]> git.proxmox.com Git - qemu.git/blob - hw/usb-ehci.c
d85e0a985159020cd7e02929ea33790370ebc1f8
[qemu.git] / hw / usb-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * TODO:
25 * o Downstream port handoff
26 */
27
28 #include "hw.h"
29 #include "qemu-timer.h"
30 #include "usb.h"
31 #include "pci.h"
32 #include "monitor.h"
33 #include "trace.h"
34
35 #define EHCI_DEBUG 0
36
37 #if EHCI_DEBUG
38 #define DPRINTF printf
39 #else
40 #define DPRINTF(...)
41 #endif
42
43 /* internal processing - reset HC to try and recover */
44 #define USB_RET_PROCERR (-99)
45
46 #define MMIO_SIZE 0x1000
47
48 /* Capability Registers Base Address - section 2.2 */
49 #define CAPREGBASE 0x0000
50 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
51 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
52 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
53 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
54 #define EECP HCCPARAMS + 1
55 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
56 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
57
58 #define OPREGBASE 0x0020 // Operational Registers Base Address
59
60 #define USBCMD OPREGBASE + 0x0000
61 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
62 #define USBCMD_HCRESET (1 << 1) // HC Reset
63 #define USBCMD_FLS (3 << 2) // Frame List Size
64 #define USBCMD_FLS_SH 2 // Frame List Size Shift
65 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
66 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
67 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
68 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
69 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
70 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
71 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
72 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
73
74 #define USBSTS OPREGBASE + 0x0004
75 #define USBSTS_RO_MASK 0x0000003f
76 #define USBSTS_INT (1 << 0) // USB Interrupt
77 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
78 #define USBSTS_PCD (1 << 2) // Port Change Detect
79 #define USBSTS_FLR (1 << 3) // Frame List Rollover
80 #define USBSTS_HSE (1 << 4) // Host System Error
81 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
82 #define USBSTS_HALT (1 << 12) // HC Halted
83 #define USBSTS_REC (1 << 13) // Reclamation
84 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
85 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
86
87 /*
88 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
89 * so no need to redefine here.
90 */
91 #define USBINTR OPREGBASE + 0x0008
92 #define USBINTR_MASK 0x0000003f
93
94 #define FRINDEX OPREGBASE + 0x000c
95 #define CTRLDSSEGMENT OPREGBASE + 0x0010
96 #define PERIODICLISTBASE OPREGBASE + 0x0014
97 #define ASYNCLISTADDR OPREGBASE + 0x0018
98 #define ASYNCLISTADDR_MASK 0xffffffe0
99
100 #define CONFIGFLAG OPREGBASE + 0x0040
101
102 #define PORTSC (OPREGBASE + 0x0044)
103 #define PORTSC_BEGIN PORTSC
104 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
105 /*
106 * Bits that are reserved or are read-only are masked out of values
107 * written to us by software
108 */
109 #define PORTSC_RO_MASK 0x007021c4
110 #define PORTSC_RWC_MASK 0x0000002a
111 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
112 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
113 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
114 #define PORTSC_PTC (15 << 16) // Port Test Control
115 #define PORTSC_PTC_SH 16 // Port Test Control shift
116 #define PORTSC_PIC (3 << 14) // Port Indicator Control
117 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
118 #define PORTSC_POWNER (1 << 13) // Port Owner
119 #define PORTSC_PPOWER (1 << 12) // Port Power
120 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
121 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
122 #define PORTSC_PRESET (1 << 8) // Port Reset
123 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
124 #define PORTSC_FPRES (1 << 6) // Force Port Resume
125 #define PORTSC_OCC (1 << 5) // Over Current Change
126 #define PORTSC_OCA (1 << 4) // Over Current Active
127 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
128 #define PORTSC_PED (1 << 2) // Port Enable/Disable
129 #define PORTSC_CSC (1 << 1) // Connect Status Change
130 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
131
132 #define FRAME_TIMER_FREQ 1000
133 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
134
135 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
136 #define NB_PORTS 4 // Number of downstream ports
137 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
138 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
139 #define MAX_QH 100 // Max allowable queue heads in a chain
140
141 /* Internal periodic / asynchronous schedule state machine states
142 */
143 typedef enum {
144 EST_INACTIVE = 1000,
145 EST_ACTIVE,
146 EST_EXECUTING,
147 EST_SLEEPING,
148 /* The following states are internal to the state machine function
149 */
150 EST_WAITLISTHEAD,
151 EST_FETCHENTRY,
152 EST_FETCHQH,
153 EST_FETCHITD,
154 EST_ADVANCEQUEUE,
155 EST_FETCHQTD,
156 EST_EXECUTE,
157 EST_WRITEBACK,
158 EST_HORIZONTALQH
159 } EHCI_STATES;
160
161 /* macros for accessing fields within next link pointer entry */
162 #define NLPTR_GET(x) ((x) & 0xffffffe0)
163 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
164 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
165
166 /* link pointer types */
167 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
168 #define NLPTR_TYPE_QH 1 // queue head
169 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
170 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
171
172
173 /* EHCI spec version 1.0 Section 3.3
174 */
175 typedef struct EHCIitd {
176 uint32_t next;
177
178 uint32_t transact[8];
179 #define ITD_XACT_ACTIVE (1 << 31)
180 #define ITD_XACT_DBERROR (1 << 30)
181 #define ITD_XACT_BABBLE (1 << 29)
182 #define ITD_XACT_XACTERR (1 << 28)
183 #define ITD_XACT_LENGTH_MASK 0x0fff0000
184 #define ITD_XACT_LENGTH_SH 16
185 #define ITD_XACT_IOC (1 << 15)
186 #define ITD_XACT_PGSEL_MASK 0x00007000
187 #define ITD_XACT_PGSEL_SH 12
188 #define ITD_XACT_OFFSET_MASK 0x00000fff
189
190 uint32_t bufptr[7];
191 #define ITD_BUFPTR_MASK 0xfffff000
192 #define ITD_BUFPTR_SH 12
193 #define ITD_BUFPTR_EP_MASK 0x00000f00
194 #define ITD_BUFPTR_EP_SH 8
195 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
196 #define ITD_BUFPTR_DEVADDR_SH 0
197 #define ITD_BUFPTR_DIRECTION (1 << 11)
198 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
199 #define ITD_BUFPTR_MAXPKT_SH 0
200 #define ITD_BUFPTR_MULT_MASK 0x00000003
201 #define ITD_BUFPTR_MULT_SH 0
202 } EHCIitd;
203
204 /* EHCI spec version 1.0 Section 3.4
205 */
206 typedef struct EHCIsitd {
207 uint32_t next; // Standard next link pointer
208 uint32_t epchar;
209 #define SITD_EPCHAR_IO (1 << 31)
210 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
211 #define SITD_EPCHAR_PORTNUM_SH 24
212 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
213 #define SITD_EPCHAR_HUBADDR_SH 16
214 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
215 #define SITD_EPCHAR_EPNUM_SH 8
216 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
217
218 uint32_t uframe;
219 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
220 #define SITD_UFRAME_CMASK_SH 8
221 #define SITD_UFRAME_SMASK_MASK 0x000000ff
222
223 uint32_t results;
224 #define SITD_RESULTS_IOC (1 << 31)
225 #define SITD_RESULTS_PGSEL (1 << 30)
226 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
227 #define SITD_RESULTS_TYBYTES_SH 16
228 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
229 #define SITD_RESULTS_CPROGMASK_SH 8
230 #define SITD_RESULTS_ACTIVE (1 << 7)
231 #define SITD_RESULTS_ERR (1 << 6)
232 #define SITD_RESULTS_DBERR (1 << 5)
233 #define SITD_RESULTS_BABBLE (1 << 4)
234 #define SITD_RESULTS_XACTERR (1 << 3)
235 #define SITD_RESULTS_MISSEDUF (1 << 2)
236 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
237
238 uint32_t bufptr[2];
239 #define SITD_BUFPTR_MASK 0xfffff000
240 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
241 #define SITD_BUFPTR_TPOS_MASK 0x00000018
242 #define SITD_BUFPTR_TPOS_SH 3
243 #define SITD_BUFPTR_TCNT_MASK 0x00000007
244
245 uint32_t backptr; // Standard next link pointer
246 } EHCIsitd;
247
248 /* EHCI spec version 1.0 Section 3.5
249 */
250 typedef struct EHCIqtd {
251 uint32_t next; // Standard next link pointer
252 uint32_t altnext; // Standard next link pointer
253 uint32_t token;
254 #define QTD_TOKEN_DTOGGLE (1 << 31)
255 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
256 #define QTD_TOKEN_TBYTES_SH 16
257 #define QTD_TOKEN_IOC (1 << 15)
258 #define QTD_TOKEN_CPAGE_MASK 0x00007000
259 #define QTD_TOKEN_CPAGE_SH 12
260 #define QTD_TOKEN_CERR_MASK 0x00000c00
261 #define QTD_TOKEN_CERR_SH 10
262 #define QTD_TOKEN_PID_MASK 0x00000300
263 #define QTD_TOKEN_PID_SH 8
264 #define QTD_TOKEN_ACTIVE (1 << 7)
265 #define QTD_TOKEN_HALT (1 << 6)
266 #define QTD_TOKEN_DBERR (1 << 5)
267 #define QTD_TOKEN_BABBLE (1 << 4)
268 #define QTD_TOKEN_XACTERR (1 << 3)
269 #define QTD_TOKEN_MISSEDUF (1 << 2)
270 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
271 #define QTD_TOKEN_PING (1 << 0)
272
273 uint32_t bufptr[5]; // Standard buffer pointer
274 #define QTD_BUFPTR_MASK 0xfffff000
275 } EHCIqtd;
276
277 /* EHCI spec version 1.0 Section 3.6
278 */
279 typedef struct EHCIqh {
280 uint32_t next; // Standard next link pointer
281
282 /* endpoint characteristics */
283 uint32_t epchar;
284 #define QH_EPCHAR_RL_MASK 0xf0000000
285 #define QH_EPCHAR_RL_SH 28
286 #define QH_EPCHAR_C (1 << 27)
287 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
288 #define QH_EPCHAR_MPLEN_SH 16
289 #define QH_EPCHAR_H (1 << 15)
290 #define QH_EPCHAR_DTC (1 << 14)
291 #define QH_EPCHAR_EPS_MASK 0x00003000
292 #define QH_EPCHAR_EPS_SH 12
293 #define EHCI_QH_EPS_FULL 0
294 #define EHCI_QH_EPS_LOW 1
295 #define EHCI_QH_EPS_HIGH 2
296 #define EHCI_QH_EPS_RESERVED 3
297
298 #define QH_EPCHAR_EP_MASK 0x00000f00
299 #define QH_EPCHAR_EP_SH 8
300 #define QH_EPCHAR_I (1 << 7)
301 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
302 #define QH_EPCHAR_DEVADDR_SH 0
303
304 /* endpoint capabilities */
305 uint32_t epcap;
306 #define QH_EPCAP_MULT_MASK 0xc0000000
307 #define QH_EPCAP_MULT_SH 30
308 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
309 #define QH_EPCAP_PORTNUM_SH 23
310 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
311 #define QH_EPCAP_HUBADDR_SH 16
312 #define QH_EPCAP_CMASK_MASK 0x0000ff00
313 #define QH_EPCAP_CMASK_SH 8
314 #define QH_EPCAP_SMASK_MASK 0x000000ff
315 #define QH_EPCAP_SMASK_SH 0
316
317 uint32_t current_qtd; // Standard next link pointer
318 uint32_t next_qtd; // Standard next link pointer
319 uint32_t altnext_qtd;
320 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
321 #define QH_ALTNEXT_NAKCNT_SH 1
322
323 uint32_t token; // Same as QTD token
324 uint32_t bufptr[5]; // Standard buffer pointer
325 #define BUFPTR_CPROGMASK_MASK 0x000000ff
326 #define BUFPTR_FRAMETAG_MASK 0x0000001f
327 #define BUFPTR_SBYTES_MASK 0x00000fe0
328 #define BUFPTR_SBYTES_SH 5
329 } EHCIqh;
330
331 /* EHCI spec version 1.0 Section 3.7
332 */
333 typedef struct EHCIfstn {
334 uint32_t next; // Standard next link pointer
335 uint32_t backptr; // Standard next link pointer
336 } EHCIfstn;
337
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIQueue {
348 EHCIState *ehci;
349 QTAILQ_ENTRY(EHCIQueue) next;
350 bool async_schedule;
351 uint32_t seen;
352 uint64_t ts;
353
354 /* cached data from guest - needs to be flushed
355 * when guest removes an entry (doorbell, handshake sequence)
356 */
357 EHCIqh qh; // copy of current QH (being worked on)
358 uint32_t qhaddr; // address QH read from
359 EHCIqtd qtd; // copy of current QTD (being worked on)
360 uint32_t qtdaddr; // address QTD read from
361
362 USBPacket packet;
363 uint8_t buffer[BUFF_SIZE];
364 int pid;
365 uint32_t tbytes;
366 enum async_state async;
367 int usb_status;
368 };
369
370 struct EHCIState {
371 PCIDevice dev;
372 USBBus bus;
373 qemu_irq irq;
374 target_phys_addr_t mem_base;
375 int mem;
376
377 /* properties */
378 uint32_t freq;
379 uint32_t maxframes;
380
381 /*
382 * EHCI spec version 1.0 Section 2.3
383 * Host Controller Operational Registers
384 */
385 union {
386 uint8_t mmio[MMIO_SIZE];
387 struct {
388 uint8_t cap[OPREGBASE];
389 uint32_t usbcmd;
390 uint32_t usbsts;
391 uint32_t usbintr;
392 uint32_t frindex;
393 uint32_t ctrldssegment;
394 uint32_t periodiclistbase;
395 uint32_t asynclistaddr;
396 uint32_t notused[9];
397 uint32_t configflag;
398 uint32_t portsc[NB_PORTS];
399 };
400 };
401
402 /*
403 * Internal states, shadow registers, etc
404 */
405 uint32_t sofv;
406 QEMUTimer *frame_timer;
407 int attach_poll_counter;
408 int astate; // Current state in asynchronous schedule
409 int pstate; // Current state in periodic schedule
410 USBPort ports[NB_PORTS];
411 uint32_t usbsts_pending;
412 QTAILQ_HEAD(, EHCIQueue) queues;
413
414 uint32_t a_fetch_addr; // which address to look at next
415 uint32_t p_fetch_addr; // which address to look at next
416
417 USBPacket ipacket;
418 uint8_t ibuffer[BUFF_SIZE];
419 int isoch_pause;
420
421 uint64_t last_run_ns;
422 };
423
424 #define SET_LAST_RUN_CLOCK(s) \
425 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426
427 /* nifty macros from Arnon's EHCI version */
428 #define get_field(data, field) \
429 (((data) & field##_MASK) >> field##_SH)
430
431 #define set_field(data, newval, field) do { \
432 uint32_t val = *data; \
433 val &= ~ field##_MASK; \
434 val |= ((newval) << field##_SH) & field##_MASK; \
435 *data = val; \
436 } while(0)
437
438 static const char *ehci_state_names[] = {
439 [ EST_INACTIVE ] = "INACTIVE",
440 [ EST_ACTIVE ] = "ACTIVE",
441 [ EST_EXECUTING ] = "EXECUTING",
442 [ EST_SLEEPING ] = "SLEEPING",
443 [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
444 [ EST_FETCHENTRY ] = "FETCH ENTRY",
445 [ EST_FETCHQH ] = "FETCH QH",
446 [ EST_FETCHITD ] = "FETCH ITD",
447 [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
448 [ EST_FETCHQTD ] = "FETCH QTD",
449 [ EST_EXECUTE ] = "EXECUTE",
450 [ EST_WRITEBACK ] = "WRITEBACK",
451 [ EST_HORIZONTALQH ] = "HORIZONTALQH",
452 };
453
454 static const char *ehci_mmio_names[] = {
455 [ CAPLENGTH ] = "CAPLENGTH",
456 [ HCIVERSION ] = "HCIVERSION",
457 [ HCSPARAMS ] = "HCSPARAMS",
458 [ HCCPARAMS ] = "HCCPARAMS",
459 [ USBCMD ] = "USBCMD",
460 [ USBSTS ] = "USBSTS",
461 [ USBINTR ] = "USBINTR",
462 [ FRINDEX ] = "FRINDEX",
463 [ PERIODICLISTBASE ] = "P-LIST BASE",
464 [ ASYNCLISTADDR ] = "A-LIST ADDR",
465 [ PORTSC_BEGIN ] = "PORTSC #0",
466 [ PORTSC_BEGIN + 4] = "PORTSC #1",
467 [ PORTSC_BEGIN + 8] = "PORTSC #2",
468 [ PORTSC_BEGIN + 12] = "PORTSC #3",
469 [ CONFIGFLAG ] = "CONFIGFLAG",
470 };
471
472 static const char *nr2str(const char **n, size_t len, uint32_t nr)
473 {
474 if (nr < len && n[nr] != NULL) {
475 return n[nr];
476 } else {
477 return "unknown";
478 }
479 }
480
481 static const char *state2str(uint32_t state)
482 {
483 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
484 }
485
486 static const char *addr2str(target_phys_addr_t addr)
487 {
488 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
489 }
490
491 static void ehci_trace_usbsts(uint32_t mask, int state)
492 {
493 /* interrupts */
494 if (mask & USBSTS_INT) {
495 trace_usb_ehci_usbsts("INT", state);
496 }
497 if (mask & USBSTS_ERRINT) {
498 trace_usb_ehci_usbsts("ERRINT", state);
499 }
500 if (mask & USBSTS_PCD) {
501 trace_usb_ehci_usbsts("PCD", state);
502 }
503 if (mask & USBSTS_FLR) {
504 trace_usb_ehci_usbsts("FLR", state);
505 }
506 if (mask & USBSTS_HSE) {
507 trace_usb_ehci_usbsts("HSE", state);
508 }
509 if (mask & USBSTS_IAA) {
510 trace_usb_ehci_usbsts("IAA", state);
511 }
512
513 /* status */
514 if (mask & USBSTS_HALT) {
515 trace_usb_ehci_usbsts("HALT", state);
516 }
517 if (mask & USBSTS_REC) {
518 trace_usb_ehci_usbsts("REC", state);
519 }
520 if (mask & USBSTS_PSS) {
521 trace_usb_ehci_usbsts("PSS", state);
522 }
523 if (mask & USBSTS_ASS) {
524 trace_usb_ehci_usbsts("ASS", state);
525 }
526 }
527
528 static inline void ehci_set_usbsts(EHCIState *s, int mask)
529 {
530 if ((s->usbsts & mask) == mask) {
531 return;
532 }
533 ehci_trace_usbsts(mask, 1);
534 s->usbsts |= mask;
535 }
536
537 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
538 {
539 if ((s->usbsts & mask) == 0) {
540 return;
541 }
542 ehci_trace_usbsts(mask, 0);
543 s->usbsts &= ~mask;
544 }
545
546 static inline void ehci_set_interrupt(EHCIState *s, int intr)
547 {
548 int level = 0;
549
550 // TODO honour interrupt threshold requests
551
552 ehci_set_usbsts(s, intr);
553
554 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
555 level = 1;
556 }
557
558 qemu_set_irq(s->irq, level);
559 }
560
561 static inline void ehci_record_interrupt(EHCIState *s, int intr)
562 {
563 s->usbsts_pending |= intr;
564 }
565
566 static inline void ehci_commit_interrupt(EHCIState *s)
567 {
568 if (!s->usbsts_pending) {
569 return;
570 }
571 ehci_set_interrupt(s, s->usbsts_pending);
572 s->usbsts_pending = 0;
573 }
574
575 static void ehci_set_state(EHCIState *s, int async, int state)
576 {
577 if (async) {
578 trace_usb_ehci_state("async", state2str(state));
579 s->astate = state;
580 } else {
581 trace_usb_ehci_state("periodic", state2str(state));
582 s->pstate = state;
583 }
584 }
585
586 static int ehci_get_state(EHCIState *s, int async)
587 {
588 return async ? s->astate : s->pstate;
589 }
590
591 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
592 {
593 if (async) {
594 s->a_fetch_addr = addr;
595 } else {
596 s->p_fetch_addr = addr;
597 }
598 }
599
600 static int ehci_get_fetch_addr(EHCIState *s, int async)
601 {
602 return async ? s->a_fetch_addr : s->p_fetch_addr;
603 }
604
605 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
606 {
607 /* need three here due to argument count limits */
608 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
609 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
610 trace_usb_ehci_qh_fields(addr,
611 get_field(qh->epchar, QH_EPCHAR_RL),
612 get_field(qh->epchar, QH_EPCHAR_MPLEN),
613 get_field(qh->epchar, QH_EPCHAR_EPS),
614 get_field(qh->epchar, QH_EPCHAR_EP),
615 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
616 trace_usb_ehci_qh_bits(addr,
617 (bool)(qh->epchar & QH_EPCHAR_C),
618 (bool)(qh->epchar & QH_EPCHAR_H),
619 (bool)(qh->epchar & QH_EPCHAR_DTC),
620 (bool)(qh->epchar & QH_EPCHAR_I));
621 }
622
623 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
624 {
625 /* need three here due to argument count limits */
626 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
627 trace_usb_ehci_qtd_fields(addr,
628 get_field(qtd->token, QTD_TOKEN_TBYTES),
629 get_field(qtd->token, QTD_TOKEN_CPAGE),
630 get_field(qtd->token, QTD_TOKEN_CERR),
631 get_field(qtd->token, QTD_TOKEN_PID));
632 trace_usb_ehci_qtd_bits(addr,
633 (bool)(qtd->token & QTD_TOKEN_IOC),
634 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
635 (bool)(qtd->token & QTD_TOKEN_HALT),
636 (bool)(qtd->token & QTD_TOKEN_BABBLE),
637 (bool)(qtd->token & QTD_TOKEN_XACTERR));
638 }
639
640 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
641 {
642 trace_usb_ehci_itd(addr, itd->next,
643 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
644 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
645 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
646 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
647 }
648
649 /* queue management */
650
651 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
652 {
653 EHCIQueue *q;
654
655 q = qemu_mallocz(sizeof(*q));
656 q->ehci = ehci;
657 q->async_schedule = async;
658 QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
659 trace_usb_ehci_queue_action(q, "alloc");
660 return q;
661 }
662
663 static void ehci_free_queue(EHCIQueue *q)
664 {
665 trace_usb_ehci_queue_action(q, "free");
666 if (q->async == EHCI_ASYNC_INFLIGHT) {
667 usb_cancel_packet(&q->packet);
668 }
669 QTAILQ_REMOVE(&q->ehci->queues, q, next);
670 qemu_free(q);
671 }
672
673 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
674 {
675 EHCIQueue *q;
676
677 QTAILQ_FOREACH(q, &ehci->queues, next) {
678 if (addr == q->qhaddr) {
679 return q;
680 }
681 }
682 return NULL;
683 }
684
685 static void ehci_queues_rip_unused(EHCIState *ehci)
686 {
687 EHCIQueue *q, *tmp;
688
689 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
690 if (q->seen) {
691 q->seen = 0;
692 q->ts = ehci->last_run_ns;
693 continue;
694 }
695 if (ehci->last_run_ns < q->ts + 250000000) {
696 /* allow 0.25 sec idle */
697 continue;
698 }
699 ehci_free_queue(q);
700 }
701 }
702
703 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
704 {
705 EHCIQueue *q, *tmp;
706
707 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
708 if (q->packet.owner != dev) {
709 continue;
710 }
711 ehci_free_queue(q);
712 }
713 }
714
715 static void ehci_queues_rip_all(EHCIState *ehci)
716 {
717 EHCIQueue *q, *tmp;
718
719 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
720 ehci_free_queue(q);
721 }
722 }
723
724 /* Attach or detach a device on root hub */
725
726 static void ehci_attach(USBPort *port)
727 {
728 EHCIState *s = port->opaque;
729 uint32_t *portsc = &s->portsc[port->index];
730
731 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
732
733 *portsc |= PORTSC_CONNECT;
734 *portsc |= PORTSC_CSC;
735
736 /*
737 * If a high speed device is attached then we own this port(indicated
738 * by zero in the PORTSC_POWNER bit field) so set the status bit
739 * and set an interrupt if enabled.
740 */
741 if ( !(*portsc & PORTSC_POWNER)) {
742 ehci_set_interrupt(s, USBSTS_PCD);
743 }
744 }
745
746 static void ehci_detach(USBPort *port)
747 {
748 EHCIState *s = port->opaque;
749 uint32_t *portsc = &s->portsc[port->index];
750
751 trace_usb_ehci_port_detach(port->index);
752
753 ehci_queues_rip_device(s, port->dev);
754
755 *portsc &= ~PORTSC_CONNECT;
756 *portsc |= PORTSC_CSC;
757
758 /*
759 * If a high speed device is attached then we own this port(indicated
760 * by zero in the PORTSC_POWNER bit field) so set the status bit
761 * and set an interrupt if enabled.
762 */
763 if ( !(*portsc & PORTSC_POWNER)) {
764 ehci_set_interrupt(s, USBSTS_PCD);
765 }
766 }
767
768 static void ehci_child_detach(USBPort *port, USBDevice *child)
769 {
770 EHCIState *s = port->opaque;
771
772 ehci_queues_rip_device(s, child);
773 }
774
775 /* 4.1 host controller initialization */
776 static void ehci_reset(void *opaque)
777 {
778 EHCIState *s = opaque;
779 int i;
780
781 trace_usb_ehci_reset();
782
783 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
784
785 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
786 s->usbsts = USBSTS_HALT;
787
788 s->astate = EST_INACTIVE;
789 s->pstate = EST_INACTIVE;
790 s->isoch_pause = -1;
791 s->attach_poll_counter = 0;
792
793 for(i = 0; i < NB_PORTS; i++) {
794 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
795
796 if (s->ports[i].dev) {
797 usb_attach(&s->ports[i], s->ports[i].dev);
798 }
799 }
800 ehci_queues_rip_all(s);
801 }
802
803 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
804 {
805 EHCIState *s = ptr;
806 uint32_t val;
807
808 val = s->mmio[addr];
809
810 return val;
811 }
812
813 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
814 {
815 EHCIState *s = ptr;
816 uint32_t val;
817
818 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
819
820 return val;
821 }
822
823 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
824 {
825 EHCIState *s = ptr;
826 uint32_t val;
827
828 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
829 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
830
831 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
832 return val;
833 }
834
835 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
836 {
837 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
838 exit(1);
839 }
840
841 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
842 {
843 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
844 exit(1);
845 }
846
847 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
848 {
849 uint32_t *portsc = &s->portsc[port];
850 int rwc;
851 USBDevice *dev = s->ports[port].dev;
852
853 rwc = val & PORTSC_RWC_MASK;
854 val &= PORTSC_RO_MASK;
855
856 // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
857
858 *portsc &= ~rwc;
859
860 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
861 trace_usb_ehci_port_reset(port, 1);
862 }
863
864 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
865 trace_usb_ehci_port_reset(port, 0);
866 if (dev) {
867 usb_attach(&s->ports[port], dev);
868 usb_send_msg(dev, USB_MSG_RESET);
869 *portsc &= ~PORTSC_CSC;
870 }
871
872 /* Table 2.16 Set the enable bit(and enable bit change) to indicate
873 * to SW that this port has a high speed device attached
874 *
875 * TODO - when to disable?
876 */
877 val |= PORTSC_PED;
878 val |= PORTSC_PEDC;
879 }
880
881 *portsc &= ~PORTSC_RO_MASK;
882 *portsc |= val;
883 }
884
885 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
886 {
887 EHCIState *s = ptr;
888 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
889 uint32_t old = *mmio;
890 int i;
891
892 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
893
894 /* Only aligned reads are allowed on OHCI */
895 if (addr & 3) {
896 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
897 TARGET_FMT_plx "\n", addr);
898 return;
899 }
900
901 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
902 handle_port_status_write(s, (addr-PORTSC)/4, val);
903 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
904 return;
905 }
906
907 if (addr < OPREGBASE) {
908 fprintf(stderr, "usb-ehci: write attempt to read-only register"
909 TARGET_FMT_plx "\n", addr);
910 return;
911 }
912
913
914 /* Do any register specific pre-write processing here. */
915 switch(addr) {
916 case USBCMD:
917 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
918 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
919 SET_LAST_RUN_CLOCK(s);
920 ehci_clear_usbsts(s, USBSTS_HALT);
921 }
922
923 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
924 qemu_del_timer(s->frame_timer);
925 // TODO - should finish out some stuff before setting halt
926 ehci_set_usbsts(s, USBSTS_HALT);
927 }
928
929 if (val & USBCMD_HCRESET) {
930 ehci_reset(s);
931 val &= ~USBCMD_HCRESET;
932 }
933
934 /* not supporting dynamic frame list size at the moment */
935 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
936 fprintf(stderr, "attempt to set frame list size -- value %d\n",
937 val & USBCMD_FLS);
938 val &= ~USBCMD_FLS;
939 }
940 break;
941
942 case USBSTS:
943 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
944 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
945 val = s->usbsts;
946 ehci_set_interrupt(s, 0);
947 break;
948
949 case USBINTR:
950 val &= USBINTR_MASK;
951 break;
952
953 case FRINDEX:
954 s->sofv = val >> 3;
955 break;
956
957 case CONFIGFLAG:
958 val &= 0x1;
959 if (val) {
960 for(i = 0; i < NB_PORTS; i++)
961 s->portsc[i] &= ~PORTSC_POWNER;
962 }
963 break;
964
965 case PERIODICLISTBASE:
966 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
967 fprintf(stderr,
968 "ehci: PERIODIC list base register set while periodic schedule\n"
969 " is enabled and HC is enabled\n");
970 }
971 break;
972
973 case ASYNCLISTADDR:
974 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
975 fprintf(stderr,
976 "ehci: ASYNC list address register set while async schedule\n"
977 " is enabled and HC is enabled\n");
978 }
979 break;
980 }
981
982 *mmio = val;
983 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
984 }
985
986
987 // TODO : Put in common header file, duplication from usb-ohci.c
988
989 /* Get an array of dwords from main memory */
990 static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
991 {
992 int i;
993
994 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
995 cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
996 *buf = le32_to_cpu(*buf);
997 }
998
999 return 1;
1000 }
1001
1002 /* Put an array of dwords in to main memory */
1003 static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1004 {
1005 int i;
1006
1007 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1008 uint32_t tmp = cpu_to_le32(*buf);
1009 cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1010 }
1011
1012 return 1;
1013 }
1014
1015 // 4.10.2
1016
1017 static int ehci_qh_do_overlay(EHCIQueue *q)
1018 {
1019 int i;
1020 int dtoggle;
1021 int ping;
1022 int eps;
1023 int reload;
1024
1025 // remember values in fields to preserve in qh after overlay
1026
1027 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1028 ping = q->qh.token & QTD_TOKEN_PING;
1029
1030 q->qh.current_qtd = q->qtdaddr;
1031 q->qh.next_qtd = q->qtd.next;
1032 q->qh.altnext_qtd = q->qtd.altnext;
1033 q->qh.token = q->qtd.token;
1034
1035
1036 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1037 if (eps == EHCI_QH_EPS_HIGH) {
1038 q->qh.token &= ~QTD_TOKEN_PING;
1039 q->qh.token |= ping;
1040 }
1041
1042 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1043 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1044
1045 for (i = 0; i < 5; i++) {
1046 q->qh.bufptr[i] = q->qtd.bufptr[i];
1047 }
1048
1049 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1050 // preserve QH DT bit
1051 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1052 q->qh.token |= dtoggle;
1053 }
1054
1055 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1056 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1057
1058 put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1059
1060 return 0;
1061 }
1062
1063 static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1064 {
1065 int bufpos = 0;
1066 int cpage, offset;
1067 uint32_t head;
1068 uint32_t tail;
1069
1070
1071 if (!bytes) {
1072 return 0;
1073 }
1074
1075 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1076 if (cpage > 4) {
1077 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1078 return USB_RET_PROCERR;
1079 }
1080
1081 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1082
1083 do {
1084 /* start and end of this page */
1085 head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1086 tail = head + ~QTD_BUFPTR_MASK + 1;
1087 /* add offset into page */
1088 head |= offset;
1089
1090 if (bytes <= (tail - head)) {
1091 tail = head + bytes;
1092 }
1093
1094 trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1095 cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1096
1097 bufpos += (tail - head);
1098 offset += (tail - head);
1099 bytes -= (tail - head);
1100
1101 if (bytes > 0) {
1102 cpage++;
1103 offset = 0;
1104 }
1105 } while (bytes > 0);
1106
1107 /* save cpage */
1108 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1109
1110 /* save offset into cpage */
1111 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1112 q->qh.bufptr[0] |= offset;
1113
1114 return 0;
1115 }
1116
1117 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1118 {
1119 EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1120
1121 trace_usb_ehci_queue_action(q, "wakeup");
1122 assert(q->async == EHCI_ASYNC_INFLIGHT);
1123 q->async = EHCI_ASYNC_FINISHED;
1124 q->usb_status = packet->len;
1125 }
1126
1127 static void ehci_execute_complete(EHCIQueue *q)
1128 {
1129 int c_err, reload;
1130
1131 assert(q->async != EHCI_ASYNC_INFLIGHT);
1132 q->async = EHCI_ASYNC_NONE;
1133
1134 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1135 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1136
1137 if (q->usb_status < 0) {
1138 err:
1139 /* TO-DO: put this is in a function that can be invoked below as well */
1140 c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1141 c_err--;
1142 set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1143
1144 switch(q->usb_status) {
1145 case USB_RET_NODEV:
1146 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1147 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1148 break;
1149 case USB_RET_STALL:
1150 q->qh.token |= QTD_TOKEN_HALT;
1151 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1152 break;
1153 case USB_RET_NAK:
1154 /* 4.10.3 */
1155 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1156 if ((q->pid == USB_TOKEN_IN) && reload) {
1157 int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1158 nakcnt--;
1159 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1160 } else if (!reload) {
1161 return;
1162 }
1163 break;
1164 case USB_RET_BABBLE:
1165 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1166 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1167 break;
1168 default:
1169 /* should not be triggerable */
1170 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1171 assert(0);
1172 break;
1173 }
1174 } else {
1175 // DPRINTF("Short packet condition\n");
1176 // TODO check 4.12 for splits
1177
1178 if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1179 q->usb_status = USB_RET_BABBLE;
1180 goto err;
1181 }
1182
1183 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1184 if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1185 q->usb_status = USB_RET_PROCERR;
1186 return;
1187 }
1188 q->tbytes -= q->usb_status;
1189 } else {
1190 q->tbytes = 0;
1191 }
1192
1193 DPRINTF("updating tbytes to %d\n", q->tbytes);
1194 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1195 }
1196
1197 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1198 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1199
1200 if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1201 ehci_record_interrupt(q->ehci, USBSTS_INT);
1202 }
1203 }
1204
1205 // 4.10.3
1206
1207 static int ehci_execute(EHCIQueue *q)
1208 {
1209 USBPort *port;
1210 USBDevice *dev;
1211 int ret;
1212 int i;
1213 int endp;
1214 int devadr;
1215
1216 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1217 fprintf(stderr, "Attempting to execute inactive QH\n");
1218 return USB_RET_PROCERR;
1219 }
1220
1221 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1222 if (q->tbytes > BUFF_SIZE) {
1223 fprintf(stderr, "Request for more bytes than allowed\n");
1224 return USB_RET_PROCERR;
1225 }
1226
1227 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1228 switch(q->pid) {
1229 case 0: q->pid = USB_TOKEN_OUT; break;
1230 case 1: q->pid = USB_TOKEN_IN; break;
1231 case 2: q->pid = USB_TOKEN_SETUP; break;
1232 default: fprintf(stderr, "bad token\n"); break;
1233 }
1234
1235 if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1236 (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1237 return USB_RET_PROCERR;
1238 }
1239
1240 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1241 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1242
1243 ret = USB_RET_NODEV;
1244
1245 // TO-DO: associating device with ehci port
1246 for(i = 0; i < NB_PORTS; i++) {
1247 port = &q->ehci->ports[i];
1248 dev = port->dev;
1249
1250 // TODO sometime we will also need to check if we are the port owner
1251
1252 if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1253 DPRINTF("Port %d, no exec, not connected(%08X)\n",
1254 i, q->ehci->portsc[i]);
1255 continue;
1256 }
1257
1258 q->packet.pid = q->pid;
1259 q->packet.devaddr = devadr;
1260 q->packet.devep = endp;
1261 q->packet.data = q->buffer;
1262 q->packet.len = q->tbytes;
1263
1264 ret = usb_handle_packet(dev, &q->packet);
1265
1266 DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1267 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1268 q->packet.len, q->tbytes, endp, ret);
1269
1270 if (ret != USB_RET_NODEV) {
1271 break;
1272 }
1273 }
1274
1275 if (ret > BUFF_SIZE) {
1276 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1277 return USB_RET_PROCERR;
1278 }
1279
1280 return ret;
1281 }
1282
1283 /* 4.7.2
1284 */
1285
1286 static int ehci_process_itd(EHCIState *ehci,
1287 EHCIitd *itd)
1288 {
1289 USBPort *port;
1290 USBDevice *dev;
1291 int ret;
1292 uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1293 uint32_t pg, off, ptr1, ptr2, max, mult;
1294
1295 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1296 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1297 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1298 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1299 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1300
1301 for(i = 0; i < 8; i++) {
1302 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1303 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1304 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1305 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1306 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1307 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1308
1309 if (len > max * mult) {
1310 len = max * mult;
1311 }
1312
1313 if (len > BUFF_SIZE) {
1314 return USB_RET_PROCERR;
1315 }
1316
1317 if (off + len > 4096) {
1318 /* transfer crosses page border */
1319 len2 = off + len - 4096;
1320 len1 = len - len2;
1321 } else {
1322 len1 = len;
1323 len2 = 0;
1324 }
1325
1326 if (!dir) {
1327 pid = USB_TOKEN_OUT;
1328 trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1329 cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1330 if (len2) {
1331 trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1332 cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1333 }
1334 } else {
1335 pid = USB_TOKEN_IN;
1336 }
1337
1338 ret = USB_RET_NODEV;
1339
1340 for (j = 0; j < NB_PORTS; j++) {
1341 port = &ehci->ports[j];
1342 dev = port->dev;
1343
1344 // TODO sometime we will also need to check if we are the port owner
1345
1346 if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1347 continue;
1348 }
1349
1350 ehci->ipacket.pid = pid;
1351 ehci->ipacket.devaddr = devaddr;
1352 ehci->ipacket.devep = endp;
1353 ehci->ipacket.data = ehci->ibuffer;
1354 ehci->ipacket.len = len;
1355
1356 ret = usb_handle_packet(dev, &ehci->ipacket);
1357
1358 if (ret != USB_RET_NODEV) {
1359 break;
1360 }
1361 }
1362
1363 #if 0
1364 /* In isoch, there is no facility to indicate a NAK so let's
1365 * instead just complete a zero-byte transaction. Setting
1366 * DBERR seems too draconian.
1367 */
1368
1369 if (ret == USB_RET_NAK) {
1370 if (ehci->isoch_pause > 0) {
1371 DPRINTF("ISOCH: received a NAK but paused so returning\n");
1372 ehci->isoch_pause--;
1373 return 0;
1374 } else if (ehci->isoch_pause == -1) {
1375 DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1376 // Pause frindex for up to 50 msec waiting for data from
1377 // remote
1378 ehci->isoch_pause = 50;
1379 return 0;
1380 } else {
1381 DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1382 ret = 0;
1383 }
1384 } else {
1385 DPRINTF("ISOCH: received ACK, clearing pause\n");
1386 ehci->isoch_pause = -1;
1387 }
1388 #else
1389 if (ret == USB_RET_NAK) {
1390 ret = 0;
1391 }
1392 #endif
1393
1394 if (ret >= 0) {
1395 if (!dir) {
1396 /* OUT */
1397 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1398 } else {
1399 /* IN */
1400 if (len1 > ret) {
1401 len1 = ret;
1402 }
1403 if (len2 > ret - len1) {
1404 len2 = ret - len1;
1405 }
1406 if (len1) {
1407 trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1408 cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1409 }
1410 if (len2) {
1411 trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1412 cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1413 }
1414 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1415 }
1416
1417 if (itd->transact[i] & ITD_XACT_IOC) {
1418 ehci_record_interrupt(ehci, USBSTS_INT);
1419 }
1420 }
1421 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1422 }
1423 }
1424 return 0;
1425 }
1426
1427 /* This state is the entry point for asynchronous schedule
1428 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1429 */
1430 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1431 {
1432 EHCIqh qh;
1433 int i = 0;
1434 int again = 0;
1435 uint32_t entry = ehci->asynclistaddr;
1436
1437 /* set reclamation flag at start event (4.8.6) */
1438 if (async) {
1439 ehci_set_usbsts(ehci, USBSTS_REC);
1440 }
1441
1442 ehci_queues_rip_unused(ehci);
1443
1444 /* Find the head of the list (4.9.1.1) */
1445 for(i = 0; i < MAX_QH; i++) {
1446 get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1447 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1448
1449 if (qh.epchar & QH_EPCHAR_H) {
1450 if (async) {
1451 entry |= (NLPTR_TYPE_QH << 1);
1452 }
1453
1454 ehci_set_fetch_addr(ehci, async, entry);
1455 ehci_set_state(ehci, async, EST_FETCHENTRY);
1456 again = 1;
1457 goto out;
1458 }
1459
1460 entry = qh.next;
1461 if (entry == ehci->asynclistaddr) {
1462 break;
1463 }
1464 }
1465
1466 /* no head found for list. */
1467
1468 ehci_set_state(ehci, async, EST_ACTIVE);
1469
1470 out:
1471 return again;
1472 }
1473
1474
1475 /* This state is the entry point for periodic schedule processing as
1476 * well as being a continuation state for async processing.
1477 */
1478 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1479 {
1480 int again = 0;
1481 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1482
1483 if (entry < 0x1000) {
1484 DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1485 ehci_set_state(ehci, async, EST_ACTIVE);
1486 goto out;
1487 }
1488
1489 /* section 4.8, only QH in async schedule */
1490 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1491 fprintf(stderr, "non queue head request in async schedule\n");
1492 return -1;
1493 }
1494
1495 switch (NLPTR_TYPE_GET(entry)) {
1496 case NLPTR_TYPE_QH:
1497 ehci_set_state(ehci, async, EST_FETCHQH);
1498 again = 1;
1499 break;
1500
1501 case NLPTR_TYPE_ITD:
1502 ehci_set_state(ehci, async, EST_FETCHITD);
1503 again = 1;
1504 break;
1505
1506 default:
1507 // TODO: handle siTD and FSTN types
1508 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1509 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1510 return -1;
1511 }
1512
1513 out:
1514 return again;
1515 }
1516
1517 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1518 {
1519 uint32_t entry;
1520 EHCIQueue *q;
1521 int reload;
1522
1523 entry = ehci_get_fetch_addr(ehci, async);
1524 q = ehci_find_queue_by_qh(ehci, entry);
1525 if (NULL == q) {
1526 q = ehci_alloc_queue(ehci, async);
1527 }
1528 q->qhaddr = entry;
1529 q->seen++;
1530
1531 if (q->seen > 1) {
1532 /* we are going in circles -- stop processing */
1533 ehci_set_state(ehci, async, EST_ACTIVE);
1534 q = NULL;
1535 goto out;
1536 }
1537
1538 get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1539 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1540
1541 if (q->async == EHCI_ASYNC_INFLIGHT) {
1542 /* I/O still in progress -- skip queue */
1543 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1544 goto out;
1545 }
1546 if (q->async == EHCI_ASYNC_FINISHED) {
1547 /* I/O finished -- continue processing queue */
1548 trace_usb_ehci_queue_action(q, "resume");
1549 ehci_set_state(ehci, async, EST_EXECUTING);
1550 goto out;
1551 }
1552
1553 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1554
1555 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1556 if (ehci->usbsts & USBSTS_REC) {
1557 ehci_clear_usbsts(ehci, USBSTS_REC);
1558 } else {
1559 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1560 " - done processing\n", q->qhaddr);
1561 ehci_set_state(ehci, async, EST_ACTIVE);
1562 q = NULL;
1563 goto out;
1564 }
1565 }
1566
1567 #if EHCI_DEBUG
1568 if (q->qhaddr != q->qh.next) {
1569 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1570 q->qhaddr,
1571 q->qh.epchar & QH_EPCHAR_H,
1572 q->qh.token & QTD_TOKEN_HALT,
1573 q->qh.token & QTD_TOKEN_ACTIVE,
1574 q->qh.next);
1575 }
1576 #endif
1577
1578 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1579 if (reload) {
1580 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1581 }
1582
1583 if (q->qh.token & QTD_TOKEN_HALT) {
1584 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1585
1586 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1587 q->qtdaddr = q->qh.current_qtd;
1588 ehci_set_state(ehci, async, EST_FETCHQTD);
1589
1590 } else {
1591 /* EHCI spec version 1.0 Section 4.10.2 */
1592 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1593 }
1594
1595 out:
1596 return q;
1597 }
1598
1599 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1600 {
1601 uint32_t entry;
1602 EHCIitd itd;
1603
1604 assert(!async);
1605 entry = ehci_get_fetch_addr(ehci, async);
1606
1607 get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1608 sizeof(EHCIitd) >> 2);
1609 ehci_trace_itd(ehci, entry, &itd);
1610
1611 if (ehci_process_itd(ehci, &itd) != 0) {
1612 return -1;
1613 }
1614
1615 put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1616 sizeof(EHCIitd) >> 2);
1617 ehci_set_fetch_addr(ehci, async, itd.next);
1618 ehci_set_state(ehci, async, EST_FETCHENTRY);
1619
1620 return 1;
1621 }
1622
1623 /* Section 4.10.2 - paragraph 3 */
1624 static int ehci_state_advqueue(EHCIQueue *q, int async)
1625 {
1626 #if 0
1627 /* TO-DO: 4.10.2 - paragraph 2
1628 * if I-bit is set to 1 and QH is not active
1629 * go to horizontal QH
1630 */
1631 if (I-bit set) {
1632 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1633 goto out;
1634 }
1635 #endif
1636
1637 /*
1638 * want data and alt-next qTD is valid
1639 */
1640 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1641 (q->qh.altnext_qtd > 0x1000) &&
1642 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1643 q->qtdaddr = q->qh.altnext_qtd;
1644 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1645
1646 /*
1647 * next qTD is valid
1648 */
1649 } else if ((q->qh.next_qtd > 0x1000) &&
1650 (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1651 q->qtdaddr = q->qh.next_qtd;
1652 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1653
1654 /*
1655 * no valid qTD, try next QH
1656 */
1657 } else {
1658 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1659 }
1660
1661 return 1;
1662 }
1663
1664 /* Section 4.10.2 - paragraph 4 */
1665 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1666 {
1667 int again = 0;
1668
1669 get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1670 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1671
1672 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1673 ehci_set_state(q->ehci, async, EST_EXECUTE);
1674 again = 1;
1675 } else {
1676 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1677 again = 1;
1678 }
1679
1680 return again;
1681 }
1682
1683 static int ehci_state_horizqh(EHCIQueue *q, int async)
1684 {
1685 int again = 0;
1686
1687 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1688 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1689 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1690 again = 1;
1691 } else {
1692 ehci_set_state(q->ehci, async, EST_ACTIVE);
1693 }
1694
1695 return again;
1696 }
1697
1698 /*
1699 * Write the qh back to guest physical memory. This step isn't
1700 * in the EHCI spec but we need to do it since we don't share
1701 * physical memory with our guest VM.
1702 *
1703 * The first three dwords are read-only for the EHCI, so skip them
1704 * when writing back the qh.
1705 */
1706 static void ehci_flush_qh(EHCIQueue *q)
1707 {
1708 uint32_t *qh = (uint32_t *) &q->qh;
1709 uint32_t dwords = sizeof(EHCIqh) >> 2;
1710 uint32_t addr = NLPTR_GET(q->qhaddr);
1711
1712 put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1713 }
1714
1715 static int ehci_state_execute(EHCIQueue *q, int async)
1716 {
1717 int again = 0;
1718 int reload, nakcnt;
1719 int smask;
1720
1721 if (ehci_qh_do_overlay(q) != 0) {
1722 return -1;
1723 }
1724
1725 smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1726
1727 if (!smask) {
1728 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1729 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1730 if (reload && !nakcnt) {
1731 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1732 again = 1;
1733 goto out;
1734 }
1735 }
1736
1737 // TODO verify enough time remains in the uframe as in 4.4.1.1
1738 // TODO write back ptr to async list when done or out of time
1739 // TODO Windows does not seem to ever set the MULT field
1740
1741 if (!async) {
1742 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1743 if (!transactCtr) {
1744 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1745 again = 1;
1746 goto out;
1747 }
1748 }
1749
1750 if (async) {
1751 ehci_set_usbsts(q->ehci, USBSTS_REC);
1752 }
1753
1754 q->usb_status = ehci_execute(q);
1755 if (q->usb_status == USB_RET_PROCERR) {
1756 again = -1;
1757 goto out;
1758 }
1759 if (q->usb_status == USB_RET_ASYNC) {
1760 ehci_flush_qh(q);
1761 trace_usb_ehci_queue_action(q, "suspend");
1762 q->async = EHCI_ASYNC_INFLIGHT;
1763 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1764 again = 1;
1765 goto out;
1766 }
1767
1768 ehci_set_state(q->ehci, async, EST_EXECUTING);
1769 again = 1;
1770
1771 out:
1772 return again;
1773 }
1774
1775 static int ehci_state_executing(EHCIQueue *q, int async)
1776 {
1777 int again = 0;
1778 int reload, nakcnt;
1779
1780 ehci_execute_complete(q);
1781 if (q->usb_status == USB_RET_ASYNC) {
1782 goto out;
1783 }
1784 if (q->usb_status == USB_RET_PROCERR) {
1785 again = -1;
1786 goto out;
1787 }
1788
1789 // 4.10.3
1790 if (!async) {
1791 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1792 transactCtr--;
1793 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1794 // 4.10.3, bottom of page 82, should exit this state when transaction
1795 // counter decrements to 0
1796 }
1797
1798 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1799 if (reload) {
1800 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1801 if (q->usb_status == USB_RET_NAK) {
1802 if (nakcnt) {
1803 nakcnt--;
1804 }
1805 } else {
1806 nakcnt = reload;
1807 }
1808 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1809 }
1810
1811 /* 4.10.5 */
1812 if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1813 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1814 } else {
1815 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1816 }
1817
1818 again = 1;
1819
1820 out:
1821 ehci_flush_qh(q);
1822 return again;
1823 }
1824
1825
1826 static int ehci_state_writeback(EHCIQueue *q, int async)
1827 {
1828 int again = 0;
1829
1830 /* Write back the QTD from the QH area */
1831 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1832 put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1833 sizeof(EHCIqtd) >> 2);
1834
1835 /*
1836 * EHCI specs say go horizontal here.
1837 *
1838 * We can also advance the queue here for performance reasons. We
1839 * need to take care to only take that shortcut in case we've
1840 * processed the qtd just written back without errors, i.e. halt
1841 * bit is clear.
1842 */
1843 if (q->qh.token & QTD_TOKEN_HALT) {
1844 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1845 again = 1;
1846 } else {
1847 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1848 again = 1;
1849 }
1850 return again;
1851 }
1852
1853 /*
1854 * This is the state machine that is common to both async and periodic
1855 */
1856
1857 static void ehci_advance_state(EHCIState *ehci,
1858 int async)
1859 {
1860 EHCIQueue *q = NULL;
1861 int again;
1862 int iter = 0;
1863
1864 do {
1865 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1866 iter++;
1867 /* if we are roaming a lot of QH without executing a qTD
1868 * something is wrong with the linked list. TO-DO: why is
1869 * this hack needed?
1870 */
1871 assert(iter < MAX_ITERATIONS);
1872 #if 0
1873 if (iter > MAX_ITERATIONS) {
1874 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1875 ehci_set_state(ehci, async, EST_ACTIVE);
1876 break;
1877 }
1878 #endif
1879 }
1880 switch(ehci_get_state(ehci, async)) {
1881 case EST_WAITLISTHEAD:
1882 again = ehci_state_waitlisthead(ehci, async);
1883 break;
1884
1885 case EST_FETCHENTRY:
1886 again = ehci_state_fetchentry(ehci, async);
1887 break;
1888
1889 case EST_FETCHQH:
1890 q = ehci_state_fetchqh(ehci, async);
1891 again = q ? 1 : 0;
1892 break;
1893
1894 case EST_FETCHITD:
1895 again = ehci_state_fetchitd(ehci, async);
1896 break;
1897
1898 case EST_ADVANCEQUEUE:
1899 again = ehci_state_advqueue(q, async);
1900 break;
1901
1902 case EST_FETCHQTD:
1903 again = ehci_state_fetchqtd(q, async);
1904 break;
1905
1906 case EST_HORIZONTALQH:
1907 again = ehci_state_horizqh(q, async);
1908 break;
1909
1910 case EST_EXECUTE:
1911 iter = 0;
1912 again = ehci_state_execute(q, async);
1913 break;
1914
1915 case EST_EXECUTING:
1916 assert(q != NULL);
1917 again = ehci_state_executing(q, async);
1918 break;
1919
1920 case EST_WRITEBACK:
1921 again = ehci_state_writeback(q, async);
1922 break;
1923
1924 default:
1925 fprintf(stderr, "Bad state!\n");
1926 again = -1;
1927 assert(0);
1928 break;
1929 }
1930
1931 if (again < 0) {
1932 fprintf(stderr, "processing error - resetting ehci HC\n");
1933 ehci_reset(ehci);
1934 again = 0;
1935 assert(0);
1936 }
1937 }
1938 while (again);
1939
1940 ehci_commit_interrupt(ehci);
1941 }
1942
1943 static void ehci_advance_async_state(EHCIState *ehci)
1944 {
1945 int async = 1;
1946
1947 switch(ehci_get_state(ehci, async)) {
1948 case EST_INACTIVE:
1949 if (!(ehci->usbcmd & USBCMD_ASE)) {
1950 break;
1951 }
1952 ehci_set_usbsts(ehci, USBSTS_ASS);
1953 ehci_set_state(ehci, async, EST_ACTIVE);
1954 // No break, fall through to ACTIVE
1955
1956 case EST_ACTIVE:
1957 if ( !(ehci->usbcmd & USBCMD_ASE)) {
1958 ehci_clear_usbsts(ehci, USBSTS_ASS);
1959 ehci_set_state(ehci, async, EST_INACTIVE);
1960 break;
1961 }
1962
1963 /* If the doorbell is set, the guest wants to make a change to the
1964 * schedule. The host controller needs to release cached data.
1965 * (section 4.8.2)
1966 */
1967 if (ehci->usbcmd & USBCMD_IAAD) {
1968 DPRINTF("ASYNC: doorbell request acknowledged\n");
1969 ehci->usbcmd &= ~USBCMD_IAAD;
1970 ehci_set_interrupt(ehci, USBSTS_IAA);
1971 break;
1972 }
1973
1974 /* make sure guest has acknowledged */
1975 /* TO-DO: is this really needed? */
1976 if (ehci->usbsts & USBSTS_IAA) {
1977 DPRINTF("IAA status bit still set.\n");
1978 break;
1979 }
1980
1981 /* check that address register has been set */
1982 if (ehci->asynclistaddr == 0) {
1983 break;
1984 }
1985
1986 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1987 ehci_advance_state(ehci, async);
1988 break;
1989
1990 default:
1991 /* this should only be due to a developer mistake */
1992 fprintf(stderr, "ehci: Bad asynchronous state %d. "
1993 "Resetting to active\n", ehci->astate);
1994 assert(0);
1995 }
1996 }
1997
1998 static void ehci_advance_periodic_state(EHCIState *ehci)
1999 {
2000 uint32_t entry;
2001 uint32_t list;
2002 int async = 0;
2003
2004 // 4.6
2005
2006 switch(ehci_get_state(ehci, async)) {
2007 case EST_INACTIVE:
2008 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2009 ehci_set_usbsts(ehci, USBSTS_PSS);
2010 ehci_set_state(ehci, async, EST_ACTIVE);
2011 // No break, fall through to ACTIVE
2012 } else
2013 break;
2014
2015 case EST_ACTIVE:
2016 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2017 ehci_clear_usbsts(ehci, USBSTS_PSS);
2018 ehci_set_state(ehci, async, EST_INACTIVE);
2019 break;
2020 }
2021
2022 list = ehci->periodiclistbase & 0xfffff000;
2023 /* check that register has been set */
2024 if (list == 0) {
2025 break;
2026 }
2027 list |= ((ehci->frindex & 0x1ff8) >> 1);
2028
2029 cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2030 entry = le32_to_cpu(entry);
2031
2032 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2033 ehci->frindex / 8, list, entry);
2034 ehci_set_fetch_addr(ehci, async,entry);
2035 ehci_set_state(ehci, async, EST_FETCHENTRY);
2036 ehci_advance_state(ehci, async);
2037 break;
2038
2039 default:
2040 /* this should only be due to a developer mistake */
2041 fprintf(stderr, "ehci: Bad periodic state %d. "
2042 "Resetting to active\n", ehci->pstate);
2043 assert(0);
2044 }
2045 }
2046
2047 static void ehci_frame_timer(void *opaque)
2048 {
2049 EHCIState *ehci = opaque;
2050 int64_t expire_time, t_now;
2051 uint64_t ns_elapsed;
2052 int frames;
2053 int i;
2054 int skipped_frames = 0;
2055
2056 t_now = qemu_get_clock_ns(vm_clock);
2057 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2058
2059 ns_elapsed = t_now - ehci->last_run_ns;
2060 frames = ns_elapsed / FRAME_TIMER_NS;
2061
2062 for (i = 0; i < frames; i++) {
2063 if ( !(ehci->usbsts & USBSTS_HALT)) {
2064 if (ehci->isoch_pause <= 0) {
2065 ehci->frindex += 8;
2066 }
2067
2068 if (ehci->frindex > 0x00001fff) {
2069 ehci->frindex = 0;
2070 ehci_set_interrupt(ehci, USBSTS_FLR);
2071 }
2072
2073 ehci->sofv = (ehci->frindex - 1) >> 3;
2074 ehci->sofv &= 0x000003ff;
2075 }
2076
2077 if (frames - i > ehci->maxframes) {
2078 skipped_frames++;
2079 } else {
2080 ehci_advance_periodic_state(ehci);
2081 }
2082
2083 ehci->last_run_ns += FRAME_TIMER_NS;
2084 }
2085
2086 #if 0
2087 if (skipped_frames) {
2088 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2089 }
2090 #endif
2091
2092 /* Async is not inside loop since it executes everything it can once
2093 * called
2094 */
2095 ehci_advance_async_state(ehci);
2096
2097 qemu_mod_timer(ehci->frame_timer, expire_time);
2098 }
2099
2100 static CPUReadMemoryFunc *ehci_readfn[3]={
2101 ehci_mem_readb,
2102 ehci_mem_readw,
2103 ehci_mem_readl
2104 };
2105
2106 static CPUWriteMemoryFunc *ehci_writefn[3]={
2107 ehci_mem_writeb,
2108 ehci_mem_writew,
2109 ehci_mem_writel
2110 };
2111
2112 static void ehci_map(PCIDevice *pci_dev, int region_num,
2113 pcibus_t addr, pcibus_t size, int type)
2114 {
2115 EHCIState *s =(EHCIState *)pci_dev;
2116
2117 DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2118 region_num, addr, size, s->mem);
2119 s->mem_base = addr;
2120 cpu_register_physical_memory(addr, size, s->mem);
2121 }
2122
2123 static int usb_ehci_initfn(PCIDevice *dev);
2124
2125 static USBPortOps ehci_port_ops = {
2126 .attach = ehci_attach,
2127 .detach = ehci_detach,
2128 .child_detach = ehci_child_detach,
2129 .complete = ehci_async_complete_packet,
2130 };
2131
2132 static USBBusOps ehci_bus_ops = {
2133 };
2134
2135 static PCIDeviceInfo ehci_info = {
2136 .qdev.name = "usb-ehci",
2137 .qdev.size = sizeof(EHCIState),
2138 .init = usb_ehci_initfn,
2139 .vendor_id = PCI_VENDOR_ID_INTEL,
2140 .device_id = PCI_DEVICE_ID_INTEL_82801D,
2141 .revision = 0x10,
2142 .class_id = PCI_CLASS_SERIAL_USB,
2143 .qdev.props = (Property[]) {
2144 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2145 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2146 DEFINE_PROP_END_OF_LIST(),
2147 },
2148 };
2149
2150 static int usb_ehci_initfn(PCIDevice *dev)
2151 {
2152 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2153 uint8_t *pci_conf = s->dev.config;
2154 int i;
2155
2156 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2157
2158 /* capabilities pointer */
2159 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2160 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2161
2162 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2163 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2164 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2165
2166 // pci_conf[0x50] = 0x01; // power management caps
2167
2168 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2169 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2170 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2171
2172 pci_conf[0x64] = 0x00;
2173 pci_conf[0x65] = 0x00;
2174 pci_conf[0x66] = 0x00;
2175 pci_conf[0x67] = 0x00;
2176 pci_conf[0x68] = 0x01;
2177 pci_conf[0x69] = 0x00;
2178 pci_conf[0x6a] = 0x00;
2179 pci_conf[0x6b] = 0x00; // USBLEGSUP
2180 pci_conf[0x6c] = 0x00;
2181 pci_conf[0x6d] = 0x00;
2182 pci_conf[0x6e] = 0x00;
2183 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2184
2185 // 2.2 host controller interface version
2186 s->mmio[0x00] = (uint8_t) OPREGBASE;
2187 s->mmio[0x01] = 0x00;
2188 s->mmio[0x02] = 0x00;
2189 s->mmio[0x03] = 0x01; // HC version
2190 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2191 s->mmio[0x05] = 0x00; // No companion ports at present
2192 s->mmio[0x06] = 0x00;
2193 s->mmio[0x07] = 0x00;
2194 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2195 s->mmio[0x09] = 0x68; // EECP
2196 s->mmio[0x0a] = 0x00;
2197 s->mmio[0x0b] = 0x00;
2198
2199 s->irq = s->dev.irq[3];
2200
2201 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2202 for(i = 0; i < NB_PORTS; i++) {
2203 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2204 USB_SPEED_MASK_HIGH);
2205 s->ports[i].dev = 0;
2206 }
2207
2208 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2209 QTAILQ_INIT(&s->queues);
2210
2211 qemu_register_reset(ehci_reset, s);
2212
2213 s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2214 DEVICE_LITTLE_ENDIAN);
2215
2216 pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2217 ehci_map);
2218
2219 fprintf(stderr, "*** EHCI support is under development ***\n");
2220
2221 return 0;
2222 }
2223
2224 static void ehci_register(void)
2225 {
2226 pci_qdev_register(&ehci_info);
2227 }
2228 device_init(ehci_register);
2229
2230 /*
2231 * vim: expandtab ts=4
2232 */