]> git.proxmox.com Git - mirror_qemu.git/blob - hw/usb-ehci.c
Merge remote-tracking branch 'kwolf/block-stable' into staging
[mirror_qemu.git] / hw / usb-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw.h"
26 #include "qemu-timer.h"
27 #include "usb.h"
28 #include "pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
137 #define MAX_QH 100 // Max allowable queue heads in a chain
138
139 /* Internal periodic / asynchronous schedule state machine states
140 */
141 typedef enum {
142 EST_INACTIVE = 1000,
143 EST_ACTIVE,
144 EST_EXECUTING,
145 EST_SLEEPING,
146 /* The following states are internal to the state machine function
147 */
148 EST_WAITLISTHEAD,
149 EST_FETCHENTRY,
150 EST_FETCHQH,
151 EST_FETCHITD,
152 EST_FETCHSITD,
153 EST_ADVANCEQUEUE,
154 EST_FETCHQTD,
155 EST_EXECUTE,
156 EST_WRITEBACK,
157 EST_HORIZONTALQH
158 } EHCI_STATES;
159
160 /* macros for accessing fields within next link pointer entry */
161 #define NLPTR_GET(x) ((x) & 0xffffffe0)
162 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
163 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
164
165 /* link pointer types */
166 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
167 #define NLPTR_TYPE_QH 1 // queue head
168 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
169 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
170
171
172 /* EHCI spec version 1.0 Section 3.3
173 */
174 typedef struct EHCIitd {
175 uint32_t next;
176
177 uint32_t transact[8];
178 #define ITD_XACT_ACTIVE (1 << 31)
179 #define ITD_XACT_DBERROR (1 << 30)
180 #define ITD_XACT_BABBLE (1 << 29)
181 #define ITD_XACT_XACTERR (1 << 28)
182 #define ITD_XACT_LENGTH_MASK 0x0fff0000
183 #define ITD_XACT_LENGTH_SH 16
184 #define ITD_XACT_IOC (1 << 15)
185 #define ITD_XACT_PGSEL_MASK 0x00007000
186 #define ITD_XACT_PGSEL_SH 12
187 #define ITD_XACT_OFFSET_MASK 0x00000fff
188
189 uint32_t bufptr[7];
190 #define ITD_BUFPTR_MASK 0xfffff000
191 #define ITD_BUFPTR_SH 12
192 #define ITD_BUFPTR_EP_MASK 0x00000f00
193 #define ITD_BUFPTR_EP_SH 8
194 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
195 #define ITD_BUFPTR_DEVADDR_SH 0
196 #define ITD_BUFPTR_DIRECTION (1 << 11)
197 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
198 #define ITD_BUFPTR_MAXPKT_SH 0
199 #define ITD_BUFPTR_MULT_MASK 0x00000003
200 #define ITD_BUFPTR_MULT_SH 0
201 } EHCIitd;
202
203 /* EHCI spec version 1.0 Section 3.4
204 */
205 typedef struct EHCIsitd {
206 uint32_t next; // Standard next link pointer
207 uint32_t epchar;
208 #define SITD_EPCHAR_IO (1 << 31)
209 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
210 #define SITD_EPCHAR_PORTNUM_SH 24
211 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
212 #define SITD_EPCHAR_HUBADDR_SH 16
213 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
214 #define SITD_EPCHAR_EPNUM_SH 8
215 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
216
217 uint32_t uframe;
218 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
219 #define SITD_UFRAME_CMASK_SH 8
220 #define SITD_UFRAME_SMASK_MASK 0x000000ff
221
222 uint32_t results;
223 #define SITD_RESULTS_IOC (1 << 31)
224 #define SITD_RESULTS_PGSEL (1 << 30)
225 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
226 #define SITD_RESULTS_TYBYTES_SH 16
227 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
228 #define SITD_RESULTS_CPROGMASK_SH 8
229 #define SITD_RESULTS_ACTIVE (1 << 7)
230 #define SITD_RESULTS_ERR (1 << 6)
231 #define SITD_RESULTS_DBERR (1 << 5)
232 #define SITD_RESULTS_BABBLE (1 << 4)
233 #define SITD_RESULTS_XACTERR (1 << 3)
234 #define SITD_RESULTS_MISSEDUF (1 << 2)
235 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
236
237 uint32_t bufptr[2];
238 #define SITD_BUFPTR_MASK 0xfffff000
239 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
240 #define SITD_BUFPTR_TPOS_MASK 0x00000018
241 #define SITD_BUFPTR_TPOS_SH 3
242 #define SITD_BUFPTR_TCNT_MASK 0x00000007
243
244 uint32_t backptr; // Standard next link pointer
245 } EHCIsitd;
246
247 /* EHCI spec version 1.0 Section 3.5
248 */
249 typedef struct EHCIqtd {
250 uint32_t next; // Standard next link pointer
251 uint32_t altnext; // Standard next link pointer
252 uint32_t token;
253 #define QTD_TOKEN_DTOGGLE (1 << 31)
254 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
255 #define QTD_TOKEN_TBYTES_SH 16
256 #define QTD_TOKEN_IOC (1 << 15)
257 #define QTD_TOKEN_CPAGE_MASK 0x00007000
258 #define QTD_TOKEN_CPAGE_SH 12
259 #define QTD_TOKEN_CERR_MASK 0x00000c00
260 #define QTD_TOKEN_CERR_SH 10
261 #define QTD_TOKEN_PID_MASK 0x00000300
262 #define QTD_TOKEN_PID_SH 8
263 #define QTD_TOKEN_ACTIVE (1 << 7)
264 #define QTD_TOKEN_HALT (1 << 6)
265 #define QTD_TOKEN_DBERR (1 << 5)
266 #define QTD_TOKEN_BABBLE (1 << 4)
267 #define QTD_TOKEN_XACTERR (1 << 3)
268 #define QTD_TOKEN_MISSEDUF (1 << 2)
269 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
270 #define QTD_TOKEN_PING (1 << 0)
271
272 uint32_t bufptr[5]; // Standard buffer pointer
273 #define QTD_BUFPTR_MASK 0xfffff000
274 #define QTD_BUFPTR_SH 12
275 } EHCIqtd;
276
277 /* EHCI spec version 1.0 Section 3.6
278 */
279 typedef struct EHCIqh {
280 uint32_t next; // Standard next link pointer
281
282 /* endpoint characteristics */
283 uint32_t epchar;
284 #define QH_EPCHAR_RL_MASK 0xf0000000
285 #define QH_EPCHAR_RL_SH 28
286 #define QH_EPCHAR_C (1 << 27)
287 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
288 #define QH_EPCHAR_MPLEN_SH 16
289 #define QH_EPCHAR_H (1 << 15)
290 #define QH_EPCHAR_DTC (1 << 14)
291 #define QH_EPCHAR_EPS_MASK 0x00003000
292 #define QH_EPCHAR_EPS_SH 12
293 #define EHCI_QH_EPS_FULL 0
294 #define EHCI_QH_EPS_LOW 1
295 #define EHCI_QH_EPS_HIGH 2
296 #define EHCI_QH_EPS_RESERVED 3
297
298 #define QH_EPCHAR_EP_MASK 0x00000f00
299 #define QH_EPCHAR_EP_SH 8
300 #define QH_EPCHAR_I (1 << 7)
301 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
302 #define QH_EPCHAR_DEVADDR_SH 0
303
304 /* endpoint capabilities */
305 uint32_t epcap;
306 #define QH_EPCAP_MULT_MASK 0xc0000000
307 #define QH_EPCAP_MULT_SH 30
308 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
309 #define QH_EPCAP_PORTNUM_SH 23
310 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
311 #define QH_EPCAP_HUBADDR_SH 16
312 #define QH_EPCAP_CMASK_MASK 0x0000ff00
313 #define QH_EPCAP_CMASK_SH 8
314 #define QH_EPCAP_SMASK_MASK 0x000000ff
315 #define QH_EPCAP_SMASK_SH 0
316
317 uint32_t current_qtd; // Standard next link pointer
318 uint32_t next_qtd; // Standard next link pointer
319 uint32_t altnext_qtd;
320 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
321 #define QH_ALTNEXT_NAKCNT_SH 1
322
323 uint32_t token; // Same as QTD token
324 uint32_t bufptr[5]; // Standard buffer pointer
325 #define BUFPTR_CPROGMASK_MASK 0x000000ff
326 #define BUFPTR_FRAMETAG_MASK 0x0000001f
327 #define BUFPTR_SBYTES_MASK 0x00000fe0
328 #define BUFPTR_SBYTES_SH 5
329 } EHCIqh;
330
331 /* EHCI spec version 1.0 Section 3.7
332 */
333 typedef struct EHCIfstn {
334 uint32_t next; // Standard next link pointer
335 uint32_t backptr; // Standard next link pointer
336 } EHCIfstn;
337
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIQueue {
348 EHCIState *ehci;
349 QTAILQ_ENTRY(EHCIQueue) next;
350 bool async_schedule;
351 uint32_t seen;
352 uint64_t ts;
353
354 /* cached data from guest - needs to be flushed
355 * when guest removes an entry (doorbell, handshake sequence)
356 */
357 EHCIqh qh; // copy of current QH (being worked on)
358 uint32_t qhaddr; // address QH read from
359 EHCIqtd qtd; // copy of current QTD (being worked on)
360 uint32_t qtdaddr; // address QTD read from
361
362 USBPacket packet;
363 QEMUSGList sgl;
364 int pid;
365 uint32_t tbytes;
366 enum async_state async;
367 int usb_status;
368 };
369
370 struct EHCIState {
371 PCIDevice dev;
372 USBBus bus;
373 qemu_irq irq;
374 MemoryRegion mem;
375 int companion_count;
376
377 /* properties */
378 uint32_t freq;
379 uint32_t maxframes;
380
381 /*
382 * EHCI spec version 1.0 Section 2.3
383 * Host Controller Operational Registers
384 */
385 union {
386 uint8_t mmio[MMIO_SIZE];
387 struct {
388 uint8_t cap[OPREGBASE];
389 uint32_t usbcmd;
390 uint32_t usbsts;
391 uint32_t usbintr;
392 uint32_t frindex;
393 uint32_t ctrldssegment;
394 uint32_t periodiclistbase;
395 uint32_t asynclistaddr;
396 uint32_t notused[9];
397 uint32_t configflag;
398 uint32_t portsc[NB_PORTS];
399 };
400 };
401
402 /*
403 * Internal states, shadow registers, etc
404 */
405 uint32_t sofv;
406 QEMUTimer *frame_timer;
407 int attach_poll_counter;
408 int astate; // Current state in asynchronous schedule
409 int pstate; // Current state in periodic schedule
410 USBPort ports[NB_PORTS];
411 USBPort *companion_ports[NB_PORTS];
412 uint32_t usbsts_pending;
413 QTAILQ_HEAD(, EHCIQueue) queues;
414
415 uint32_t a_fetch_addr; // which address to look at next
416 uint32_t p_fetch_addr; // which address to look at next
417
418 USBPacket ipacket;
419 QEMUSGList isgl;
420 int isoch_pause;
421
422 uint64_t last_run_ns;
423 };
424
425 #define SET_LAST_RUN_CLOCK(s) \
426 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427
428 /* nifty macros from Arnon's EHCI version */
429 #define get_field(data, field) \
430 (((data) & field##_MASK) >> field##_SH)
431
432 #define set_field(data, newval, field) do { \
433 uint32_t val = *data; \
434 val &= ~ field##_MASK; \
435 val |= ((newval) << field##_SH) & field##_MASK; \
436 *data = val; \
437 } while(0)
438
439 static const char *ehci_state_names[] = {
440 [EST_INACTIVE] = "INACTIVE",
441 [EST_ACTIVE] = "ACTIVE",
442 [EST_EXECUTING] = "EXECUTING",
443 [EST_SLEEPING] = "SLEEPING",
444 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
445 [EST_FETCHENTRY] = "FETCH ENTRY",
446 [EST_FETCHQH] = "FETCH QH",
447 [EST_FETCHITD] = "FETCH ITD",
448 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
449 [EST_FETCHQTD] = "FETCH QTD",
450 [EST_EXECUTE] = "EXECUTE",
451 [EST_WRITEBACK] = "WRITEBACK",
452 [EST_HORIZONTALQH] = "HORIZONTALQH",
453 };
454
455 static const char *ehci_mmio_names[] = {
456 [CAPLENGTH] = "CAPLENGTH",
457 [HCIVERSION] = "HCIVERSION",
458 [HCSPARAMS] = "HCSPARAMS",
459 [HCCPARAMS] = "HCCPARAMS",
460 [USBCMD] = "USBCMD",
461 [USBSTS] = "USBSTS",
462 [USBINTR] = "USBINTR",
463 [FRINDEX] = "FRINDEX",
464 [PERIODICLISTBASE] = "P-LIST BASE",
465 [ASYNCLISTADDR] = "A-LIST ADDR",
466 [PORTSC_BEGIN] = "PORTSC #0",
467 [PORTSC_BEGIN + 4] = "PORTSC #1",
468 [PORTSC_BEGIN + 8] = "PORTSC #2",
469 [PORTSC_BEGIN + 12] = "PORTSC #3",
470 [PORTSC_BEGIN + 16] = "PORTSC #4",
471 [PORTSC_BEGIN + 20] = "PORTSC #5",
472 [CONFIGFLAG] = "CONFIGFLAG",
473 };
474
475 static const char *nr2str(const char **n, size_t len, uint32_t nr)
476 {
477 if (nr < len && n[nr] != NULL) {
478 return n[nr];
479 } else {
480 return "unknown";
481 }
482 }
483
484 static const char *state2str(uint32_t state)
485 {
486 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
487 }
488
489 static const char *addr2str(target_phys_addr_t addr)
490 {
491 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
492 }
493
494 static void ehci_trace_usbsts(uint32_t mask, int state)
495 {
496 /* interrupts */
497 if (mask & USBSTS_INT) {
498 trace_usb_ehci_usbsts("INT", state);
499 }
500 if (mask & USBSTS_ERRINT) {
501 trace_usb_ehci_usbsts("ERRINT", state);
502 }
503 if (mask & USBSTS_PCD) {
504 trace_usb_ehci_usbsts("PCD", state);
505 }
506 if (mask & USBSTS_FLR) {
507 trace_usb_ehci_usbsts("FLR", state);
508 }
509 if (mask & USBSTS_HSE) {
510 trace_usb_ehci_usbsts("HSE", state);
511 }
512 if (mask & USBSTS_IAA) {
513 trace_usb_ehci_usbsts("IAA", state);
514 }
515
516 /* status */
517 if (mask & USBSTS_HALT) {
518 trace_usb_ehci_usbsts("HALT", state);
519 }
520 if (mask & USBSTS_REC) {
521 trace_usb_ehci_usbsts("REC", state);
522 }
523 if (mask & USBSTS_PSS) {
524 trace_usb_ehci_usbsts("PSS", state);
525 }
526 if (mask & USBSTS_ASS) {
527 trace_usb_ehci_usbsts("ASS", state);
528 }
529 }
530
531 static inline void ehci_set_usbsts(EHCIState *s, int mask)
532 {
533 if ((s->usbsts & mask) == mask) {
534 return;
535 }
536 ehci_trace_usbsts(mask, 1);
537 s->usbsts |= mask;
538 }
539
540 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
541 {
542 if ((s->usbsts & mask) == 0) {
543 return;
544 }
545 ehci_trace_usbsts(mask, 0);
546 s->usbsts &= ~mask;
547 }
548
549 static inline void ehci_set_interrupt(EHCIState *s, int intr)
550 {
551 int level = 0;
552
553 // TODO honour interrupt threshold requests
554
555 ehci_set_usbsts(s, intr);
556
557 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
558 level = 1;
559 }
560
561 qemu_set_irq(s->irq, level);
562 }
563
564 static inline void ehci_record_interrupt(EHCIState *s, int intr)
565 {
566 s->usbsts_pending |= intr;
567 }
568
569 static inline void ehci_commit_interrupt(EHCIState *s)
570 {
571 if (!s->usbsts_pending) {
572 return;
573 }
574 ehci_set_interrupt(s, s->usbsts_pending);
575 s->usbsts_pending = 0;
576 }
577
578 static void ehci_set_state(EHCIState *s, int async, int state)
579 {
580 if (async) {
581 trace_usb_ehci_state("async", state2str(state));
582 s->astate = state;
583 } else {
584 trace_usb_ehci_state("periodic", state2str(state));
585 s->pstate = state;
586 }
587 }
588
589 static int ehci_get_state(EHCIState *s, int async)
590 {
591 return async ? s->astate : s->pstate;
592 }
593
594 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
595 {
596 if (async) {
597 s->a_fetch_addr = addr;
598 } else {
599 s->p_fetch_addr = addr;
600 }
601 }
602
603 static int ehci_get_fetch_addr(EHCIState *s, int async)
604 {
605 return async ? s->a_fetch_addr : s->p_fetch_addr;
606 }
607
608 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
609 {
610 /* need three here due to argument count limits */
611 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
612 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
613 trace_usb_ehci_qh_fields(addr,
614 get_field(qh->epchar, QH_EPCHAR_RL),
615 get_field(qh->epchar, QH_EPCHAR_MPLEN),
616 get_field(qh->epchar, QH_EPCHAR_EPS),
617 get_field(qh->epchar, QH_EPCHAR_EP),
618 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
619 trace_usb_ehci_qh_bits(addr,
620 (bool)(qh->epchar & QH_EPCHAR_C),
621 (bool)(qh->epchar & QH_EPCHAR_H),
622 (bool)(qh->epchar & QH_EPCHAR_DTC),
623 (bool)(qh->epchar & QH_EPCHAR_I));
624 }
625
626 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
627 {
628 /* need three here due to argument count limits */
629 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
630 trace_usb_ehci_qtd_fields(addr,
631 get_field(qtd->token, QTD_TOKEN_TBYTES),
632 get_field(qtd->token, QTD_TOKEN_CPAGE),
633 get_field(qtd->token, QTD_TOKEN_CERR),
634 get_field(qtd->token, QTD_TOKEN_PID));
635 trace_usb_ehci_qtd_bits(addr,
636 (bool)(qtd->token & QTD_TOKEN_IOC),
637 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
638 (bool)(qtd->token & QTD_TOKEN_HALT),
639 (bool)(qtd->token & QTD_TOKEN_BABBLE),
640 (bool)(qtd->token & QTD_TOKEN_XACTERR));
641 }
642
643 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
644 {
645 trace_usb_ehci_itd(addr, itd->next,
646 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
647 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
648 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
649 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
650 }
651
652 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
653 EHCIsitd *sitd)
654 {
655 trace_usb_ehci_sitd(addr, sitd->next,
656 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
657 }
658
659 /* queue management */
660
661 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
662 {
663 EHCIQueue *q;
664
665 q = g_malloc0(sizeof(*q));
666 q->ehci = ehci;
667 q->async_schedule = async;
668 QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
669 trace_usb_ehci_queue_action(q, "alloc");
670 return q;
671 }
672
673 static void ehci_free_queue(EHCIQueue *q)
674 {
675 trace_usb_ehci_queue_action(q, "free");
676 if (q->async == EHCI_ASYNC_INFLIGHT) {
677 usb_cancel_packet(&q->packet);
678 }
679 QTAILQ_REMOVE(&q->ehci->queues, q, next);
680 g_free(q);
681 }
682
683 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
684 {
685 EHCIQueue *q;
686
687 QTAILQ_FOREACH(q, &ehci->queues, next) {
688 if (addr == q->qhaddr) {
689 return q;
690 }
691 }
692 return NULL;
693 }
694
695 static void ehci_queues_rip_unused(EHCIState *ehci)
696 {
697 EHCIQueue *q, *tmp;
698
699 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
700 if (q->seen) {
701 q->seen = 0;
702 q->ts = ehci->last_run_ns;
703 continue;
704 }
705 if (ehci->last_run_ns < q->ts + 250000000) {
706 /* allow 0.25 sec idle */
707 continue;
708 }
709 ehci_free_queue(q);
710 }
711 }
712
713 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
714 {
715 EHCIQueue *q, *tmp;
716
717 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
718 if (q->packet.owner != dev) {
719 continue;
720 }
721 ehci_free_queue(q);
722 }
723 }
724
725 static void ehci_queues_rip_all(EHCIState *ehci)
726 {
727 EHCIQueue *q, *tmp;
728
729 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
730 ehci_free_queue(q);
731 }
732 }
733
734 /* Attach or detach a device on root hub */
735
736 static void ehci_attach(USBPort *port)
737 {
738 EHCIState *s = port->opaque;
739 uint32_t *portsc = &s->portsc[port->index];
740
741 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
742
743 if (*portsc & PORTSC_POWNER) {
744 USBPort *companion = s->companion_ports[port->index];
745 companion->dev = port->dev;
746 companion->ops->attach(companion);
747 return;
748 }
749
750 *portsc |= PORTSC_CONNECT;
751 *portsc |= PORTSC_CSC;
752
753 ehci_set_interrupt(s, USBSTS_PCD);
754 }
755
756 static void ehci_detach(USBPort *port)
757 {
758 EHCIState *s = port->opaque;
759 uint32_t *portsc = &s->portsc[port->index];
760
761 trace_usb_ehci_port_detach(port->index);
762
763 if (*portsc & PORTSC_POWNER) {
764 USBPort *companion = s->companion_ports[port->index];
765 companion->ops->detach(companion);
766 companion->dev = NULL;
767 return;
768 }
769
770 ehci_queues_rip_device(s, port->dev);
771
772 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
773 *portsc |= PORTSC_CSC;
774
775 ehci_set_interrupt(s, USBSTS_PCD);
776 }
777
778 static void ehci_child_detach(USBPort *port, USBDevice *child)
779 {
780 EHCIState *s = port->opaque;
781 uint32_t portsc = s->portsc[port->index];
782
783 if (portsc & PORTSC_POWNER) {
784 USBPort *companion = s->companion_ports[port->index];
785 companion->ops->child_detach(companion, child);
786 companion->dev = NULL;
787 return;
788 }
789
790 ehci_queues_rip_device(s, child);
791 }
792
793 static void ehci_wakeup(USBPort *port)
794 {
795 EHCIState *s = port->opaque;
796 uint32_t portsc = s->portsc[port->index];
797
798 if (portsc & PORTSC_POWNER) {
799 USBPort *companion = s->companion_ports[port->index];
800 if (companion->ops->wakeup) {
801 companion->ops->wakeup(companion);
802 }
803 }
804 }
805
806 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
807 uint32_t portcount, uint32_t firstport)
808 {
809 EHCIState *s = container_of(bus, EHCIState, bus);
810 uint32_t i;
811
812 if (firstport + portcount > NB_PORTS) {
813 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
814 "firstport on masterbus");
815 error_printf_unless_qmp(
816 "firstport value of %u makes companion take ports %u - %u, which "
817 "is outside of the valid range of 0 - %u\n", firstport, firstport,
818 firstport + portcount - 1, NB_PORTS - 1);
819 return -1;
820 }
821
822 for (i = 0; i < portcount; i++) {
823 if (s->companion_ports[firstport + i]) {
824 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
825 "an USB masterbus");
826 error_printf_unless_qmp(
827 "port %u on masterbus %s already has a companion assigned\n",
828 firstport + i, bus->qbus.name);
829 return -1;
830 }
831 }
832
833 for (i = 0; i < portcount; i++) {
834 s->companion_ports[firstport + i] = ports[i];
835 s->ports[firstport + i].speedmask |=
836 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
837 /* Ensure devs attached before the initial reset go to the companion */
838 s->portsc[firstport + i] = PORTSC_POWNER;
839 }
840
841 s->companion_count++;
842 s->mmio[0x05] = (s->companion_count << 4) | portcount;
843
844 return 0;
845 }
846
847 /* 4.1 host controller initialization */
848 static void ehci_reset(void *opaque)
849 {
850 EHCIState *s = opaque;
851 int i;
852 USBDevice *devs[NB_PORTS];
853
854 trace_usb_ehci_reset();
855
856 /*
857 * Do the detach before touching portsc, so that it correctly gets send to
858 * us or to our companion based on PORTSC_POWNER before the reset.
859 */
860 for(i = 0; i < NB_PORTS; i++) {
861 devs[i] = s->ports[i].dev;
862 if (devs[i] && devs[i]->attached) {
863 usb_detach(&s->ports[i]);
864 }
865 }
866
867 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
868
869 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
870 s->usbsts = USBSTS_HALT;
871
872 s->astate = EST_INACTIVE;
873 s->pstate = EST_INACTIVE;
874 s->isoch_pause = -1;
875 s->attach_poll_counter = 0;
876
877 for(i = 0; i < NB_PORTS; i++) {
878 if (s->companion_ports[i]) {
879 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
880 } else {
881 s->portsc[i] = PORTSC_PPOWER;
882 }
883 if (devs[i] && devs[i]->attached) {
884 usb_attach(&s->ports[i]);
885 usb_send_msg(devs[i], USB_MSG_RESET);
886 }
887 }
888 ehci_queues_rip_all(s);
889 }
890
891 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
892 {
893 EHCIState *s = ptr;
894 uint32_t val;
895
896 val = s->mmio[addr];
897
898 return val;
899 }
900
901 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
902 {
903 EHCIState *s = ptr;
904 uint32_t val;
905
906 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
907
908 return val;
909 }
910
911 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
912 {
913 EHCIState *s = ptr;
914 uint32_t val;
915
916 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
917 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
918
919 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
920 return val;
921 }
922
923 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
924 {
925 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
926 exit(1);
927 }
928
929 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
930 {
931 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
932 exit(1);
933 }
934
935 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
936 {
937 USBDevice *dev = s->ports[port].dev;
938 uint32_t *portsc = &s->portsc[port];
939 uint32_t orig;
940
941 if (s->companion_ports[port] == NULL)
942 return;
943
944 owner = owner & PORTSC_POWNER;
945 orig = *portsc & PORTSC_POWNER;
946
947 if (!(owner ^ orig)) {
948 return;
949 }
950
951 if (dev && dev->attached) {
952 usb_detach(&s->ports[port]);
953 }
954
955 *portsc &= ~PORTSC_POWNER;
956 *portsc |= owner;
957
958 if (dev && dev->attached) {
959 usb_attach(&s->ports[port]);
960 }
961 }
962
963 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
964 {
965 uint32_t *portsc = &s->portsc[port];
966 USBDevice *dev = s->ports[port].dev;
967
968 /* Clear rwc bits */
969 *portsc &= ~(val & PORTSC_RWC_MASK);
970 /* The guest may clear, but not set the PED bit */
971 *portsc &= val | ~PORTSC_PED;
972 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
973 handle_port_owner_write(s, port, val);
974 /* And finally apply RO_MASK */
975 val &= PORTSC_RO_MASK;
976
977 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
978 trace_usb_ehci_port_reset(port, 1);
979 }
980
981 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
982 trace_usb_ehci_port_reset(port, 0);
983 if (dev && dev->attached) {
984 usb_reset(&s->ports[port]);
985 *portsc &= ~PORTSC_CSC;
986 }
987
988 /*
989 * Table 2.16 Set the enable bit(and enable bit change) to indicate
990 * to SW that this port has a high speed device attached
991 */
992 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
993 val |= PORTSC_PED;
994 }
995 }
996
997 *portsc &= ~PORTSC_RO_MASK;
998 *portsc |= val;
999 }
1000
1001 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1002 {
1003 EHCIState *s = ptr;
1004 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1005 uint32_t old = *mmio;
1006 int i;
1007
1008 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1009
1010 /* Only aligned reads are allowed on OHCI */
1011 if (addr & 3) {
1012 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1013 TARGET_FMT_plx "\n", addr);
1014 return;
1015 }
1016
1017 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1018 handle_port_status_write(s, (addr-PORTSC)/4, val);
1019 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1020 return;
1021 }
1022
1023 if (addr < OPREGBASE) {
1024 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1025 TARGET_FMT_plx "\n", addr);
1026 return;
1027 }
1028
1029
1030 /* Do any register specific pre-write processing here. */
1031 switch(addr) {
1032 case USBCMD:
1033 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1034 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1035 SET_LAST_RUN_CLOCK(s);
1036 ehci_clear_usbsts(s, USBSTS_HALT);
1037 }
1038
1039 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1040 qemu_del_timer(s->frame_timer);
1041 // TODO - should finish out some stuff before setting halt
1042 ehci_set_usbsts(s, USBSTS_HALT);
1043 }
1044
1045 if (val & USBCMD_HCRESET) {
1046 ehci_reset(s);
1047 val &= ~USBCMD_HCRESET;
1048 }
1049
1050 /* not supporting dynamic frame list size at the moment */
1051 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1052 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1053 val & USBCMD_FLS);
1054 val &= ~USBCMD_FLS;
1055 }
1056 break;
1057
1058 case USBSTS:
1059 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
1060 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
1061 val = s->usbsts;
1062 ehci_set_interrupt(s, 0);
1063 break;
1064
1065 case USBINTR:
1066 val &= USBINTR_MASK;
1067 break;
1068
1069 case FRINDEX:
1070 s->sofv = val >> 3;
1071 break;
1072
1073 case CONFIGFLAG:
1074 val &= 0x1;
1075 if (val) {
1076 for(i = 0; i < NB_PORTS; i++)
1077 handle_port_owner_write(s, i, 0);
1078 }
1079 break;
1080
1081 case PERIODICLISTBASE:
1082 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1083 fprintf(stderr,
1084 "ehci: PERIODIC list base register set while periodic schedule\n"
1085 " is enabled and HC is enabled\n");
1086 }
1087 break;
1088
1089 case ASYNCLISTADDR:
1090 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1091 fprintf(stderr,
1092 "ehci: ASYNC list address register set while async schedule\n"
1093 " is enabled and HC is enabled\n");
1094 }
1095 break;
1096 }
1097
1098 *mmio = val;
1099 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1100 }
1101
1102
1103 // TODO : Put in common header file, duplication from usb-ohci.c
1104
1105 /* Get an array of dwords from main memory */
1106 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1107 uint32_t *buf, int num)
1108 {
1109 int i;
1110
1111 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1112 pci_dma_read(&ehci->dev, addr, (uint8_t *)buf, sizeof(*buf));
1113 *buf = le32_to_cpu(*buf);
1114 }
1115
1116 return 1;
1117 }
1118
1119 /* Put an array of dwords in to main memory */
1120 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1121 uint32_t *buf, int num)
1122 {
1123 int i;
1124
1125 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1126 uint32_t tmp = cpu_to_le32(*buf);
1127 pci_dma_write(&ehci->dev, addr, (uint8_t *)&tmp, sizeof(tmp));
1128 }
1129
1130 return 1;
1131 }
1132
1133 // 4.10.2
1134
1135 static int ehci_qh_do_overlay(EHCIQueue *q)
1136 {
1137 int i;
1138 int dtoggle;
1139 int ping;
1140 int eps;
1141 int reload;
1142
1143 // remember values in fields to preserve in qh after overlay
1144
1145 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1146 ping = q->qh.token & QTD_TOKEN_PING;
1147
1148 q->qh.current_qtd = q->qtdaddr;
1149 q->qh.next_qtd = q->qtd.next;
1150 q->qh.altnext_qtd = q->qtd.altnext;
1151 q->qh.token = q->qtd.token;
1152
1153
1154 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1155 if (eps == EHCI_QH_EPS_HIGH) {
1156 q->qh.token &= ~QTD_TOKEN_PING;
1157 q->qh.token |= ping;
1158 }
1159
1160 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1161 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1162
1163 for (i = 0; i < 5; i++) {
1164 q->qh.bufptr[i] = q->qtd.bufptr[i];
1165 }
1166
1167 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1168 // preserve QH DT bit
1169 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1170 q->qh.token |= dtoggle;
1171 }
1172
1173 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1174 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1175
1176 put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1177 sizeof(EHCIqh) >> 2);
1178
1179 return 0;
1180 }
1181
1182 static int ehci_init_transfer(EHCIQueue *q)
1183 {
1184 uint32_t cpage, offset, bytes, plen;
1185 dma_addr_t page;
1186
1187 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1188 bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1189 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1190 pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1191
1192 while (bytes > 0) {
1193 if (cpage > 4) {
1194 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1195 return USB_RET_PROCERR;
1196 }
1197
1198 page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1199 page += offset;
1200 plen = bytes;
1201 if (plen > 4096 - offset) {
1202 plen = 4096 - offset;
1203 offset = 0;
1204 cpage++;
1205 }
1206
1207 qemu_sglist_add(&q->sgl, page, plen);
1208 bytes -= plen;
1209 }
1210 return 0;
1211 }
1212
1213 static void ehci_finish_transfer(EHCIQueue *q, int status)
1214 {
1215 uint32_t cpage, offset;
1216
1217 qemu_sglist_destroy(&q->sgl);
1218
1219 if (status > 0) {
1220 /* update cpage & offset */
1221 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1222 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1223
1224 offset += status;
1225 cpage += offset >> QTD_BUFPTR_SH;
1226 offset &= ~QTD_BUFPTR_MASK;
1227
1228 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1229 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1230 q->qh.bufptr[0] |= offset;
1231 }
1232 }
1233
1234 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1235 {
1236 EHCIQueue *q;
1237 EHCIState *s = port->opaque;
1238 uint32_t portsc = s->portsc[port->index];
1239
1240 if (portsc & PORTSC_POWNER) {
1241 USBPort *companion = s->companion_ports[port->index];
1242 companion->ops->complete(companion, packet);
1243 return;
1244 }
1245
1246 q = container_of(packet, EHCIQueue, packet);
1247 trace_usb_ehci_queue_action(q, "wakeup");
1248 assert(q->async == EHCI_ASYNC_INFLIGHT);
1249 q->async = EHCI_ASYNC_FINISHED;
1250 q->usb_status = packet->result;
1251 }
1252
1253 static void ehci_execute_complete(EHCIQueue *q)
1254 {
1255 int c_err, reload;
1256
1257 assert(q->async != EHCI_ASYNC_INFLIGHT);
1258 q->async = EHCI_ASYNC_NONE;
1259
1260 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1261 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1262
1263 if (q->usb_status < 0) {
1264 err:
1265 /* TO-DO: put this is in a function that can be invoked below as well */
1266 c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1267 c_err--;
1268 set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1269
1270 switch(q->usb_status) {
1271 case USB_RET_NODEV:
1272 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1273 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1274 break;
1275 case USB_RET_STALL:
1276 q->qh.token |= QTD_TOKEN_HALT;
1277 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1278 break;
1279 case USB_RET_NAK:
1280 /* 4.10.3 */
1281 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1282 if ((q->pid == USB_TOKEN_IN) && reload) {
1283 int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1284 nakcnt--;
1285 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1286 } else if (!reload) {
1287 return;
1288 }
1289 break;
1290 case USB_RET_BABBLE:
1291 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1292 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1293 break;
1294 default:
1295 /* should not be triggerable */
1296 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1297 assert(0);
1298 break;
1299 }
1300 } else {
1301 // DPRINTF("Short packet condition\n");
1302 // TODO check 4.12 for splits
1303
1304 if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1305 q->usb_status = USB_RET_BABBLE;
1306 goto err;
1307 }
1308
1309 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1310 q->tbytes -= q->usb_status;
1311 } else {
1312 q->tbytes = 0;
1313 }
1314
1315 DPRINTF("updating tbytes to %d\n", q->tbytes);
1316 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1317 }
1318 ehci_finish_transfer(q, q->usb_status);
1319 usb_packet_unmap(&q->packet);
1320
1321 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1322 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1323
1324 if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1325 ehci_record_interrupt(q->ehci, USBSTS_INT);
1326 }
1327 }
1328
1329 // 4.10.3
1330
1331 static int ehci_execute(EHCIQueue *q)
1332 {
1333 USBPort *port;
1334 USBDevice *dev;
1335 int ret;
1336 int i;
1337 int endp;
1338 int devadr;
1339
1340 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1341 fprintf(stderr, "Attempting to execute inactive QH\n");
1342 return USB_RET_PROCERR;
1343 }
1344
1345 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1346 if (q->tbytes > BUFF_SIZE) {
1347 fprintf(stderr, "Request for more bytes than allowed\n");
1348 return USB_RET_PROCERR;
1349 }
1350
1351 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1352 switch(q->pid) {
1353 case 0: q->pid = USB_TOKEN_OUT; break;
1354 case 1: q->pid = USB_TOKEN_IN; break;
1355 case 2: q->pid = USB_TOKEN_SETUP; break;
1356 default: fprintf(stderr, "bad token\n"); break;
1357 }
1358
1359 if (ehci_init_transfer(q) != 0) {
1360 return USB_RET_PROCERR;
1361 }
1362
1363 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1364 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1365
1366 ret = USB_RET_NODEV;
1367
1368 usb_packet_setup(&q->packet, q->pid, devadr, endp);
1369 usb_packet_map(&q->packet, &q->sgl);
1370
1371 // TO-DO: associating device with ehci port
1372 for(i = 0; i < NB_PORTS; i++) {
1373 port = &q->ehci->ports[i];
1374 dev = port->dev;
1375
1376 if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1377 DPRINTF("Port %d, no exec, not connected(%08X)\n",
1378 i, q->ehci->portsc[i]);
1379 continue;
1380 }
1381
1382 ret = usb_handle_packet(dev, &q->packet);
1383
1384 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1385 "(total %d) endp %x ret %d\n",
1386 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1387 q->packet.iov.size, q->tbytes, endp, ret);
1388
1389 if (ret != USB_RET_NODEV) {
1390 break;
1391 }
1392 }
1393
1394 if (ret > BUFF_SIZE) {
1395 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1396 return USB_RET_PROCERR;
1397 }
1398
1399 return ret;
1400 }
1401
1402 /* 4.7.2
1403 */
1404
1405 static int ehci_process_itd(EHCIState *ehci,
1406 EHCIitd *itd)
1407 {
1408 USBPort *port;
1409 USBDevice *dev;
1410 int ret;
1411 uint32_t i, j, len, pid, dir, devaddr, endp;
1412 uint32_t pg, off, ptr1, ptr2, max, mult;
1413
1414 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1415 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1416 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1417 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1418 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1419
1420 for(i = 0; i < 8; i++) {
1421 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1422 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1423 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1424 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1425 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1426 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1427
1428 if (len > max * mult) {
1429 len = max * mult;
1430 }
1431
1432 if (len > BUFF_SIZE) {
1433 return USB_RET_PROCERR;
1434 }
1435
1436 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1437 if (off + len > 4096) {
1438 /* transfer crosses page border */
1439 uint32_t len2 = off + len - 4096;
1440 uint32_t len1 = len - len2;
1441 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1442 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1443 } else {
1444 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1445 }
1446
1447 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1448
1449 usb_packet_setup(&ehci->ipacket, pid, devaddr, endp);
1450 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1451
1452 ret = USB_RET_NODEV;
1453 for (j = 0; j < NB_PORTS; j++) {
1454 port = &ehci->ports[j];
1455 dev = port->dev;
1456
1457 if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1458 continue;
1459 }
1460
1461 ret = usb_handle_packet(dev, &ehci->ipacket);
1462
1463 if (ret != USB_RET_NODEV) {
1464 break;
1465 }
1466 }
1467
1468 usb_packet_unmap(&ehci->ipacket);
1469 qemu_sglist_destroy(&ehci->isgl);
1470
1471 #if 0
1472 /* In isoch, there is no facility to indicate a NAK so let's
1473 * instead just complete a zero-byte transaction. Setting
1474 * DBERR seems too draconian.
1475 */
1476
1477 if (ret == USB_RET_NAK) {
1478 if (ehci->isoch_pause > 0) {
1479 DPRINTF("ISOCH: received a NAK but paused so returning\n");
1480 ehci->isoch_pause--;
1481 return 0;
1482 } else if (ehci->isoch_pause == -1) {
1483 DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1484 // Pause frindex for up to 50 msec waiting for data from
1485 // remote
1486 ehci->isoch_pause = 50;
1487 return 0;
1488 } else {
1489 DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1490 ret = 0;
1491 }
1492 } else {
1493 DPRINTF("ISOCH: received ACK, clearing pause\n");
1494 ehci->isoch_pause = -1;
1495 }
1496 #else
1497 if (ret == USB_RET_NAK) {
1498 ret = 0;
1499 }
1500 #endif
1501
1502 if (ret >= 0) {
1503 if (!dir) {
1504 /* OUT */
1505 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1506 } else {
1507 /* IN */
1508 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1509 }
1510
1511 if (itd->transact[i] & ITD_XACT_IOC) {
1512 ehci_record_interrupt(ehci, USBSTS_INT);
1513 }
1514 }
1515 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1516 }
1517 }
1518 return 0;
1519 }
1520
1521 /* This state is the entry point for asynchronous schedule
1522 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1523 */
1524 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1525 {
1526 EHCIqh qh;
1527 int i = 0;
1528 int again = 0;
1529 uint32_t entry = ehci->asynclistaddr;
1530
1531 /* set reclamation flag at start event (4.8.6) */
1532 if (async) {
1533 ehci_set_usbsts(ehci, USBSTS_REC);
1534 }
1535
1536 ehci_queues_rip_unused(ehci);
1537
1538 /* Find the head of the list (4.9.1.1) */
1539 for(i = 0; i < MAX_QH; i++) {
1540 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1541 sizeof(EHCIqh) >> 2);
1542 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1543
1544 if (qh.epchar & QH_EPCHAR_H) {
1545 if (async) {
1546 entry |= (NLPTR_TYPE_QH << 1);
1547 }
1548
1549 ehci_set_fetch_addr(ehci, async, entry);
1550 ehci_set_state(ehci, async, EST_FETCHENTRY);
1551 again = 1;
1552 goto out;
1553 }
1554
1555 entry = qh.next;
1556 if (entry == ehci->asynclistaddr) {
1557 break;
1558 }
1559 }
1560
1561 /* no head found for list. */
1562
1563 ehci_set_state(ehci, async, EST_ACTIVE);
1564
1565 out:
1566 return again;
1567 }
1568
1569
1570 /* This state is the entry point for periodic schedule processing as
1571 * well as being a continuation state for async processing.
1572 */
1573 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1574 {
1575 int again = 0;
1576 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1577
1578 if (entry < 0x1000) {
1579 DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1580 ehci_set_state(ehci, async, EST_ACTIVE);
1581 goto out;
1582 }
1583
1584 /* section 4.8, only QH in async schedule */
1585 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1586 fprintf(stderr, "non queue head request in async schedule\n");
1587 return -1;
1588 }
1589
1590 switch (NLPTR_TYPE_GET(entry)) {
1591 case NLPTR_TYPE_QH:
1592 ehci_set_state(ehci, async, EST_FETCHQH);
1593 again = 1;
1594 break;
1595
1596 case NLPTR_TYPE_ITD:
1597 ehci_set_state(ehci, async, EST_FETCHITD);
1598 again = 1;
1599 break;
1600
1601 case NLPTR_TYPE_STITD:
1602 ehci_set_state(ehci, async, EST_FETCHSITD);
1603 again = 1;
1604 break;
1605
1606 default:
1607 /* TODO: handle FSTN type */
1608 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1609 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1610 return -1;
1611 }
1612
1613 out:
1614 return again;
1615 }
1616
1617 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1618 {
1619 uint32_t entry;
1620 EHCIQueue *q;
1621 int reload;
1622
1623 entry = ehci_get_fetch_addr(ehci, async);
1624 q = ehci_find_queue_by_qh(ehci, entry);
1625 if (NULL == q) {
1626 q = ehci_alloc_queue(ehci, async);
1627 }
1628 q->qhaddr = entry;
1629 q->seen++;
1630
1631 if (q->seen > 1) {
1632 /* we are going in circles -- stop processing */
1633 ehci_set_state(ehci, async, EST_ACTIVE);
1634 q = NULL;
1635 goto out;
1636 }
1637
1638 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1639 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1640 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1641
1642 if (q->async == EHCI_ASYNC_INFLIGHT) {
1643 /* I/O still in progress -- skip queue */
1644 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1645 goto out;
1646 }
1647 if (q->async == EHCI_ASYNC_FINISHED) {
1648 /* I/O finished -- continue processing queue */
1649 trace_usb_ehci_queue_action(q, "resume");
1650 ehci_set_state(ehci, async, EST_EXECUTING);
1651 goto out;
1652 }
1653
1654 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1655
1656 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1657 if (ehci->usbsts & USBSTS_REC) {
1658 ehci_clear_usbsts(ehci, USBSTS_REC);
1659 } else {
1660 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1661 " - done processing\n", q->qhaddr);
1662 ehci_set_state(ehci, async, EST_ACTIVE);
1663 q = NULL;
1664 goto out;
1665 }
1666 }
1667
1668 #if EHCI_DEBUG
1669 if (q->qhaddr != q->qh.next) {
1670 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1671 q->qhaddr,
1672 q->qh.epchar & QH_EPCHAR_H,
1673 q->qh.token & QTD_TOKEN_HALT,
1674 q->qh.token & QTD_TOKEN_ACTIVE,
1675 q->qh.next);
1676 }
1677 #endif
1678
1679 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1680 if (reload) {
1681 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1682 }
1683
1684 if (q->qh.token & QTD_TOKEN_HALT) {
1685 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1686
1687 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1688 q->qtdaddr = q->qh.current_qtd;
1689 ehci_set_state(ehci, async, EST_FETCHQTD);
1690
1691 } else {
1692 /* EHCI spec version 1.0 Section 4.10.2 */
1693 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1694 }
1695
1696 out:
1697 return q;
1698 }
1699
1700 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1701 {
1702 uint32_t entry;
1703 EHCIitd itd;
1704
1705 assert(!async);
1706 entry = ehci_get_fetch_addr(ehci, async);
1707
1708 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1709 sizeof(EHCIitd) >> 2);
1710 ehci_trace_itd(ehci, entry, &itd);
1711
1712 if (ehci_process_itd(ehci, &itd) != 0) {
1713 return -1;
1714 }
1715
1716 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1717 sizeof(EHCIitd) >> 2);
1718 ehci_set_fetch_addr(ehci, async, itd.next);
1719 ehci_set_state(ehci, async, EST_FETCHENTRY);
1720
1721 return 1;
1722 }
1723
1724 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1725 {
1726 uint32_t entry;
1727 EHCIsitd sitd;
1728
1729 assert(!async);
1730 entry = ehci_get_fetch_addr(ehci, async);
1731
1732 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1733 sizeof(EHCIsitd) >> 2);
1734 ehci_trace_sitd(ehci, entry, &sitd);
1735
1736 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1737 /* siTD is not active, nothing to do */;
1738 } else {
1739 /* TODO: split transfers are not implemented */
1740 fprintf(stderr, "WARNING: Skipping active siTD\n");
1741 }
1742
1743 ehci_set_fetch_addr(ehci, async, sitd.next);
1744 ehci_set_state(ehci, async, EST_FETCHENTRY);
1745 return 1;
1746 }
1747
1748 /* Section 4.10.2 - paragraph 3 */
1749 static int ehci_state_advqueue(EHCIQueue *q, int async)
1750 {
1751 #if 0
1752 /* TO-DO: 4.10.2 - paragraph 2
1753 * if I-bit is set to 1 and QH is not active
1754 * go to horizontal QH
1755 */
1756 if (I-bit set) {
1757 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1758 goto out;
1759 }
1760 #endif
1761
1762 /*
1763 * want data and alt-next qTD is valid
1764 */
1765 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1766 (q->qh.altnext_qtd > 0x1000) &&
1767 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1768 q->qtdaddr = q->qh.altnext_qtd;
1769 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1770
1771 /*
1772 * next qTD is valid
1773 */
1774 } else if ((q->qh.next_qtd > 0x1000) &&
1775 (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1776 q->qtdaddr = q->qh.next_qtd;
1777 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1778
1779 /*
1780 * no valid qTD, try next QH
1781 */
1782 } else {
1783 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1784 }
1785
1786 return 1;
1787 }
1788
1789 /* Section 4.10.2 - paragraph 4 */
1790 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1791 {
1792 int again = 0;
1793
1794 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1795 sizeof(EHCIqtd) >> 2);
1796 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1797
1798 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1799 ehci_set_state(q->ehci, async, EST_EXECUTE);
1800 again = 1;
1801 } else {
1802 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1803 again = 1;
1804 }
1805
1806 return again;
1807 }
1808
1809 static int ehci_state_horizqh(EHCIQueue *q, int async)
1810 {
1811 int again = 0;
1812
1813 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1814 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1815 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1816 again = 1;
1817 } else {
1818 ehci_set_state(q->ehci, async, EST_ACTIVE);
1819 }
1820
1821 return again;
1822 }
1823
1824 /*
1825 * Write the qh back to guest physical memory. This step isn't
1826 * in the EHCI spec but we need to do it since we don't share
1827 * physical memory with our guest VM.
1828 *
1829 * The first three dwords are read-only for the EHCI, so skip them
1830 * when writing back the qh.
1831 */
1832 static void ehci_flush_qh(EHCIQueue *q)
1833 {
1834 uint32_t *qh = (uint32_t *) &q->qh;
1835 uint32_t dwords = sizeof(EHCIqh) >> 2;
1836 uint32_t addr = NLPTR_GET(q->qhaddr);
1837
1838 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1839 }
1840
1841 static int ehci_state_execute(EHCIQueue *q, int async)
1842 {
1843 int again = 0;
1844 int reload, nakcnt;
1845 int smask;
1846
1847 if (ehci_qh_do_overlay(q) != 0) {
1848 return -1;
1849 }
1850
1851 smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1852
1853 if (!smask) {
1854 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1855 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1856 if (reload && !nakcnt) {
1857 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1858 again = 1;
1859 goto out;
1860 }
1861 }
1862
1863 // TODO verify enough time remains in the uframe as in 4.4.1.1
1864 // TODO write back ptr to async list when done or out of time
1865 // TODO Windows does not seem to ever set the MULT field
1866
1867 if (!async) {
1868 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1869 if (!transactCtr) {
1870 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1871 again = 1;
1872 goto out;
1873 }
1874 }
1875
1876 if (async) {
1877 ehci_set_usbsts(q->ehci, USBSTS_REC);
1878 }
1879
1880 q->usb_status = ehci_execute(q);
1881 if (q->usb_status == USB_RET_PROCERR) {
1882 again = -1;
1883 goto out;
1884 }
1885 if (q->usb_status == USB_RET_ASYNC) {
1886 ehci_flush_qh(q);
1887 trace_usb_ehci_queue_action(q, "suspend");
1888 q->async = EHCI_ASYNC_INFLIGHT;
1889 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1890 again = 1;
1891 goto out;
1892 }
1893
1894 ehci_set_state(q->ehci, async, EST_EXECUTING);
1895 again = 1;
1896
1897 out:
1898 return again;
1899 }
1900
1901 static int ehci_state_executing(EHCIQueue *q, int async)
1902 {
1903 int again = 0;
1904 int reload, nakcnt;
1905
1906 ehci_execute_complete(q);
1907 if (q->usb_status == USB_RET_ASYNC) {
1908 goto out;
1909 }
1910 if (q->usb_status == USB_RET_PROCERR) {
1911 again = -1;
1912 goto out;
1913 }
1914
1915 // 4.10.3
1916 if (!async) {
1917 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1918 transactCtr--;
1919 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1920 // 4.10.3, bottom of page 82, should exit this state when transaction
1921 // counter decrements to 0
1922 }
1923
1924 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1925 if (reload) {
1926 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1927 if (q->usb_status == USB_RET_NAK) {
1928 if (nakcnt) {
1929 nakcnt--;
1930 }
1931 } else {
1932 nakcnt = reload;
1933 }
1934 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1935 }
1936
1937 /* 4.10.5 */
1938 if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1939 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1940 } else {
1941 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1942 }
1943
1944 again = 1;
1945
1946 out:
1947 ehci_flush_qh(q);
1948 return again;
1949 }
1950
1951
1952 static int ehci_state_writeback(EHCIQueue *q, int async)
1953 {
1954 int again = 0;
1955
1956 /* Write back the QTD from the QH area */
1957 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1958 put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1959 sizeof(EHCIqtd) >> 2);
1960
1961 /*
1962 * EHCI specs say go horizontal here.
1963 *
1964 * We can also advance the queue here for performance reasons. We
1965 * need to take care to only take that shortcut in case we've
1966 * processed the qtd just written back without errors, i.e. halt
1967 * bit is clear.
1968 */
1969 if (q->qh.token & QTD_TOKEN_HALT) {
1970 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1971 again = 1;
1972 } else {
1973 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1974 again = 1;
1975 }
1976 return again;
1977 }
1978
1979 /*
1980 * This is the state machine that is common to both async and periodic
1981 */
1982
1983 static void ehci_advance_state(EHCIState *ehci,
1984 int async)
1985 {
1986 EHCIQueue *q = NULL;
1987 int again;
1988 int iter = 0;
1989
1990 do {
1991 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1992 iter++;
1993 /* if we are roaming a lot of QH without executing a qTD
1994 * something is wrong with the linked list. TO-DO: why is
1995 * this hack needed?
1996 */
1997 assert(iter < MAX_ITERATIONS);
1998 #if 0
1999 if (iter > MAX_ITERATIONS) {
2000 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
2001 ehci_set_state(ehci, async, EST_ACTIVE);
2002 break;
2003 }
2004 #endif
2005 }
2006 switch(ehci_get_state(ehci, async)) {
2007 case EST_WAITLISTHEAD:
2008 again = ehci_state_waitlisthead(ehci, async);
2009 break;
2010
2011 case EST_FETCHENTRY:
2012 again = ehci_state_fetchentry(ehci, async);
2013 break;
2014
2015 case EST_FETCHQH:
2016 q = ehci_state_fetchqh(ehci, async);
2017 again = q ? 1 : 0;
2018 break;
2019
2020 case EST_FETCHITD:
2021 again = ehci_state_fetchitd(ehci, async);
2022 break;
2023
2024 case EST_FETCHSITD:
2025 again = ehci_state_fetchsitd(ehci, async);
2026 break;
2027
2028 case EST_ADVANCEQUEUE:
2029 again = ehci_state_advqueue(q, async);
2030 break;
2031
2032 case EST_FETCHQTD:
2033 again = ehci_state_fetchqtd(q, async);
2034 break;
2035
2036 case EST_HORIZONTALQH:
2037 again = ehci_state_horizqh(q, async);
2038 break;
2039
2040 case EST_EXECUTE:
2041 iter = 0;
2042 again = ehci_state_execute(q, async);
2043 break;
2044
2045 case EST_EXECUTING:
2046 assert(q != NULL);
2047 again = ehci_state_executing(q, async);
2048 break;
2049
2050 case EST_WRITEBACK:
2051 assert(q != NULL);
2052 again = ehci_state_writeback(q, async);
2053 break;
2054
2055 default:
2056 fprintf(stderr, "Bad state!\n");
2057 again = -1;
2058 assert(0);
2059 break;
2060 }
2061
2062 if (again < 0) {
2063 fprintf(stderr, "processing error - resetting ehci HC\n");
2064 ehci_reset(ehci);
2065 again = 0;
2066 assert(0);
2067 }
2068 }
2069 while (again);
2070
2071 ehci_commit_interrupt(ehci);
2072 }
2073
2074 static void ehci_advance_async_state(EHCIState *ehci)
2075 {
2076 int async = 1;
2077
2078 switch(ehci_get_state(ehci, async)) {
2079 case EST_INACTIVE:
2080 if (!(ehci->usbcmd & USBCMD_ASE)) {
2081 break;
2082 }
2083 ehci_set_usbsts(ehci, USBSTS_ASS);
2084 ehci_set_state(ehci, async, EST_ACTIVE);
2085 // No break, fall through to ACTIVE
2086
2087 case EST_ACTIVE:
2088 if ( !(ehci->usbcmd & USBCMD_ASE)) {
2089 ehci_clear_usbsts(ehci, USBSTS_ASS);
2090 ehci_set_state(ehci, async, EST_INACTIVE);
2091 break;
2092 }
2093
2094 /* If the doorbell is set, the guest wants to make a change to the
2095 * schedule. The host controller needs to release cached data.
2096 * (section 4.8.2)
2097 */
2098 if (ehci->usbcmd & USBCMD_IAAD) {
2099 DPRINTF("ASYNC: doorbell request acknowledged\n");
2100 ehci->usbcmd &= ~USBCMD_IAAD;
2101 ehci_set_interrupt(ehci, USBSTS_IAA);
2102 break;
2103 }
2104
2105 /* make sure guest has acknowledged */
2106 /* TO-DO: is this really needed? */
2107 if (ehci->usbsts & USBSTS_IAA) {
2108 DPRINTF("IAA status bit still set.\n");
2109 break;
2110 }
2111
2112 /* check that address register has been set */
2113 if (ehci->asynclistaddr == 0) {
2114 break;
2115 }
2116
2117 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2118 ehci_advance_state(ehci, async);
2119 break;
2120
2121 default:
2122 /* this should only be due to a developer mistake */
2123 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2124 "Resetting to active\n", ehci->astate);
2125 assert(0);
2126 }
2127 }
2128
2129 static void ehci_advance_periodic_state(EHCIState *ehci)
2130 {
2131 uint32_t entry;
2132 uint32_t list;
2133 int async = 0;
2134
2135 // 4.6
2136
2137 switch(ehci_get_state(ehci, async)) {
2138 case EST_INACTIVE:
2139 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2140 ehci_set_usbsts(ehci, USBSTS_PSS);
2141 ehci_set_state(ehci, async, EST_ACTIVE);
2142 // No break, fall through to ACTIVE
2143 } else
2144 break;
2145
2146 case EST_ACTIVE:
2147 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2148 ehci_clear_usbsts(ehci, USBSTS_PSS);
2149 ehci_set_state(ehci, async, EST_INACTIVE);
2150 break;
2151 }
2152
2153 list = ehci->periodiclistbase & 0xfffff000;
2154 /* check that register has been set */
2155 if (list == 0) {
2156 break;
2157 }
2158 list |= ((ehci->frindex & 0x1ff8) >> 1);
2159
2160 pci_dma_read(&ehci->dev, list, (uint8_t *) &entry, sizeof entry);
2161 entry = le32_to_cpu(entry);
2162
2163 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2164 ehci->frindex / 8, list, entry);
2165 ehci_set_fetch_addr(ehci, async,entry);
2166 ehci_set_state(ehci, async, EST_FETCHENTRY);
2167 ehci_advance_state(ehci, async);
2168 break;
2169
2170 default:
2171 /* this should only be due to a developer mistake */
2172 fprintf(stderr, "ehci: Bad periodic state %d. "
2173 "Resetting to active\n", ehci->pstate);
2174 assert(0);
2175 }
2176 }
2177
2178 static void ehci_frame_timer(void *opaque)
2179 {
2180 EHCIState *ehci = opaque;
2181 int64_t expire_time, t_now;
2182 uint64_t ns_elapsed;
2183 int frames;
2184 int i;
2185 int skipped_frames = 0;
2186
2187 t_now = qemu_get_clock_ns(vm_clock);
2188 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2189
2190 ns_elapsed = t_now - ehci->last_run_ns;
2191 frames = ns_elapsed / FRAME_TIMER_NS;
2192
2193 for (i = 0; i < frames; i++) {
2194 if ( !(ehci->usbsts & USBSTS_HALT)) {
2195 if (ehci->isoch_pause <= 0) {
2196 ehci->frindex += 8;
2197 }
2198
2199 if (ehci->frindex > 0x00001fff) {
2200 ehci->frindex = 0;
2201 ehci_set_interrupt(ehci, USBSTS_FLR);
2202 }
2203
2204 ehci->sofv = (ehci->frindex - 1) >> 3;
2205 ehci->sofv &= 0x000003ff;
2206 }
2207
2208 if (frames - i > ehci->maxframes) {
2209 skipped_frames++;
2210 } else {
2211 ehci_advance_periodic_state(ehci);
2212 }
2213
2214 ehci->last_run_ns += FRAME_TIMER_NS;
2215 }
2216
2217 #if 0
2218 if (skipped_frames) {
2219 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2220 }
2221 #endif
2222
2223 /* Async is not inside loop since it executes everything it can once
2224 * called
2225 */
2226 ehci_advance_async_state(ehci);
2227
2228 qemu_mod_timer(ehci->frame_timer, expire_time);
2229 }
2230
2231
2232 static const MemoryRegionOps ehci_mem_ops = {
2233 .old_mmio = {
2234 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2235 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2236 },
2237 .endianness = DEVICE_LITTLE_ENDIAN,
2238 };
2239
2240 static int usb_ehci_initfn(PCIDevice *dev);
2241
2242 static USBPortOps ehci_port_ops = {
2243 .attach = ehci_attach,
2244 .detach = ehci_detach,
2245 .child_detach = ehci_child_detach,
2246 .wakeup = ehci_wakeup,
2247 .complete = ehci_async_complete_packet,
2248 };
2249
2250 static USBBusOps ehci_bus_ops = {
2251 .register_companion = ehci_register_companion,
2252 };
2253
2254 static const VMStateDescription vmstate_ehci = {
2255 .name = "ehci",
2256 .unmigratable = 1,
2257 };
2258
2259 static Property ehci_properties[] = {
2260 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2261 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2262 DEFINE_PROP_END_OF_LIST(),
2263 };
2264
2265 static PCIDeviceInfo ehci_info[] = {
2266 {
2267 .qdev.name = "usb-ehci",
2268 .qdev.size = sizeof(EHCIState),
2269 .qdev.vmsd = &vmstate_ehci,
2270 .init = usb_ehci_initfn,
2271 .vendor_id = PCI_VENDOR_ID_INTEL,
2272 .device_id = PCI_DEVICE_ID_INTEL_82801D, /* ich4 */
2273 .revision = 0x10,
2274 .class_id = PCI_CLASS_SERIAL_USB,
2275 .qdev.props = ehci_properties,
2276 },{
2277 .qdev.name = "ich9-usb-ehci1",
2278 .qdev.size = sizeof(EHCIState),
2279 .qdev.vmsd = &vmstate_ehci,
2280 .init = usb_ehci_initfn,
2281 .vendor_id = PCI_VENDOR_ID_INTEL,
2282 .device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1,
2283 .revision = 0x03,
2284 .class_id = PCI_CLASS_SERIAL_USB,
2285 .qdev.props = ehci_properties,
2286 },{
2287 /* end of list */
2288 }
2289 };
2290
2291 static int usb_ehci_initfn(PCIDevice *dev)
2292 {
2293 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2294 uint8_t *pci_conf = s->dev.config;
2295 int i;
2296
2297 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2298
2299 /* capabilities pointer */
2300 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2301 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2302
2303 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2304 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2305 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2306
2307 // pci_conf[0x50] = 0x01; // power management caps
2308
2309 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2310 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2311 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2312
2313 pci_conf[0x64] = 0x00;
2314 pci_conf[0x65] = 0x00;
2315 pci_conf[0x66] = 0x00;
2316 pci_conf[0x67] = 0x00;
2317 pci_conf[0x68] = 0x01;
2318 pci_conf[0x69] = 0x00;
2319 pci_conf[0x6a] = 0x00;
2320 pci_conf[0x6b] = 0x00; // USBLEGSUP
2321 pci_conf[0x6c] = 0x00;
2322 pci_conf[0x6d] = 0x00;
2323 pci_conf[0x6e] = 0x00;
2324 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2325
2326 // 2.2 host controller interface version
2327 s->mmio[0x00] = (uint8_t) OPREGBASE;
2328 s->mmio[0x01] = 0x00;
2329 s->mmio[0x02] = 0x00;
2330 s->mmio[0x03] = 0x01; // HC version
2331 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2332 s->mmio[0x05] = 0x00; // No companion ports at present
2333 s->mmio[0x06] = 0x00;
2334 s->mmio[0x07] = 0x00;
2335 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2336 s->mmio[0x09] = 0x68; // EECP
2337 s->mmio[0x0a] = 0x00;
2338 s->mmio[0x0b] = 0x00;
2339
2340 s->irq = s->dev.irq[3];
2341
2342 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2343 for(i = 0; i < NB_PORTS; i++) {
2344 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2345 USB_SPEED_MASK_HIGH);
2346 s->ports[i].dev = 0;
2347 }
2348
2349 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2350 QTAILQ_INIT(&s->queues);
2351
2352 qemu_register_reset(ehci_reset, s);
2353
2354 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2355 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2356
2357 fprintf(stderr, "*** EHCI support is under development ***\n");
2358
2359 return 0;
2360 }
2361
2362 static void ehci_register(void)
2363 {
2364 pci_qdev_register_many(ehci_info);
2365 }
2366 device_init(ehci_register);
2367
2368 /*
2369 * vim: expandtab ts=4
2370 */