((ctx[1]>>8)&0xff);
880 epctx->has_bg = false;
881 if (epctx->type == ET_ISO_IN) {
882 epctx->has_bg = true;
883 }
884 DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n",
885 epid/2, epid%2, epctx->max_psize);
886 for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
887 usb_packet_init(&epctx->transfers[i].packet);
888 }
889
890 epctx->state = EP_RUNNING;
891 ctx[0] &= ~EP_STATE_MASK;
892 ctx[0] |= EP_RUNNING;
893
894 return CC_SUCCESS;
895 }
896
897 static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid,
898 unsigned int epid)
899 {
900 XHCISlot *slot;
901 XHCIEPContext *epctx;
902 int i, xferi, killed = 0;
903 assert(slotid >= 1 && slotid <= MAXSLOTS);
904 assert(epid >= 1 && epid <= 31);
905
906 DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid);
907
908 slot = &xhci->slots[slotid-1];
909
910 if (!slot->eps[epid-1]) {
911 return 0;
912 }
913
914 epctx = slot->eps[epid-1];
915
916 xferi = epctx->next_xfer;
917 for (i = 0; i < TD_QUEUE; i++) {
918 XHCITransfer *t = &epctx->transfers[xferi];
919 if (t->running_async) {
920 usb_cancel_packet(&t->packet);
921 t->running_async = 0;
922 t->cancelled = 1;
923 DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i);
924 killed++;
925 }
926 if (t->running_retry) {
927 t->running_retry = 0;
928 epctx->retry = NULL;
929 }
930 if (t->backgrounded) {
931 t->backgrounded = 0;
932 }
933 if (t->trbs) {
934 g_free(t->trbs);
935 }
936 if (t->data) {
937 g_free(t->data);
938 }
939
940 t->trbs = NULL;
941 t->data = NULL;
942 t->trb_count = t->trb_alloced = 0;
943 t->data_length = t->data_alloced = 0;
944 xferi = (xferi + 1) % TD_QUEUE;
945 }
946 if (epctx->has_bg) {
947 xferi = epctx->next_bg;
948 for (i = 0; i < BG_XFERS; i++) {
949 XHCITransfer *t = &epctx->bg_transfers[xferi];
950 if (t->running_async) {
951 usb_cancel_packet(&t->packet);
952 t->running_async = 0;
953 t->cancelled = 1;
954 DPRINTF("xhci: cancelling bg transfer %d, waiting for it to complete...\n", i);
955 killed++;
956 }
957 if (t->data) {
958 g_free(t->data);
959 }
960
961 t->data = NULL;
962 xferi = (xferi + 1) % BG_XFERS;
963 }
964 }
965 return killed;
966 }
967
968 static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid,
969 unsigned int epid)
970 {
971 XHCISlot *slot;
972 XHCIEPContext *epctx;
973
974 assert(slotid >= 1 && slotid <= MAXSLOTS);
975 assert(epid >= 1 && epid <= 31);
976
977 DPRINTF("xhci_disable_ep(%d, %d)\n", slotid, epid);
978
979 slot = &xhci->slots[slotid-1];
980
981 if (!slot->eps[epid-1]) {
982 DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid);
983 return CC_SUCCESS;
984 }
985
986 xhci_ep_nuke_xfers(xhci, slotid, epid);
987
988 epctx = slot->eps[epid-1];
989
990 xhci_set_ep_state(xhci, epctx, EP_DISABLED);
991
992 g_free(epctx);
993 slot->eps[epid-1] = NULL;
994
995 return CC_SUCCESS;
996 }
997
998 static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
999 unsigned int epid)
1000 {
1001 XHCISlot *slot;
1002 XHCIEPContext *epctx;
1003
1004 DPRINTF("xhci_stop_ep(%d, %d)\n", slotid, epid);
1005
1006 assert(slotid >= 1 && slotid <= MAXSLOTS);
1007
1008 if (epid < 1 || epid > 31) {
1009 fprintf(stderr, "xhci: bad ep %d\n", epid);
1010 return CC_TRB_ERROR;
1011 }
1012
1013 slot = &xhci->slots[slotid-1];
1014
1015 if (!slot->eps[epid-1]) {
1016 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1017 return CC_EP_NOT_ENABLED_ERROR;
1018 }
1019
1020 if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1021 fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, "
1022 "data might be lost\n");
1023 }
1024
1025 epctx = slot->eps[epid-1];
1026
1027 xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1028
1029 return CC_SUCCESS;
1030 }
1031
1032 static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
1033 unsigned int epid)
1034 {
1035 XHCISlot *slot;
1036 XHCIEPContext *epctx;
1037 USBDevice *dev;
1038
1039 assert(slotid >= 1 && slotid <= MAXSLOTS);
1040
1041 DPRINTF("xhci_reset_ep(%d, %d)\n", slotid, epid);
1042
1043 if (epid < 1 || epid > 31) {
1044 fprintf(stderr, "xhci: bad ep %d\n", epid);
1045 return CC_TRB_ERROR;
1046 }
1047
1048 slot = &xhci->slots[slotid-1];
1049
1050 if (!slot->eps[epid-1]) {
1051 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1052 return CC_EP_NOT_ENABLED_ERROR;
1053 }
1054
1055 epctx = slot->eps[epid-1];
1056
1057 if (epctx->state != EP_HALTED) {
1058 fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n",
1059 epid, epctx->state);
1060 return CC_CONTEXT_STATE_ERROR;
1061 }
1062
1063 if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1064 fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, "
1065 "data might be lost\n");
1066 }
1067
1068 uint8_t ep = epid>>1;
1069
1070 if (epid & 1) {
1071 ep |= 0x80;
1072 }
1073
1074 dev = xhci->ports[xhci->slots[slotid-1].port-1].port.dev;
1075 if (!dev) {
1076 return CC_USB_TRANSACTION_ERROR;
1077 }
1078
1079 xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1080
1081 return CC_SUCCESS;
1082 }
1083
1084 static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
1085 unsigned int epid, uint64_t pdequeue)
1086 {
1087 XHCISlot *slot;
1088 XHCIEPContext *epctx;
1089 dma_addr_t dequeue;
1090
1091 assert(slotid >= 1 && slotid <= MAXSLOTS);
1092
1093 if (epid < 1 || epid > 31) {
1094 fprintf(stderr, "xhci: bad ep %d\n", epid);
1095 return CC_TRB_ERROR;
1096 }
1097
1098 DPRINTF("xhci_set_ep_dequeue(%d, %d, %016"PRIx64")\n", slotid, epid, pdequeue);
1099 dequeue = xhci_mask64(pdequeue);
1100
1101 slot = &xhci->slots[slotid-1];
1102
1103 if (!slot->eps[epid-1]) {
1104 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1105 return CC_EP_NOT_ENABLED_ERROR;
1106 }
1107
1108 epctx = slot->eps[epid-1];
1109
1110
1111 if (epctx->state != EP_STOPPED) {
1112 fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
1113 return CC_CONTEXT_STATE_ERROR;
1114 }
1115
1116 xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF);
1117 epctx->ring.ccs = dequeue & 1;
1118
1119 xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1120
1121 return CC_SUCCESS;
1122 }
1123
1124 static int xhci_xfer_data(XHCITransfer *xfer, uint8_t *data,
1125 unsigned int length, bool in_xfer, bool out_xfer,
1126 bool report)
1127 {
1128 int i;
1129 uint32_t edtla = 0;
1130 unsigned int transferred = 0;
1131 unsigned int left = length;
1132 bool reported = 0;
1133 bool shortpkt = 0;
1134 XHCIEvent event = {ER_TRANSFER, CC_SUCCESS};
1135 XHCIState *xhci = xfer->xhci;
1136
1137 DPRINTF("xhci_xfer_data(len=%d, in_xfer=%d, out_xfer=%d, report=%d)\n",
1138 length, in_xfer, out_xfer, report);
1139
1140 assert(!(in_xfer && out_xfer));
1141
1142 for (i = 0; i < xfer->trb_count; i++) {
1143 XHCITRB *trb = &xfer->trbs[i];
1144 dma_addr_t addr;
1145 unsigned int chunk = 0;
1146
1147 switch (TRB_TYPE(*trb)) {
1148 case TR_DATA:
1149 if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
1150 fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n");
1151 xhci_die(xhci);
1152 return transferred;
1153 }
1154 /* fallthrough */
1155 case TR_NORMAL:
1156 case TR_ISOCH:
1157 addr = xhci_mask64(trb->parameter);
1158 chunk = trb->status & 0x1ffff;
1159 if (chunk > left) {
1160 chunk = left;
1161 shortpkt = 1;
1162 }
1163 if (in_xfer || out_xfer) {
1164 if (trb->control & TRB_TR_IDT) {
1165 uint64_t idata;
1166 if (chunk > 8 || in_xfer) {
1167 fprintf(stderr, "xhci: invalid immediate data TRB\n");
1168 xhci_die(xhci);
1169 return transferred;
1170 }
1171 idata = le64_to_cpu(trb->parameter);
1172 memcpy(data, &idata, chunk);
1173 } else {
1174 DPRINTF("xhci_xfer_data: r/w(%d) %d bytes at "
1175 DMA_ADDR_FMT "\n", in_xfer, chunk, addr);
1176 if (in_xfer) {
1177 pci_dma_write(&xhci->pci_dev, addr, data, chunk);
1178 } else {
1179 pci_dma_read(&xhci->pci_dev, addr, data, chunk);
1180 }
1181 #ifdef DEBUG_DATA
1182 unsigned int count = chunk;
1183 int i;
1184 if (count > 16) {
1185 count = 16;
1186 }
1187 DPRINTF(" ::");
1188 for (i = 0; i < count; i++) {
1189 DPRINTF(" %02x", data[i]);
1190 }
1191 DPRINTF("\n");
1192 #endif
1193 }
1194 }
1195 left -= chunk;
1196 data += chunk;
1197 edtla += chunk;
1198 transferred += chunk;
1199 break;
1200 case TR_STATUS:
1201 reported = 0;
1202 shortpkt = 0;
1203 break;
1204 }
1205
1206 if (report && !reported && (trb->control & TRB_TR_IOC ||
1207 (shortpkt && (trb->control & TRB_TR_ISP)))) {
1208 event.slotid = xfer->slotid;
1209 event.epid = xfer->epid;
1210 event.length = (trb->status & 0x1ffff) - chunk;
1211 event.flags = 0;
1212 event.ptr = trb->addr;
1213 if (xfer->status == CC_SUCCESS) {
1214 event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS;
1215 } else {
1216 event.ccode = xfer->status;
1217 }
1218 if (TRB_TYPE(*trb) == TR_EVDATA) {
1219 event.ptr = trb->parameter;
1220 event.flags |= TRB_EV_ED;
1221 event.length = edtla & 0xffffff;
1222 DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length);
1223 edtla = 0;
1224 }
1225 xhci_event(xhci, &event);
1226 reported = 1;
1227 }
1228 }
1229 return transferred;
1230 }
1231
1232 static void xhci_stall_ep(XHCITransfer *xfer)
1233 {
1234 XHCIState *xhci = xfer->xhci;
1235 XHCISlot *slot = &xhci->slots[xfer->slotid-1];
1236 XHCIEPContext *epctx = slot->eps[xfer->epid-1];
1237
1238 epctx->ring.dequeue = xfer->trbs[0].addr;
1239 epctx->ring.ccs = xfer->trbs[0].ccs;
1240 xhci_set_ep_state(xhci, epctx, EP_HALTED);
1241 DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid);
1242 DPRINTF("xhci: will continue at "DMA_ADDR_FMT"\n", epctx->ring.dequeue);
1243 }
1244
1245 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer,
1246 XHCIEPContext *epctx);
1247
1248 static void xhci_bg_update(XHCIState *xhci, XHCIEPContext *epctx)
1249 {
1250 if (epctx->bg_updating) {
1251 return;
1252 }
1253 DPRINTF("xhci_bg_update(%p, %p)\n", xhci, epctx);
1254 assert(epctx->has_bg);
1255 DPRINTF("xhci: fg=%d bg=%d\n", epctx->comp_xfer, epctx->next_bg);
1256 epctx->bg_updating = 1;
1257 while (epctx->transfers[epctx->comp_xfer].backgrounded &&
1258 epctx->bg_transfers[epctx->next_bg].complete) {
1259 XHCITransfer *fg = &epctx->transfers[epctx->comp_xfer];
1260 XHCITransfer *bg = &epctx->bg_transfers[epctx->next_bg];
1261 #if 0
1262 DPRINTF("xhci: completing fg %d from bg %d.%d (stat: %d)\n",
1263 epctx->comp_xfer, epctx->next_bg, bg->cur_pkt,
1264 bg->usbxfer->iso_packet_desc[bg->cur_pkt].status
1265 );
1266 #endif
1267 assert(epctx->type == ET_ISO_IN);
1268 assert(bg->iso_xfer);
1269 assert(bg->in_xfer);
1270 uint8_t *p = bg->data + bg->cur_pkt * bg->pktsize;
1271 #if 0
1272 int len = bg->usbxfer->iso_packet_desc[bg->cur_pkt].actual_length;
1273 fg->status = libusb_to_ccode(bg->usbxfer->iso_packet_desc[bg->cur_pkt].status);
1274 #else
1275 int len = 0;
1276 FIXME();
1277 #endif
1278 fg->complete = 1;
1279 fg->backgrounded = 0;
1280
1281 if (fg->status == CC_STALL_ERROR) {
1282 xhci_stall_ep(fg);
1283 }
1284
1285 xhci_xfer_data(fg, p, len, 1, 0, 1);
1286
1287 epctx->comp_xfer++;
1288 if (epctx->comp_xfer == TD_QUEUE) {
1289 epctx->comp_xfer = 0;
1290 }
1291 DPRINTF("next fg xfer: %d\n", epctx->comp_xfer);
1292 bg->cur_pkt++;
1293 if (bg->cur_pkt == bg->pkts) {
1294 bg->complete = 0;
1295 if (xhci_submit(xhci, bg, epctx) < 0) {
1296 fprintf(stderr, "xhci: bg resubmit failed\n");
1297 }
1298 epctx->next_bg++;
1299 if (epctx->next_bg == BG_XFERS) {
1300 epctx->next_bg = 0;
1301 }
1302 DPRINTF("next bg xfer: %d\n", epctx->next_bg);
1303
1304 xhci_kick_ep(xhci, fg->slotid, fg->epid);
1305 }
1306 }
1307 epctx->bg_updating = 0;
1308 }
1309
1310 #if 0
1311 static void xhci_xfer_cb(struct libusb_transfer *transfer)
1312 {
1313 XHCIState *xhci;
1314 XHCITransfer *xfer;
1315
1316 xfer = (XHCITransfer *)transfer->user_data;
1317 xhci = xfer->xhci;
1318
1319 DPRINTF("xhci_xfer_cb(slot=%d, ep=%d, status=%d)\n", xfer->slotid,
1320 xfer->epid, transfer->status);
1321
1322 assert(xfer->slotid >= 1 && xfer->slotid <= MAXSLOTS);
1323 assert(xfer->epid >= 1 && xfer->epid <= 31);
1324
1325 if (xfer->cancelled) {
1326 DPRINTF("xhci: transfer cancelled, not reporting anything\n");
1327 xfer->running = 0;
1328 return;
1329 }
1330
1331 XHCIEPContext *epctx;
1332 XHCISlot *slot;
1333 slot = &xhci->slots[xfer->slotid-1];
1334 assert(slot->eps[xfer->epid-1]);
1335 epctx = slot->eps[xfer->epid-1];
1336
1337 if (xfer->bg_xfer) {
1338 DPRINTF("xhci: background transfer, updating\n");
1339 xfer->complete = 1;
1340 xfer->running = 0;
1341 xhci_bg_update(xhci, epctx);
1342 return;
1343 }
1344
1345 if (xfer->iso_xfer) {
1346 transfer->status = transfer->iso_packet_desc[0].status;
1347 transfer->actual_length = transfer->iso_packet_desc[0].actual_length;
1348 }
1349
1350 xfer->status = libusb_to_ccode(transfer->status);
1351
1352 xfer->complete = 1;
1353 xfer->running = 0;
1354
1355 if (transfer->status == LIBUSB_TRANSFER_STALL)
1356 xhci_stall_ep(xhci, epctx, xfer);
1357
1358 DPRINTF("xhci: transfer actual length = %d\n", transfer->actual_length);
1359
1360 if (xfer->in_xfer) {
1361 if (xfer->epid == 1) {
1362 xhci_xfer_data(xhci, xfer, xfer->data + 8,
1363 transfer->actual_length, 1, 0, 1);
1364 } else {
1365 xhci_xfer_data(xhci, xfer, xfer->data,
1366 transfer->actual_length, 1, 0, 1);
1367 }
1368 } else {
1369 xhci_xfer_data(xhci, xfer, NULL, transfer->actual_length, 0, 0, 1);
1370 }
1371
1372 xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1373 }
1374
1375 static int xhci_hle_control(XHCIState *xhci, XHCITransfer *xfer,
1376 uint8_t bmRequestType, uint8_t bRequest,
1377 uint16_t wValue, uint16_t wIndex, uint16_t wLength)
1378 {
1379 uint16_t type_req = (bmRequestType << 8) | bRequest;
1380
1381 switch (type_req) {
1382 case 0x0000 | USB_REQ_SET_CONFIGURATION:
1383 DPRINTF("xhci: HLE switch configuration\n");
1384 return xhci_switch_config(xhci, xfer->slotid, wValue) == 0;
1385 case 0x0100 | USB_REQ_SET_INTERFACE:
1386 DPRINTF("xhci: HLE set interface altsetting\n");
1387 return xhci_set_iface_alt(xhci, xfer->slotid, wIndex, wValue) == 0;
1388 case 0x0200 | USB_REQ_CLEAR_FEATURE:
1389 if (wValue == 0) { // endpoint halt
1390 DPRINTF("xhci: HLE clear halt\n");
1391 return xhci_clear_halt(xhci, xfer->slotid, wIndex);
1392 }
1393 case 0x0000 | USB_REQ_SET_ADDRESS:
1394 fprintf(stderr, "xhci: warn: illegal SET_ADDRESS request\n");
1395 return 0;
1396 default:
1397 return 0;
1398 }
1399 }
1400 #endif
1401
1402 static int xhci_setup_packet(XHCITransfer *xfer, USBDevice *dev)
1403 {
1404 USBEndpoint *ep;
1405 int dir;
1406
1407 dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT;
1408 ep = usb_ep_get(dev, dir, xfer->epid >> 1);
1409 usb_packet_setup(&xfer->packet, dir, ep);
1410 usb_packet_addbuf(&xfer->packet, xfer->data, xfer->data_length);
1411 DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n",
1412 xfer->packet.pid, dev->addr, ep->nr);
1413 return 0;
1414 }
1415
1416 static int xhci_complete_packet(XHCITransfer *xfer, int ret)
1417 {
1418 if (ret == USB_RET_ASYNC) {
1419 xfer->running_async = 1;
1420 xfer->running_retry = 0;
1421 xfer->complete = 0;
1422 xfer->cancelled = 0;
1423 return 0;
1424 } else if (ret == USB_RET_NAK) {
1425 xfer->running_async = 0;
1426 xfer->running_retry = 1;
1427 xfer->complete = 0;
1428 xfer->cancelled = 0;
1429 return 0;
1430 } else {
1431 xfer->running_async = 0;
1432 xfer->running_retry = 0;
1433 xfer->complete = 1;
1434 }
1435
1436 if (ret >= 0) {
1437 xfer->status = CC_SUCCESS;
1438 xhci_xfer_data(xfer, xfer->data, ret, xfer->in_xfer, 0, 1);
1439 return 0;
1440 }
1441
1442 /* error */
1443 switch (ret) {
1444 case USB_RET_NODEV:
1445 xfer->status = CC_USB_TRANSACTION_ERROR;
1446 xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
1447 xhci_stall_ep(xfer);
1448 break;
1449 case USB_RET_STALL:
1450 xfer->status = CC_STALL_ERROR;
1451 xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
1452 xhci_stall_ep(xfer);
1453 break;
1454 default:
1455 fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret);
1456 FIXME();
1457 }
1458 return 0;
1459 }
1460
1461 static USBDevice *xhci_find_device(XHCIPort *port, uint8_t addr)
1462 {
1463 if (!(port->portsc & PORTSC_PED)) {
1464 return NULL;
1465 }
1466 return usb_find_device(&port->port, addr);
1467 }
1468
1469 static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
1470 {
1471 XHCITRB *trb_setup, *trb_status;
1472 uint8_t bmRequestType;
1473 uint16_t wLength;
1474 XHCIPort *port;
1475 USBDevice *dev;
1476 int ret;
1477
1478 DPRINTF("xhci_fire_ctl_transfer(slot=%d)\n", xfer->slotid);
1479
1480 trb_setup = &xfer->trbs[0];
1481 trb_status = &xfer->trbs[xfer->trb_count-1];
1482
1483 /* at most one Event Data TRB allowed after STATUS */
1484 if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
1485 trb_status--;
1486 }
1487
1488 /* do some sanity checks */
1489 if (TRB_TYPE(*trb_setup) != TR_SETUP) {
1490 fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n",
1491 TRB_TYPE(*trb_setup));
1492 return -1;
1493 }
1494 if (TRB_TYPE(*trb_status) != TR_STATUS) {
1495 fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n",
1496 TRB_TYPE(*trb_status));
1497 return -1;
1498 }
1499 if (!(trb_setup->control & TRB_TR_IDT)) {
1500 fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n");
1501 return -1;
1502 }
1503 if ((trb_setup->status & 0x1ffff) != 8) {
1504 fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n",
1505 (trb_setup->status & 0x1ffff));
1506 return -1;
1507 }
1508
1509 bmRequestType = trb_setup->parameter;
1510 wLength = trb_setup->parameter >> 48;
1511
1512 if (xfer->data && xfer->data_alloced < wLength) {
1513 xfer->data_alloced = 0;
1514 g_free(xfer->data);
1515 xfer->data = NULL;
1516 }
1517 if (!xfer->data) {
1518 DPRINTF("xhci: alloc %d bytes data\n", wLength);
1519 xfer->data = g_malloc(wLength+1);
1520 xfer->data_alloced = wLength;
1521 }
1522 xfer->data_length = wLength;
1523
1524 port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1525 dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1526 if (!dev) {
1527 fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
1528 xhci->slots[xfer->slotid-1].port);
1529 return -1;
1530 }
1531
1532 xfer->in_xfer = bmRequestType & USB_DIR_IN;
1533 xfer->iso_xfer = false;
1534
1535 xhci_setup_packet(xfer, dev);
1536 xfer->packet.parameter = trb_setup->parameter;
1537 if (!xfer->in_xfer) {
1538 xhci_xfer_data(xfer, xfer->data, wLength, 0, 1, 0);
1539 }
1540
1541 ret = usb_handle_packet(dev, &xfer->packet);
1542
1543 xhci_complete_packet(xfer, ret);
1544 if (!xfer->running_async && !xfer->running_retry) {
1545 xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1546 }
1547 return 0;
1548 }
1549
1550 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1551 {
1552 XHCIPort *port;
1553 USBDevice *dev;
1554 int ret;
1555
1556 DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1557
1558 xfer->in_xfer = epctx->type>>2;
1559
1560 if (xfer->data && xfer->data_alloced < xfer->data_length) {
1561 xfer->data_alloced = 0;
1562 g_free(xfer->data);
1563 xfer->data = NULL;
1564 }
1565 if (!xfer->data && xfer->data_length) {
1566 DPRINTF("xhci: alloc %d bytes data\n", xfer->data_length);
1567 xfer->data = g_malloc(xfer->data_length);
1568 xfer->data_alloced = xfer->data_length;
1569 }
1570 if (epctx->type == ET_ISO_IN || epctx->type == ET_ISO_OUT) {
1571 if (!xfer->bg_xfer) {
1572 xfer->pkts = 1;
1573 }
1574 } else {
1575 xfer->pkts = 0;
1576 }
1577
1578 port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1579 dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1580 if (!dev) {
1581 fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
1582 xhci->slots[xfer->slotid-1].port);
1583 return -1;
1584 }
1585
1586 xhci_setup_packet(xfer, dev);
1587
1588 switch(epctx->type) {
1589 case ET_INTR_OUT:
1590 case ET_INTR_IN:
1591 case ET_BULK_OUT:
1592 case ET_BULK_IN:
1593 break;
1594 case ET_ISO_OUT:
1595 case ET_ISO_IN:
1596 FIXME();
1597 break;
1598 default:
1599 fprintf(stderr, "xhci: unknown or unhandled EP "
1600 "(type %d, in %d, ep %02x)\n",
1601 epctx->type, xfer->in_xfer, xfer->epid);
1602 return -1;
1603 }
1604
1605 if (!xfer->in_xfer) {
1606 xhci_xfer_data(xfer, xfer->data, xfer->data_length, 0, 1, 0);
1607 }
1608 ret = usb_handle_packet(dev, &xfer->packet);
1609
1610 xhci_complete_packet(xfer, ret);
1611 if (!xfer->running_async && !xfer->running_retry) {
1612 xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1613 }
1614 return 0;
1615 }
1616
1617 static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1618 {
1619 int i;
1620 unsigned int length = 0;
1621 XHCITRB *trb;
1622
1623 DPRINTF("xhci_fire_transfer(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1624
1625 for (i = 0; i < xfer->trb_count; i++) {
1626 trb = &xfer->trbs[i];
1627 if (TRB_TYPE(*trb) == TR_NORMAL || TRB_TYPE(*trb) == TR_ISOCH) {
1628 length += trb->status & 0x1ffff;
1629 }
1630 }
1631 DPRINTF("xhci: total TD length=%d\n", length);
1632
1633 if (!epctx->has_bg) {
1634 xfer->data_length = length;
1635 xfer->backgrounded = 0;
1636 return xhci_submit(xhci, xfer, epctx);
1637 } else {
1638 if (!epctx->bg_running) {
1639 for (i = 0; i < BG_XFERS; i++) {
1640 XHCITransfer *t = &epctx->bg_transfers[i];
1641 t->xhci = xhci;
1642 t->epid = xfer->epid;
1643 t->slotid = xfer->slotid;
1644 t->pkts = BG_PKTS;
1645 t->pktsize = epctx->max_psize;
1646 t->data_length = t->pkts * t->pktsize;
1647 t->bg_xfer = 1;
1648 if (xhci_submit(xhci, t, epctx) < 0) {
1649 fprintf(stderr, "xhci: bg submit failed\n");
1650 return -1;
1651 }
1652 }
1653 epctx->bg_running = 1;
1654 }
1655 xfer->backgrounded = 1;
1656 xhci_bg_update(xhci, epctx);
1657 return 0;
1658 }
1659 }
1660
1661 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid)
1662 {
1663 XHCIEPContext *epctx;
1664 int length;
1665 int i;
1666
1667 assert(slotid >= 1 && slotid <= MAXSLOTS);
1668 assert(epid >= 1 && epid <= 31);
1669 DPRINTF("xhci_kick_ep(%d, %d)\n", slotid, epid);
1670
1671 if (!xhci->slots[slotid-1].enabled) {
1672 fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
1673 return;
1674 }
1675 epctx = xhci->slots[slotid-1].eps[epid-1];
1676 if (!epctx) {
1677 fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
1678 epid, slotid);
1679 return;
1680 }
1681
1682 if (epctx->retry) {
1683 /* retry nak'ed transfer */
1684 XHCITransfer *xfer = epctx->retry;
1685 int result;
1686
1687 DPRINTF("xhci: retry nack'ed transfer ...\n");
1688 assert(xfer->running_retry);
1689 xhci_setup_packet(xfer, xfer->packet.ep->dev);
1690 result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1691 if (result == USB_RET_NAK) {
1692 DPRINTF("xhci: ... xfer still nacked\n");
1693 return;
1694 }
1695 DPRINTF("xhci: ... result %d\n", result);
1696 xhci_complete_packet(xfer, result);
1697 assert(!xfer->running_retry);
1698 epctx->retry = NULL;
1699 }
1700
1701 if (epctx->state == EP_HALTED) {
1702 DPRINTF("xhci: ep halted, not running schedule\n");
1703 return;
1704 }
1705
1706 xhci_set_ep_state(xhci, epctx, EP_RUNNING);
1707
1708 while (1) {
1709 XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
1710 if (xfer->running_async || xfer->running_retry || xfer->backgrounded) {
1711 DPRINTF("xhci: ep is busy (#%d,%d,%d,%d)\n",
1712 epctx->next_xfer, xfer->running_async,
1713 xfer->running_retry, xfer->backgrounded);
1714 break;
1715 } else {
1716 DPRINTF("xhci: ep: using #%d\n", epctx->next_xfer);
1717 }
1718 length = xhci_ring_chain_length(xhci, &epctx->ring);
1719 if (length < 0) {
1720 DPRINTF("xhci: incomplete TD (%d TRBs)\n", -length);
1721 break;
1722 } else if (length == 0) {
1723 break;
1724 }
1725 DPRINTF("xhci: fetching %d-TRB TD\n", length);
1726 if (xfer->trbs && xfer->trb_alloced < length) {
1727 xfer->trb_count = 0;
1728 xfer->trb_alloced = 0;
1729 g_free(xfer->trbs);
1730 xfer->trbs = NULL;
1731 }
1732 if (!xfer->trbs) {
1733 xfer->trbs = g_malloc(sizeof(XHCITRB) * length);
1734 xfer->trb_alloced = length;
1735 }
1736 xfer->trb_count = length;
1737
1738 for (i = 0; i < length; i++) {
1739 assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL));
1740 }
1741 xfer->xhci = xhci;
1742 xfer->epid = epid;
1743 xfer->slotid = slotid;
1744
1745 if (epid == 1) {
1746 if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) {
1747 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1748 } else {
1749 fprintf(stderr, "xhci: error firing CTL transfer\n");
1750 }
1751 } else {
1752 if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
1753 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1754 } else {
1755 fprintf(stderr, "xhci: error firing data transfer\n");
1756 }
1757 }
1758
1759 if (epctx->state == EP_HALTED) {
1760 DPRINTF("xhci: ep halted, stopping schedule\n");
1761 break;
1762 }
1763 if (xfer->running_retry) {
1764 DPRINTF("xhci: xfer nacked, stopping schedule\n");
1765 epctx->retry = xfer;
1766 break;
1767 }
1768 }
1769 }
1770
1771 static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
1772 {
1773 assert(slotid >= 1 && slotid <= MAXSLOTS);
1774 DPRINTF("xhci_enable_slot(%d)\n", slotid);
1775 xhci->slots[slotid-1].enabled = 1;
1776 xhci->slots[slotid-1].port = 0;
1777 memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
1778
1779 return CC_SUCCESS;
1780 }
1781
1782 static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid)
1783 {
1784 int i;
1785
1786 assert(slotid >= 1 && slotid <= MAXSLOTS);
1787 DPRINTF("xhci_disable_slot(%d)\n", slotid);
1788
1789 for (i = 1; i <= 31; i++) {
1790 if (xhci->slots[slotid-1].eps[i-1]) {
1791 xhci_disable_ep(xhci, slotid, i);
1792 }
1793 }
1794
1795 xhci->slots[slotid-1].enabled = 0;
1796 return CC_SUCCESS;
1797 }
1798
1799 static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
1800 uint64_t pictx, bool bsr)
1801 {
1802 XHCISlot *slot;
1803 USBDevice *dev;
1804 dma_addr_t ictx, octx, dcbaap;
1805 uint64_t poctx;
1806 uint32_t ictl_ctx[2];
1807 uint32_t slot_ctx[4];
1808 uint32_t ep0_ctx[5];
1809 unsigned int port;
1810 int i;
1811 TRBCCode res;
1812
1813 assert(slotid >= 1 && slotid <= MAXSLOTS);
1814 DPRINTF("xhci_address_slot(%d)\n", slotid);
1815
1816 dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
1817 pci_dma_read(&xhci->pci_dev, dcbaap + 8*slotid, &poctx, sizeof(poctx));
1818 ictx = xhci_mask64(pictx);
1819 octx = xhci_mask64(le64_to_cpu(poctx));
1820
1821 DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1822 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1823
1824 pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1825
1826 if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
1827 fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1828 ictl_ctx[0], ictl_ctx[1]);
1829 return CC_TRB_ERROR;
1830 }
1831
1832 pci_dma_read(&xhci->pci_dev, ictx+32, slot_ctx, sizeof(slot_ctx));
1833 pci_dma_read(&xhci->pci_dev, ictx+64, ep0_ctx, sizeof(ep0_ctx));
1834
1835 DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
1836 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1837
1838 DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
1839 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1840
1841 port = (slot_ctx[1]>>16) & 0xFF;
1842 dev = xhci->ports[port-1].port.dev;
1843
1844 if (port < 1 || port > MAXPORTS) {
1845 fprintf(stderr, "xhci: bad port %d\n", port);
1846 return CC_TRB_ERROR;
1847 } else if (!dev) {
1848 fprintf(stderr, "xhci: port %d not connected\n", port);
1849 return CC_USB_TRANSACTION_ERROR;
1850 }
1851
1852 for (i = 0; i < MAXSLOTS; i++) {
1853 if (xhci->slots[i].port == port) {
1854 fprintf(stderr, "xhci: port %d already assigned to slot %d\n",
1855 port, i+1);
1856 return CC_TRB_ERROR;
1857 }
1858 }
1859
1860 slot = &xhci->slots[slotid-1];
1861 slot->port = port;
1862 slot->ctx = octx;
1863
1864 if (bsr) {
1865 slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT;
1866 } else {
1867 slot->devaddr = xhci->devaddr++;
1868 slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr;
1869 DPRINTF("xhci: device address is %d\n", slot->devaddr);
1870 usb_device_handle_control(dev, NULL,
1871 DeviceOutRequest | USB_REQ_SET_ADDRESS,
1872 slot->devaddr, 0, 0, NULL);
1873 }
1874
1875 res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx);
1876
1877 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1878 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1879 DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
1880 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1881
1882 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1883 pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
1884
1885 return res;
1886 }
1887
1888
1889 static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
1890 uint64_t pictx, bool dc)
1891 {
1892 dma_addr_t ictx, octx;
1893 uint32_t ictl_ctx[2];
1894 uint32_t slot_ctx[4];
1895 uint32_t islot_ctx[4];
1896 uint32_t ep_ctx[5];
1897 int i;
1898 TRBCCode res;
1899
1900 assert(slotid >= 1 && slotid <= MAXSLOTS);
1901 DPRINTF("xhci_configure_slot(%d)\n", slotid);
1902
1903 ictx = xhci_mask64(pictx);
1904 octx = xhci->slots[slotid-1].ctx;
1905
1906 DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1907 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1908
1909 if (dc) {
1910 for (i = 2; i <= 31; i++) {
1911 if (xhci->slots[slotid-1].eps[i-1]) {
1912 xhci_disable_ep(xhci, slotid, i);
1913 }
1914 }
1915
1916 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1917 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1918 slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT;
1919 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1920 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1921 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1922
1923 return CC_SUCCESS;
1924 }
1925
1926 pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1927
1928 if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
1929 fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1930 ictl_ctx[0], ictl_ctx[1]);
1931 return CC_TRB_ERROR;
1932 }
1933
1934 pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx));
1935 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1936
1937 if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
1938 fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]);
1939 return CC_CONTEXT_STATE_ERROR;
1940 }
1941
1942 for (i = 2; i <= 31; i++) {
1943 if (ictl_ctx[0] & (1<<i)) {
1944 xhci_disable_ep(xhci, slotid, i);
1945 }
1946 if (ictl_ctx[1] & (1<<i)) {
1947 pci_dma_read(&xhci->pci_dev, ictx+32+(32*i), ep_ctx,
1948 sizeof(ep_ctx));
1949 DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n",
1950 i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1951 ep_ctx[3], ep_ctx[4]);
1952 xhci_disable_ep(xhci, slotid, i);
1953 res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx);
1954 if (res != CC_SUCCESS) {
1955 return res;
1956 }
1957 DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n",
1958 i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1959 ep_ctx[3], ep_ctx[4]);
1960 pci_dma_write(&xhci->pci_dev, octx+(32*i), ep_ctx, sizeof(ep_ctx));
1961 }
1962 }
1963
1964 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1965 slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT;
1966 slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT);
1967 slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK <<
1968 SLOT_CONTEXT_ENTRIES_SHIFT);
1969 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1970 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1971
1972 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1973
1974 return CC_SUCCESS;
1975 }
1976
1977
1978 static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
1979 uint64_t pictx)
1980 {
1981 dma_addr_t ictx, octx;
1982 uint32_t ictl_ctx[2];
1983 uint32_t iep0_ctx[5];
1984 uint32_t ep0_ctx[5];
1985 uint32_t islot_ctx[4];
1986 uint32_t slot_ctx[4];
1987
1988 assert(slotid >= 1 && slotid <= MAXSLOTS);
1989 DPRINTF("xhci_evaluate_slot(%d)\n", slotid);
1990
1991 ictx = xhci_mask64(pictx);
1992 octx = xhci->slots[slotid-1].ctx;
1993
1994 DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1995 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1996
1997 pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1998
1999 if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
2000 fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
2001 ictl_ctx[0], ictl_ctx[1]);
2002 return CC_TRB_ERROR;
2003 }
2004
2005 if (ictl_ctx[1] & 0x1) {
2006 pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx));
2007
2008 DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
2009 islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]);
2010
2011 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2012
2013 slot_ctx[1] &= ~0xFFFF; /* max exit latency */
2014 slot_ctx[1] |= islot_ctx[1] & 0xFFFF;
2015 slot_ctx[2] &= ~0xFF00000; /* interrupter target */
2016 slot_ctx[2] |= islot_ctx[2] & 0xFF000000;
2017
2018 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2019 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2020
2021 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2022 }
2023
2024 if (ictl_ctx[1] & 0x2) {
2025 pci_dma_read(&xhci->pci_dev, ictx+64, iep0_ctx, sizeof(iep0_ctx));
2026
2027 DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
2028 iep0_ctx[0], iep0_ctx[1], iep0_ctx[2],
2029 iep0_ctx[3], iep0_ctx[4]);
2030
2031 pci_dma_read(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
2032
2033 ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/
2034 ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000;
2035
2036 DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
2037 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
2038
2039 pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
2040 }
2041
2042 return CC_SUCCESS;
2043 }
2044
2045 static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid)
2046 {
2047 uint32_t slot_ctx[4];
2048 dma_addr_t octx;
2049 int i;
2050
2051 assert(slotid >= 1 && slotid <= MAXSLOTS);
2052 DPRINTF("xhci_reset_slot(%d)\n", slotid);
2053
2054 octx = xhci->slots[slotid-1].ctx;
2055
2056 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
2057
2058 for (i = 2; i <= 31; i++) {
2059 if (xhci->slots[slotid-1].eps[i-1]) {
2060 xhci_disable_ep(xhci, slotid, i);
2061 }
2062 }
2063
2064 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2065 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
2066 slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT;
2067 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2068 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2069 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2070
2071 return CC_SUCCESS;
2072 }
2073
2074 static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb)
2075 {
2076 unsigned int slotid;
2077 slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
2078 if (slotid < 1 || slotid > MAXSLOTS) {
2079 fprintf(stderr, "xhci: bad slot id %d\n", slotid);
2080 event->ccode = CC_TRB_ERROR;
2081 return 0;
2082 } else if (!xhci->slots[slotid-1].enabled) {
2083 fprintf(stderr, "xhci: slot id %d not enabled\n", slotid);
2084 event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
2085 return 0;
2086 }
2087 return slotid;
2088 }
2089
2090 static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx)
2091 {
2092 dma_addr_t ctx;
2093 uint8_t bw_ctx[MAXPORTS+1];
2094
2095 DPRINTF("xhci_get_port_bandwidth()\n");
2096
2097 ctx = xhci_mask64(pctx);
2098
2099 DPRINTF("xhci: bandwidth context at "DMA_ADDR_FMT"\n", ctx);
2100
2101 /* TODO: actually implement real values here */
2102 bw_ctx[0] = 0;
2103 memset(&bw_ctx[1], 80, MAXPORTS); /* 80% */
2104 pci_dma_write(&xhci->pci_dev, ctx, bw_ctx, sizeof(bw_ctx));
2105
2106 return CC_SUCCESS;
2107 }
2108
2109 static uint32_t rotl(uint32_t v, unsigned count)
2110 {
2111 count &= 31;
2112 return (v << count) | (v >> (32 - count));
2113 }
2114
2115
2116 static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo)
2117 {
2118 uint32_t val;
2119 val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F));
2120 val += rotl(lo + 0x49434878, hi & 0x1F);
2121 val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F);
2122 return ~val;
2123 }
2124
2125 static void xhci_via_challenge(XHCIState *xhci, uint64_t addr)
2126 {
2127 uint32_t buf[8];
2128 uint32_t obuf[8];
2129 dma_addr_t paddr = xhci_mask64(addr);
2130
2131 pci_dma_read(&xhci->pci_dev, paddr, &buf, 32);
2132
2133 memcpy(obuf, buf, sizeof(obuf));
2134
2135 if ((buf[0] & 0xff) == 2) {
2136 obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3];
2137 obuf[0] |= (buf[2] * buf[3]) & 0xff;
2138 obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3];
2139 obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3];
2140 obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3];
2141 obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3];
2142 obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3];
2143 obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956;
2144 obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593;
2145 }
2146
2147 pci_dma_write(&xhci->pci_dev, paddr, &obuf, 32);
2148 }
2149
2150 static void xhci_process_commands(XHCIState *xhci)
2151 {
2152 XHCITRB trb;
2153 TRBType type;
2154 XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS};
2155 dma_addr_t addr;
2156 unsigned int i, slotid = 0;
2157
2158 DPRINTF("xhci_process_commands()\n");
2159 if (!xhci_running(xhci)) {
2160 DPRINTF("xhci_process_commands() called while xHC stopped or paused\n");
2161 return;
2162 }
2163
2164 xhci->crcr_low |= CRCR_CRR;
2165
2166 while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) {
2167 event.ptr = addr;
2168 switch (type) {
2169 case CR_ENABLE_SLOT:
2170 for (i = 0; i < MAXSLOTS; i++) {
2171 if (!xhci->slots[i].enabled) {
2172 break;
2173 }
2174 }
2175 if (i >= MAXSLOTS) {
2176 fprintf(stderr, "xhci: no device slots available\n");
2177 event.ccode = CC_NO_SLOTS_ERROR;
2178 } else {
2179 slotid = i+1;
2180 event.ccode = xhci_enable_slot(xhci, slotid);
2181 }
2182 break;
2183 case CR_DISABLE_SLOT:
2184 slotid = xhci_get_slot(xhci, &event, &trb);
2185 if (slotid) {
2186 event.ccode = xhci_disable_slot(xhci, slotid);
2187 }
2188 break;
2189 case CR_ADDRESS_DEVICE:
2190 slotid = xhci_get_slot(xhci, &event, &trb);
2191 if (slotid) {
2192 event.ccode = xhci_address_slot(xhci, slotid, trb.parameter,
2193 trb.control & TRB_CR_BSR);
2194 }
2195 break;
2196 case CR_CONFIGURE_ENDPOINT:
2197 slotid = xhci_get_slot(xhci, &event, &trb);
2198 if (slotid) {
2199 event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter,
2200 trb.control & TRB_CR_DC);
2201 }
2202 break;
2203 case CR_EVALUATE_CONTEXT:
2204 slotid = xhci_get_slot(xhci, &event, &trb);
2205 if (slotid) {
2206 event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter);
2207 }
2208 break;
2209 case CR_STOP_ENDPOINT:
2210 slotid = xhci_get_slot(xhci, &event, &trb);
2211 if (slotid) {
2212 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2213 & TRB_CR_EPID_MASK;
2214 event.ccode = xhci_stop_ep(xhci, slotid, epid);
2215 }
2216 break;
2217 case CR_RESET_ENDPOINT:
2218 slotid = xhci_get_slot(xhci, &event, &trb);
2219 if (slotid) {
2220 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2221 & TRB_CR_EPID_MASK;
2222 event.ccode = xhci_reset_ep(xhci, slotid, epid);
2223 }
2224 break;
2225 case CR_SET_TR_DEQUEUE:
2226 slotid = xhci_get_slot(xhci, &event, &trb);
2227 if (slotid) {
2228 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2229 & TRB_CR_EPID_MASK;
2230 event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid,
2231 trb.parameter);
2232 }
2233 break;
2234 case CR_RESET_DEVICE:
2235 slotid = xhci_get_slot(xhci, &event, &trb);
2236 if (slotid) {
2237 event.ccode = xhci_reset_slot(xhci, slotid);
2238 }
2239 break;
2240 case CR_GET_PORT_BANDWIDTH:
2241 event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter);
2242 break;
2243 case CR_VENDOR_VIA_CHALLENGE_RESPONSE:
2244 xhci_via_challenge(xhci, trb.parameter);
2245 break;
2246 case CR_VENDOR_NEC_FIRMWARE_REVISION:
2247 event.type = 48; /* NEC reply */
2248 event.length = 0x3025;
2249 break;
2250 case CR_VENDOR_NEC_CHALLENGE_RESPONSE:
2251 {
2252 uint32_t chi = trb.parameter >> 32;
2253 uint32_t clo = trb.parameter;
2254 uint32_t val = xhci_nec_challenge(chi, clo);
2255 event.length = val & 0xFFFF;
2256 event.epid = val >> 16;
2257 slotid = val >> 24;
2258 event.type = 48; /* NEC reply */
2259 }
2260 break;
2261 default:
2262 fprintf(stderr, "xhci: unimplemented command %d\n", type);
2263 event.ccode = CC_TRB_ERROR;
2264 break;
2265 }
2266 event.slotid = slotid;
2267 xhci_event(xhci, &event);
2268 }
2269 }
2270
2271 static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach)
2272 {
2273 int nr = port->port.index + 1;
2274
2275 port->portsc = PORTSC_PP;
2276 if (port->port.dev && port->port.dev->attached && !is_detach) {
2277 port->portsc |= PORTSC_CCS;
2278 switch (port->port.dev->speed) {
2279 case USB_SPEED_LOW:
2280 port->portsc |= PORTSC_SPEED_LOW;
2281 break;
2282 case USB_SPEED_FULL:
2283 port->portsc |= PORTSC_SPEED_FULL;
2284 break;
2285 case USB_SPEED_HIGH:
2286 port->portsc |= PORTSC_SPEED_HIGH;
2287 break;
2288 }
2289 }
2290
2291 if (xhci_running(xhci)) {
2292 port->portsc |= PORTSC_CSC;
2293 XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
2294 xhci_event(xhci, &ev);
2295 DPRINTF("xhci: port change event for port %d\n", nr);
2296 }
2297 }
2298
2299 static void xhci_reset(void *opaque)
2300 {
2301 XHCIState *xhci = opaque;
2302 int i;
2303
2304 DPRINTF("xhci: full reset\n");
2305 if (!(xhci->usbsts & USBSTS_HCH)) {
2306 fprintf(stderr, "xhci: reset while running!\n");
2307 }
2308
2309 xhci->usbcmd = 0;
2310 xhci->usbsts = USBSTS_HCH;
2311 xhci->dnctrl = 0;
2312 xhci->crcr_low = 0;
2313 xhci->crcr_high = 0;
2314 xhci->dcbaap_low = 0;
2315 xhci->dcbaap_high = 0;
2316 xhci->config = 0;
2317 xhci->devaddr = 2;
2318
2319 for (i = 0; i < MAXSLOTS; i++) {
2320 xhci_disable_slot(xhci, i+1);
2321 }
2322
2323 for (i = 0; i < MAXPORTS; i++) {
2324 xhci_update_port(xhci, xhci->ports + i, 0);
2325 }
2326
2327 xhci->mfindex = 0;
2328 xhci->iman = 0;
2329 xhci->imod = 0;
2330 xhci->erstsz = 0;
2331 xhci->erstba_low = 0;
2332 xhci->erstba_high = 0;
2333 xhci->erdp_low = 0;
2334 xhci->erdp_high = 0;
2335
2336 xhci->er_ep_idx = 0;
2337 xhci->er_pcs = 1;
2338 xhci->er_full = 0;
2339 xhci->ev_buffer_put = 0;
2340 xhci->ev_buffer_get = 0;
2341 }
2342
2343 static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg)
2344 {
2345 DPRINTF("xhci_cap_read(0x%x)\n", reg);
2346
2347 switch (reg) {
2348 case 0x00: /* HCIVERSION, CAPLENGTH */
2349 return 0x01000000 | LEN_CAP;
2350 case 0x04: /* HCSPARAMS 1 */
2351 return (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS;
2352 case 0x08: /* HCSPARAMS 2 */
2353 return 0x0000000f;
2354 case 0x0c: /* HCSPARAMS 3 */
2355 return 0x00000000;
2356 case 0x10: /* HCCPARAMS */
2357 #if TARGET_PHYS_ADDR_BITS > 32
2358 return 0x00081001;
2359 #else
2360 return 0x00081000;
2361 #endif
2362 case 0x14: /* DBOFF */
2363 return OFF_DOORBELL;
2364 case 0x18: /* RTSOFF */
2365 return OFF_RUNTIME;
2366
2367 /* extended capabilities */
2368 case 0x20: /* Supported Protocol:00 */
2369 #if USB3_PORTS > 0
2370 return 0x02000402; /* USB 2.0 */
2371 #else
2372 return 0x02000002; /* USB 2.0 */
2373 #endif
2374 case 0x24: /* Supported Protocol:04 */
2375 return 0x20425455; /* "USB " */
2376 case 0x28: /* Supported Protocol:08 */
2377 return 0x00000001 | (USB2_PORTS<<8);
2378 case 0x2c: /* Supported Protocol:0c */
2379 return 0x00000000; /* reserved */
2380 #if USB3_PORTS > 0
2381 case 0x30: /* Supported Protocol:00 */
2382 return 0x03000002; /* USB 3.0 */
2383 case 0x34: /* Supported Protocol:04 */
2384 return 0x20425455; /* "USB " */
2385 case 0x38: /* Supported Protocol:08 */
2386 return 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8);
2387 case 0x3c: /* Supported Protocol:0c */
2388 return 0x00000000; /* reserved */
2389 #endif
2390 default:
2391 fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg);
2392 }
2393 return 0;
2394 }
2395
2396 static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg)
2397 {
2398 uint32_t port = reg >> 4;
2399 if (port >= MAXPORTS) {
2400 fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2401 return 0;
2402 }
2403
2404 switch (reg & 0xf) {
2405 case 0x00: /* PORTSC */
2406 return xhci->ports[port].portsc;
2407 case 0x04: /* PORTPMSC */
2408 case 0x08: /* PORTLI */
2409 return 0;
2410 case 0x0c: /* reserved */
2411 default:
2412 fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
2413 port, reg);
2414 return 0;
2415 }
2416 }
2417
2418 static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2419 {
2420 uint32_t port = reg >> 4;
2421 uint32_t portsc;
2422
2423 if (port >= MAXPORTS) {
2424 fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2425 return;
2426 }
2427
2428 switch (reg & 0xf) {
2429 case 0x00: /* PORTSC */
2430 portsc = xhci->ports[port].portsc;
2431 /* write-1-to-clear bits*/
2432 portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC|
2433 PORTSC_PRC|PORTSC_PLC|PORTSC_CEC));
2434 if (val & PORTSC_LWS) {
2435 /* overwrite PLS only when LWS=1 */
2436 portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2437 portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2438 }
2439 /* read/write bits */
2440 portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE);
2441 portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE));
2442 /* write-1-to-start bits */
2443 if (val & PORTSC_PR) {
2444 DPRINTF("xhci: port %d reset\n", port);
2445 usb_device_reset(xhci->ports[port].port.dev);
2446 portsc |= PORTSC_PRC | PORTSC_PED;
2447 }
2448 xhci->ports[port].portsc = portsc;
2449 break;
2450 case 0x04: /* PORTPMSC */
2451 case 0x08: /* PORTLI */
2452 default:
2453 fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n",
2454 port, reg);
2455 }
2456 }
2457
2458 static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg)
2459 {
2460 DPRINTF("xhci_oper_read(0x%x)\n", reg);
2461
2462 if (reg >= 0x400) {
2463 return xhci_port_read(xhci, reg - 0x400);
2464 }
2465
2466 switch (reg) {
2467 case 0x00: /* USBCMD */
2468 return xhci->usbcmd;
2469 case 0x04: /* USBSTS */
2470 return xhci->usbsts;
2471 case 0x08: /* PAGESIZE */
2472 return 1; /* 4KiB */
2473 case 0x14: /* DNCTRL */
2474 return xhci->dnctrl;
2475 case 0x18: /* CRCR low */
2476 return xhci->crcr_low & ~0xe;
2477 case 0x1c: /* CRCR high */
2478 return xhci->crcr_high;
2479 case 0x30: /* DCBAAP low */
2480 return xhci->dcbaap_low;
2481 case 0x34: /* DCBAAP high */
2482 return xhci->dcbaap_high;
2483 case 0x38: /* CONFIG */
2484 return xhci->config;
2485 default:
2486 fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg);
2487 }
2488 return 0;
2489 }
2490
2491 static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2492 {
2493 DPRINTF("xhci_oper_write(0x%x, 0x%08x)\n", reg, val);
2494
2495 if (reg >= 0x400) {
2496 xhci_port_write(xhci, reg - 0x400, val);
2497 return;
2498 }
2499
2500 switch (reg) {
2501 case 0x00: /* USBCMD */
2502 if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
2503 xhci_run(xhci);
2504 } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) {
2505 xhci_stop(xhci);
2506 }
2507 xhci->usbcmd = val & 0xc0f;
2508 if (val & USBCMD_HCRST) {
2509 xhci_reset(xhci);
2510 }
2511 xhci_irq_update(xhci);
2512 break;
2513
2514 case 0x04: /* USBSTS */
2515 /* these bits are write-1-to-clear */
2516 xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE));
2517 xhci_irq_update(xhci);
2518 break;
2519
2520 case 0x14: /* DNCTRL */
2521 xhci->dnctrl = val & 0xffff;
2522 break;
2523 case 0x18: /* CRCR low */
2524 xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR);
2525 break;
2526 case 0x1c: /* CRCR high */
2527 xhci->crcr_high = val;
2528 if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) {
2529 XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED};
2530 xhci->crcr_low &= ~CRCR_CRR;
2531 xhci_event(xhci, &event);
2532 DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low);
2533 } else {
2534 dma_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val);
2535 xhci_ring_init(xhci, &xhci->cmd_ring, base);
2536 }
2537 xhci->crcr_low &= ~(CRCR_CA | CRCR_CS);
2538 break;
2539 case 0x30: /* DCBAAP low */
2540 xhci->dcbaap_low = val & 0xffffffc0;
2541 break;
2542 case 0x34: /* DCBAAP high */
2543 xhci->dcbaap_high = val;
2544 break;
2545 case 0x38: /* CONFIG */
2546 xhci->config = val & 0xff;
2547 break;
2548 default:
2549 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2550 }
2551 }
2552
2553 static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg)
2554 {
2555 DPRINTF("xhci_runtime_read(0x%x)\n", reg);
2556
2557 switch (reg) {
2558 case 0x00: /* MFINDEX */
2559 fprintf(stderr, "xhci_runtime_read: MFINDEX not yet implemented\n");
2560 return xhci->mfindex;
2561 case 0x20: /* IMAN */
2562 return xhci->iman;
2563 case 0x24: /* IMOD */
2564 return xhci->imod;
2565 case 0x28: /* ERSTSZ */
2566 return xhci->erstsz;
2567 case 0x30: /* ERSTBA low */
2568 return xhci->erstba_low;
2569 case 0x34: /* ERSTBA high */
2570 return xhci->erstba_high;
2571 case 0x38: /* ERDP low */
2572 return xhci->erdp_low;
2573 case 0x3c: /* ERDP high */
2574 return xhci->erdp_high;
2575 default:
2576 fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg);
2577 }
2578 return 0;
2579 }
2580
2581 static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2582 {
2583 DPRINTF("xhci_runtime_write(0x%x, 0x%08x)\n", reg, val);
2584
2585 switch (reg) {
2586 case 0x20: /* IMAN */
2587 if (val & IMAN_IP) {
2588 xhci->iman &= ~IMAN_IP;
2589 }
2590 xhci->iman &= ~IMAN_IE;
2591 xhci->iman |= val & IMAN_IE;
2592 xhci_irq_update(xhci);
2593 break;
2594 case 0x24: /* IMOD */
2595 xhci->imod = val;
2596 break;
2597 case 0x28: /* ERSTSZ */
2598 xhci->erstsz = val & 0xffff;
2599 break;
2600 case 0x30: /* ERSTBA low */
2601 /* XXX NEC driver bug: it doesn't align this to 64 bytes
2602 xhci->erstba_low = val & 0xffffffc0; */
2603 xhci->erstba_low = val & 0xfffffff0;
2604 break;
2605 case 0x34: /* ERSTBA high */
2606 xhci->erstba_high = val;
2607 xhci_er_reset(xhci);
2608 break;
2609 case 0x38: /* ERDP low */
2610 if (val & ERDP_EHB) {
2611 xhci->erdp_low &= ~ERDP_EHB;
2612 }
2613 xhci->erdp_low = (val & ~ERDP_EHB) | (xhci->erdp_low & ERDP_EHB);
2614 break;
2615 case 0x3c: /* ERDP high */
2616 xhci->erdp_high = val;
2617 xhci_events_update(xhci);
2618 break;
2619 default:
2620 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2621 }
2622 }
2623
2624 static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg)
2625 {
2626 DPRINTF("xhci_doorbell_read(0x%x)\n", reg);
2627 /* doorbells always read as 0 */
2628 return 0;
2629 }
2630
2631 static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2632 {
2633 DPRINTF("xhci_doorbell_write(0x%x, 0x%08x)\n", reg, val);
2634
2635 if (!xhci_running(xhci)) {
2636 fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
2637 return;
2638 }
2639
2640 reg >>= 2;
2641
2642 if (reg == 0) {
2643 if (val == 0) {
2644 xhci_process_commands(xhci);
2645 } else {
2646 fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", val);
2647 }
2648 } else {
2649 if (reg > MAXSLOTS) {
2650 fprintf(stderr, "xhci: bad doorbell %d\n", reg);
2651 } else if (val > 31) {
2652 fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", reg, val);
2653 } else {
2654 xhci_kick_ep(xhci, reg, val);
2655 }
2656 }
2657 }
2658
2659 static uint64_t xhci_mem_read(void *ptr, target_phys_addr_t addr,
2660 unsigned size)
2661 {
2662 XHCIState *xhci = ptr;
2663
2664 /* Only aligned reads are allowed on xHCI */
2665 if (addr & 3) {
2666 fprintf(stderr, "xhci_mem_read: Mis-aligned read\n");
2667 return 0;
2668 }
2669
2670 if (addr < LEN_CAP) {
2671 return xhci_cap_read(xhci, addr);
2672 } else if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2673 return xhci_oper_read(xhci, addr - OFF_OPER);
2674 } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2675 return xhci_runtime_read(xhci, addr - OFF_RUNTIME);
2676 } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2677 return xhci_doorbell_read(xhci, addr - OFF_DOORBELL);
2678 } else {
2679 fprintf(stderr, "xhci_mem_read: Bad offset %x\n", (int)addr);
2680 return 0;
2681 }
2682 }
2683
2684 static void xhci_mem_write(void *ptr, target_phys_addr_t addr,
2685 uint64_t val, unsigned size)
2686 {
2687 XHCIState *xhci = ptr;
2688
2689 /* Only aligned writes are allowed on xHCI */
2690 if (addr & 3) {
2691 fprintf(stderr, "xhci_mem_write: Mis-aligned write\n");
2692 return;
2693 }
2694
2695 if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2696 xhci_oper_write(xhci, addr - OFF_OPER, val);
2697 } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2698 xhci_runtime_write(xhci, addr - OFF_RUNTIME, val);
2699 } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2700 xhci_doorbell_write(xhci, addr - OFF_DOORBELL, val);
2701 } else {
2702 fprintf(stderr, "xhci_mem_write: Bad offset %x\n", (int)addr);
2703 }
2704 }
2705
2706 static const MemoryRegionOps xhci_mem_ops = {
2707 .read = xhci_mem_read,
2708 .write = xhci_mem_write,
2709 .valid.min_access_size = 4,
2710 .valid.max_access_size = 4,
2711 .endianness = DEVICE_LITTLE_ENDIAN,
2712 };
2713
2714 static void xhci_attach(USBPort *usbport)
2715 {
2716 XHCIState *xhci = usbport->opaque;
2717 XHCIPort *port = &xhci->ports[usbport->index];
2718
2719 xhci_update_port(xhci, port, 0);
2720 }
2721
2722 static void xhci_detach(USBPort *usbport)
2723 {
2724 XHCIState *xhci = usbport->opaque;
2725 XHCIPort *port = &xhci->ports[usbport->index];
2726
2727 xhci_update_port(xhci, port, 1);
2728 }
2729
2730 static void xhci_wakeup(USBPort *usbport)
2731 {
2732 XHCIState *xhci = usbport->opaque;
2733 XHCIPort *port = &xhci->ports[usbport->index];
2734 int nr = port->port.index + 1;
2735 XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
2736 uint32_t pls;
2737
2738 pls = (port->portsc >> PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK;
2739 if (pls != 3) {
2740 return;
2741 }
2742 port->portsc |= 0xf << PORTSC_PLS_SHIFT;
2743 if (port->portsc & PORTSC_PLC) {
2744 return;
2745 }
2746 port->portsc |= PORTSC_PLC;
2747 xhci_event(xhci, &ev);
2748 }
2749
2750 static void xhci_complete(USBPort *port, USBPacket *packet)
2751 {
2752 XHCITransfer *xfer = container_of(packet, XHCITransfer, packet);
2753
2754 xhci_complete_packet(xfer, packet->result);
2755 xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid);
2756 }
2757
2758 static void xhci_child_detach(USBPort *port, USBDevice *child)
2759 {
2760 FIXME();
2761 }
2762
2763 static USBPortOps xhci_port_ops = {
2764 .attach = xhci_attach,
2765 .detach = xhci_detach,
2766 .wakeup = xhci_wakeup,
2767 .complete = xhci_complete,
2768 .child_detach = xhci_child_detach,
2769 };
2770
2771 static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev)
2772 {
2773 XHCISlot *slot;
2774 int slotid;
2775
2776 for (slotid = 1; slotid <= MAXSLOTS; slotid++) {
2777 slot = &xhci->slots[slotid-1];
2778 if (slot->devaddr == dev->addr) {
2779 return slotid;
2780 }
2781 }
2782 return 0;
2783 }
2784
2785 static int xhci_find_epid(USBEndpoint *ep)
2786 {
2787 if (ep->nr == 0) {
2788 return 1;
2789 }
2790 if (ep->pid == USB_TOKEN_IN) {
2791 return ep->nr * 2 + 1;
2792 } else {
2793 return ep->nr * 2;
2794 }
2795 }
2796
2797 static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep)
2798 {
2799 XHCIState *xhci = container_of(bus, XHCIState, bus);
2800 int slotid;
2801
2802 DPRINTF("%s\n", __func__);
2803 slotid = xhci_find_slotid(xhci, ep->dev);
2804 if (slotid == 0 || !xhci->slots[slotid-1].enabled) {
2805 DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr);
2806 return;
2807 }
2808 xhci_kick_ep(xhci, slotid, xhci_find_epid(ep));
2809 }
2810
2811 static USBBusOps xhci_bus_ops = {
2812 .wakeup_endpoint = xhci_wakeup_endpoint,
2813 };
2814
2815 static void usb_xhci_init(XHCIState *xhci, DeviceState *dev)
2816 {
2817 int i;
2818
2819 xhci->usbsts = USBSTS_HCH;
2820
2821 usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev);
2822
2823 for (i = 0; i < MAXPORTS; i++) {
2824 memset(&xhci->ports[i], 0, sizeof(xhci->ports[i]));
2825 usb_register_port(&xhci->bus, &xhci->ports[i].port, xhci, i,
2826 &xhci_port_ops,
2827 USB_SPEED_MASK_LOW |
2828 USB_SPEED_MASK_FULL |
2829 USB_SPEED_MASK_HIGH);
2830 }
2831 for (i = 0; i < MAXSLOTS; i++) {
2832 xhci->slots[i].enabled = 0;
2833 }
2834
2835 qemu_register_reset(xhci_reset, xhci);
2836 }
2837
2838 static int usb_xhci_initfn(struct PCIDevice *dev)
2839 {
2840 int ret;
2841
2842 XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2843
2844 xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30; /* xHCI */
2845 xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */
2846 xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10;
2847 xhci->pci_dev.config[0x60] = 0x30; /* release number */
2848
2849 usb_xhci_init(xhci, &dev->qdev);
2850
2851 xhci->irq = xhci->pci_dev.irq[0];
2852
2853 memory_region_init_io(&xhci->mem, &xhci_mem_ops, xhci,
2854 "xhci", LEN_REGS);
2855 pci_register_bar(&xhci->pci_dev, 0,
2856 PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64,
2857 &xhci->mem);
2858
2859 ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0);
2860 assert(ret >= 0);
2861
2862 if (xhci->msi) {
2863 ret = msi_init(&xhci->pci_dev, 0x70, 1, true, false);
2864 assert(ret >= 0);
2865 }
2866
2867 return 0;
2868 }
2869
2870 static void xhci_write_config(PCIDevice *dev, uint32_t addr, uint32_t val,
2871 int len)
2872 {
2873 XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2874
2875 pci_default_write_config(dev, addr, val, len);
2876 if (xhci->msi) {
2877 msi_write_config(dev, addr, val, len);
2878 }
2879 }
2880
2881 static const VMStateDescription vmstate_xhci = {
2882 .name = "xhci",
2883 .unmigratable = 1,
2884 };
2885
2886 static Property xhci_properties[] = {
2887 DEFINE_PROP_UINT32("msi", XHCIState, msi, 0),
2888 DEFINE_PROP_END_OF_LIST(),
2889 };
2890
2891 static void xhci_class_init(ObjectClass *klass, void *data)
2892 {
2893 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2894 DeviceClass *dc = DEVICE_CLASS(klass);
2895
2896 dc->vmsd = &vmstate_xhci;
2897 dc->props = xhci_properties;
2898 k->init = usb_xhci_initfn;
2899 k->vendor_id = PCI_VENDOR_ID_NEC;
2900 k->device_id = PCI_DEVICE_ID_NEC_UPD720200;
2901 k->class_id = PCI_CLASS_SERIAL_USB;
2902 k->revision = 0x03;
2903 k->is_express = 1;
2904 k->config_write = xhci_write_config;
2905 }
2906
2907 static TypeInfo xhci_info = {
2908 .name = "nec-usb-xhci",
2909 .parent = TYPE_PCI_DEVICE,
2910 .instance_size = sizeof(XHCIState),
2911 .class_init = xhci_class_init,
2912 };
2913
2914 static void xhci_register_types(void)
2915 {
2916 type_register_static(&xhci_info);
2917 }
2918
2919 type_init(xhci_register_types)