]> git.proxmox.com Git - qemu.git/blob - hw/usb-xhci.c
008b0b5718e50842347cd0e23e9ed1660b64b892
[qemu.git] / hw / usb-xhci.c
1 /*
2 * USB xHCI controller emulation
3 *
4 * Copyright (c) 2011 Securiforest
5 * Date: 2011-05-11 ; Author: Hector Martin <hector@marcansoft.com>
6 * Based on usb-ohci.c, emulates Renesas NEC USB 3.0
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21 #include "hw.h"
22 #include "qemu-timer.h"
23 #include "usb.h"
24 #include "pci.h"
25 #include "qdev-addr.h"
26 #include "msi.h"
27
28 //#define DEBUG_XHCI
29 //#define DEBUG_DATA
30
31 #ifdef DEBUG_XHCI
32 #define DPRINTF(...) fprintf(stderr, __VA_ARGS__)
33 #else
34 #define DPRINTF(...) do {} while (0)
35 #endif
36 #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \
37 __func__, __LINE__); abort(); } while (0)
38
39 #define MAXSLOTS 8
40 #define MAXINTRS 1
41
42 #define USB2_PORTS 4
43 #define USB3_PORTS 4
44
45 #define MAXPORTS (USB2_PORTS+USB3_PORTS)
46
47 #define TD_QUEUE 24
48 #define BG_XFERS 8
49 #define BG_PKTS 8
50
51 /* Very pessimistic, let's hope it's enough for all cases */
52 #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS)
53 /* Do not deliver ER Full events. NEC's driver does some things not bound
54 * to the specs when it gets them */
55 #define ER_FULL_HACK
56
57 #define LEN_CAP 0x40
58 #define OFF_OPER LEN_CAP
59 #define LEN_OPER (0x400 + 0x10 * MAXPORTS)
60 #define OFF_RUNTIME ((OFF_OPER + LEN_OPER + 0x20) & ~0x1f)
61 #define LEN_RUNTIME (0x20 + MAXINTRS * 0x20)
62 #define OFF_DOORBELL (OFF_RUNTIME + LEN_RUNTIME)
63 #define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20)
64
65 /* must be power of 2 */
66 #define LEN_REGS 0x2000
67
68 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS
69 # error Increase LEN_REGS
70 #endif
71
72 #if MAXINTRS > 1
73 # error TODO: only one interrupter supported
74 #endif
75
76 /* bit definitions */
77 #define USBCMD_RS (1<<0)
78 #define USBCMD_HCRST (1<<1)
79 #define USBCMD_INTE (1<<2)
80 #define USBCMD_HSEE (1<<3)
81 #define USBCMD_LHCRST (1<<7)
82 #define USBCMD_CSS (1<<8)
83 #define USBCMD_CRS (1<<9)
84 #define USBCMD_EWE (1<<10)
85 #define USBCMD_EU3S (1<<11)
86
87 #define USBSTS_HCH (1<<0)
88 #define USBSTS_HSE (1<<2)
89 #define USBSTS_EINT (1<<3)
90 #define USBSTS_PCD (1<<4)
91 #define USBSTS_SSS (1<<8)
92 #define USBSTS_RSS (1<<9)
93 #define USBSTS_SRE (1<<10)
94 #define USBSTS_CNR (1<<11)
95 #define USBSTS_HCE (1<<12)
96
97
98 #define PORTSC_CCS (1<<0)
99 #define PORTSC_PED (1<<1)
100 #define PORTSC_OCA (1<<3)
101 #define PORTSC_PR (1<<4)
102 #define PORTSC_PLS_SHIFT 5
103 #define PORTSC_PLS_MASK 0xf
104 #define PORTSC_PP (1<<9)
105 #define PORTSC_SPEED_SHIFT 10
106 #define PORTSC_SPEED_MASK 0xf
107 #define PORTSC_SPEED_FULL (1<<10)
108 #define PORTSC_SPEED_LOW (2<<10)
109 #define PORTSC_SPEED_HIGH (3<<10)
110 #define PORTSC_SPEED_SUPER (4<<10)
111 #define PORTSC_PIC_SHIFT 14
112 #define PORTSC_PIC_MASK 0x3
113 #define PORTSC_LWS (1<<16)
114 #define PORTSC_CSC (1<<17)
115 #define PORTSC_PEC (1<<18)
116 #define PORTSC_WRC (1<<19)
117 #define PORTSC_OCC (1<<20)
118 #define PORTSC_PRC (1<<21)
119 #define PORTSC_PLC (1<<22)
120 #define PORTSC_CEC (1<<23)
121 #define PORTSC_CAS (1<<24)
122 #define PORTSC_WCE (1<<25)
123 #define PORTSC_WDE (1<<26)
124 #define PORTSC_WOE (1<<27)
125 #define PORTSC_DR (1<<30)
126 #define PORTSC_WPR (1<<31)
127
128 #define CRCR_RCS (1<<0)
129 #define CRCR_CS (1<<1)
130 #define CRCR_CA (1<<2)
131 #define CRCR_CRR (1<<3)
132
133 #define IMAN_IP (1<<0)
134 #define IMAN_IE (1<<1)
135
136 #define ERDP_EHB (1<<3)
137
138 #define TRB_SIZE 16
139 typedef struct XHCITRB {
140 uint64_t parameter;
141 uint32_t status;
142 uint32_t control;
143 target_phys_addr_t addr;
144 bool ccs;
145 } XHCITRB;
146
147
148 typedef enum TRBType {
149 TRB_RESERVED = 0,
150 TR_NORMAL,
151 TR_SETUP,
152 TR_DATA,
153 TR_STATUS,
154 TR_ISOCH,
155 TR_LINK,
156 TR_EVDATA,
157 TR_NOOP,
158 CR_ENABLE_SLOT,
159 CR_DISABLE_SLOT,
160 CR_ADDRESS_DEVICE,
161 CR_CONFIGURE_ENDPOINT,
162 CR_EVALUATE_CONTEXT,
163 CR_RESET_ENDPOINT,
164 CR_STOP_ENDPOINT,
165 CR_SET_TR_DEQUEUE,
166 CR_RESET_DEVICE,
167 CR_FORCE_EVENT,
168 CR_NEGOTIATE_BW,
169 CR_SET_LATENCY_TOLERANCE,
170 CR_GET_PORT_BANDWIDTH,
171 CR_FORCE_HEADER,
172 CR_NOOP,
173 ER_TRANSFER = 32,
174 ER_COMMAND_COMPLETE,
175 ER_PORT_STATUS_CHANGE,
176 ER_BANDWIDTH_REQUEST,
177 ER_DOORBELL,
178 ER_HOST_CONTROLLER,
179 ER_DEVICE_NOTIFICATION,
180 ER_MFINDEX_WRAP,
181 /* vendor specific bits */
182 CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48,
183 CR_VENDOR_NEC_FIRMWARE_REVISION = 49,
184 CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50,
185 } TRBType;
186
187 #define CR_LINK TR_LINK
188
189 typedef enum TRBCCode {
190 CC_INVALID = 0,
191 CC_SUCCESS,
192 CC_DATA_BUFFER_ERROR,
193 CC_BABBLE_DETECTED,
194 CC_USB_TRANSACTION_ERROR,
195 CC_TRB_ERROR,
196 CC_STALL_ERROR,
197 CC_RESOURCE_ERROR,
198 CC_BANDWIDTH_ERROR,
199 CC_NO_SLOTS_ERROR,
200 CC_INVALID_STREAM_TYPE_ERROR,
201 CC_SLOT_NOT_ENABLED_ERROR,
202 CC_EP_NOT_ENABLED_ERROR,
203 CC_SHORT_PACKET,
204 CC_RING_UNDERRUN,
205 CC_RING_OVERRUN,
206 CC_VF_ER_FULL,
207 CC_PARAMETER_ERROR,
208 CC_BANDWIDTH_OVERRUN,
209 CC_CONTEXT_STATE_ERROR,
210 CC_NO_PING_RESPONSE_ERROR,
211 CC_EVENT_RING_FULL_ERROR,
212 CC_INCOMPATIBLE_DEVICE_ERROR,
213 CC_MISSED_SERVICE_ERROR,
214 CC_COMMAND_RING_STOPPED,
215 CC_COMMAND_ABORTED,
216 CC_STOPPED,
217 CC_STOPPED_LENGTH_INVALID,
218 CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29,
219 CC_ISOCH_BUFFER_OVERRUN = 31,
220 CC_EVENT_LOST_ERROR,
221 CC_UNDEFINED_ERROR,
222 CC_INVALID_STREAM_ID_ERROR,
223 CC_SECONDARY_BANDWIDTH_ERROR,
224 CC_SPLIT_TRANSACTION_ERROR
225 } TRBCCode;
226
227 #define TRB_C (1<<0)
228 #define TRB_TYPE_SHIFT 10
229 #define TRB_TYPE_MASK 0x3f
230 #define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK)
231
232 #define TRB_EV_ED (1<<2)
233
234 #define TRB_TR_ENT (1<<1)
235 #define TRB_TR_ISP (1<<2)
236 #define TRB_TR_NS (1<<3)
237 #define TRB_TR_CH (1<<4)
238 #define TRB_TR_IOC (1<<5)
239 #define TRB_TR_IDT (1<<6)
240 #define TRB_TR_TBC_SHIFT 7
241 #define TRB_TR_TBC_MASK 0x3
242 #define TRB_TR_BEI (1<<9)
243 #define TRB_TR_TLBPC_SHIFT 16
244 #define TRB_TR_TLBPC_MASK 0xf
245 #define TRB_TR_FRAMEID_SHIFT 20
246 #define TRB_TR_FRAMEID_MASK 0x7ff
247 #define TRB_TR_SIA (1<<31)
248
249 #define TRB_TR_DIR (1<<16)
250
251 #define TRB_CR_SLOTID_SHIFT 24
252 #define TRB_CR_SLOTID_MASK 0xff
253 #define TRB_CR_EPID_SHIFT 16
254 #define TRB_CR_EPID_MASK 0x1f
255
256 #define TRB_CR_BSR (1<<9)
257 #define TRB_CR_DC (1<<9)
258
259 #define TRB_LK_TC (1<<1)
260
261 #define EP_TYPE_MASK 0x7
262 #define EP_TYPE_SHIFT 3
263
264 #define EP_STATE_MASK 0x7
265 #define EP_DISABLED (0<<0)
266 #define EP_RUNNING (1<<0)
267 #define EP_HALTED (2<<0)
268 #define EP_STOPPED (3<<0)
269 #define EP_ERROR (4<<0)
270
271 #define SLOT_STATE_MASK 0x1f
272 #define SLOT_STATE_SHIFT 27
273 #define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK)
274 #define SLOT_ENABLED 0
275 #define SLOT_DEFAULT 1
276 #define SLOT_ADDRESSED 2
277 #define SLOT_CONFIGURED 3
278
279 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f
280 #define SLOT_CONTEXT_ENTRIES_SHIFT 27
281
282 typedef enum EPType {
283 ET_INVALID = 0,
284 ET_ISO_OUT,
285 ET_BULK_OUT,
286 ET_INTR_OUT,
287 ET_CONTROL,
288 ET_ISO_IN,
289 ET_BULK_IN,
290 ET_INTR_IN,
291 } EPType;
292
293 typedef struct XHCIRing {
294 target_phys_addr_t base;
295 target_phys_addr_t dequeue;
296 bool ccs;
297 } XHCIRing;
298
299 typedef struct XHCIPort {
300 USBPort port;
301 uint32_t portsc;
302 } XHCIPort;
303
304 struct XHCIState;
305 typedef struct XHCIState XHCIState;
306
307 typedef struct XHCITransfer {
308 XHCIState *xhci;
309 USBPacket packet;
310 bool running_async;
311 bool running_retry;
312 bool cancelled;
313 bool complete;
314 bool backgrounded;
315 unsigned int iso_pkts;
316 unsigned int slotid;
317 unsigned int epid;
318 bool in_xfer;
319 bool iso_xfer;
320 bool bg_xfer;
321
322 unsigned int trb_count;
323 unsigned int trb_alloced;
324 XHCITRB *trbs;
325
326 unsigned int data_length;
327 unsigned int data_alloced;
328 uint8_t *data;
329
330 TRBCCode status;
331
332 unsigned int pkts;
333 unsigned int pktsize;
334 unsigned int cur_pkt;
335 } XHCITransfer;
336
337 typedef struct XHCIEPContext {
338 XHCIRing ring;
339 unsigned int next_xfer;
340 unsigned int comp_xfer;
341 XHCITransfer transfers[TD_QUEUE];
342 XHCITransfer *retry;
343 bool bg_running;
344 bool bg_updating;
345 unsigned int next_bg;
346 XHCITransfer bg_transfers[BG_XFERS];
347 EPType type;
348 target_phys_addr_t pctx;
349 unsigned int max_psize;
350 bool has_bg;
351 uint32_t state;
352 } XHCIEPContext;
353
354 typedef struct XHCISlot {
355 bool enabled;
356 target_phys_addr_t ctx;
357 unsigned int port;
358 unsigned int devaddr;
359 XHCIEPContext * eps[31];
360 } XHCISlot;
361
362 typedef struct XHCIEvent {
363 TRBType type;
364 TRBCCode ccode;
365 uint64_t ptr;
366 uint32_t length;
367 uint32_t flags;
368 uint8_t slotid;
369 uint8_t epid;
370 } XHCIEvent;
371
372 struct XHCIState {
373 PCIDevice pci_dev;
374 USBBus bus;
375 qemu_irq irq;
376 MemoryRegion mem;
377 const char *name;
378 uint32_t msi;
379 unsigned int devaddr;
380
381 /* Operational Registers */
382 uint32_t usbcmd;
383 uint32_t usbsts;
384 uint32_t dnctrl;
385 uint32_t crcr_low;
386 uint32_t crcr_high;
387 uint32_t dcbaap_low;
388 uint32_t dcbaap_high;
389 uint32_t config;
390
391 XHCIPort ports[MAXPORTS];
392 XHCISlot slots[MAXSLOTS];
393
394 /* Runtime Registers */
395 uint32_t mfindex;
396 /* note: we only support one interrupter */
397 uint32_t iman;
398 uint32_t imod;
399 uint32_t erstsz;
400 uint32_t erstba_low;
401 uint32_t erstba_high;
402 uint32_t erdp_low;
403 uint32_t erdp_high;
404
405 target_phys_addr_t er_start;
406 uint32_t er_size;
407 bool er_pcs;
408 unsigned int er_ep_idx;
409 bool er_full;
410
411 XHCIEvent ev_buffer[EV_QUEUE];
412 unsigned int ev_buffer_put;
413 unsigned int ev_buffer_get;
414
415 XHCIRing cmd_ring;
416 };
417
418 typedef struct XHCIEvRingSeg {
419 uint32_t addr_low;
420 uint32_t addr_high;
421 uint32_t size;
422 uint32_t rsvd;
423 } XHCIEvRingSeg;
424
425 #ifdef DEBUG_XHCI
426 static const char *TRBType_names[] = {
427 [TRB_RESERVED] = "TRB_RESERVED",
428 [TR_NORMAL] = "TR_NORMAL",
429 [TR_SETUP] = "TR_SETUP",
430 [TR_DATA] = "TR_DATA",
431 [TR_STATUS] = "TR_STATUS",
432 [TR_ISOCH] = "TR_ISOCH",
433 [TR_LINK] = "TR_LINK",
434 [TR_EVDATA] = "TR_EVDATA",
435 [TR_NOOP] = "TR_NOOP",
436 [CR_ENABLE_SLOT] = "CR_ENABLE_SLOT",
437 [CR_DISABLE_SLOT] = "CR_DISABLE_SLOT",
438 [CR_ADDRESS_DEVICE] = "CR_ADDRESS_DEVICE",
439 [CR_CONFIGURE_ENDPOINT] = "CR_CONFIGURE_ENDPOINT",
440 [CR_EVALUATE_CONTEXT] = "CR_EVALUATE_CONTEXT",
441 [CR_RESET_ENDPOINT] = "CR_RESET_ENDPOINT",
442 [CR_STOP_ENDPOINT] = "CR_STOP_ENDPOINT",
443 [CR_SET_TR_DEQUEUE] = "CR_SET_TR_DEQUEUE",
444 [CR_RESET_DEVICE] = "CR_RESET_DEVICE",
445 [CR_FORCE_EVENT] = "CR_FORCE_EVENT",
446 [CR_NEGOTIATE_BW] = "CR_NEGOTIATE_BW",
447 [CR_SET_LATENCY_TOLERANCE] = "CR_SET_LATENCY_TOLERANCE",
448 [CR_GET_PORT_BANDWIDTH] = "CR_GET_PORT_BANDWIDTH",
449 [CR_FORCE_HEADER] = "CR_FORCE_HEADER",
450 [CR_NOOP] = "CR_NOOP",
451 [ER_TRANSFER] = "ER_TRANSFER",
452 [ER_COMMAND_COMPLETE] = "ER_COMMAND_COMPLETE",
453 [ER_PORT_STATUS_CHANGE] = "ER_PORT_STATUS_CHANGE",
454 [ER_BANDWIDTH_REQUEST] = "ER_BANDWIDTH_REQUEST",
455 [ER_DOORBELL] = "ER_DOORBELL",
456 [ER_HOST_CONTROLLER] = "ER_HOST_CONTROLLER",
457 [ER_DEVICE_NOTIFICATION] = "ER_DEVICE_NOTIFICATION",
458 [ER_MFINDEX_WRAP] = "ER_MFINDEX_WRAP",
459 [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE",
460 [CR_VENDOR_NEC_FIRMWARE_REVISION] = "CR_VENDOR_NEC_FIRMWARE_REVISION",
461 [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE",
462 };
463
464 static const char *lookup_name(uint32_t index, const char **list, uint32_t llen)
465 {
466 if (index >= llen || list[index] == NULL) {
467 return "???";
468 }
469 return list[index];
470 }
471
472 static const char *trb_name(XHCITRB *trb)
473 {
474 return lookup_name(TRB_TYPE(*trb), TRBType_names,
475 ARRAY_SIZE(TRBType_names));
476 }
477 #endif
478
479 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
480 unsigned int epid);
481
482 static inline target_phys_addr_t xhci_addr64(uint32_t low, uint32_t high)
483 {
484 #if TARGET_PHYS_ADDR_BITS > 32
485 return low | ((target_phys_addr_t)high << 32);
486 #else
487 return low;
488 #endif
489 }
490
491 static inline target_phys_addr_t xhci_mask64(uint64_t addr)
492 {
493 #if TARGET_PHYS_ADDR_BITS > 32
494 return addr;
495 #else
496 return addr & 0xffffffff;
497 #endif
498 }
499
500 static void xhci_irq_update(XHCIState *xhci)
501 {
502 int level = 0;
503
504 if (xhci->iman & IMAN_IP && xhci->iman & IMAN_IE &&
505 xhci->usbcmd && USBCMD_INTE) {
506 level = 1;
507 }
508
509 DPRINTF("xhci_irq_update(): %d\n", level);
510
511 if (xhci->msi && msi_enabled(&xhci->pci_dev)) {
512 if (level) {
513 DPRINTF("xhci_irq_update(): MSI signal\n");
514 msi_notify(&xhci->pci_dev, 0);
515 }
516 } else {
517 qemu_set_irq(xhci->irq, level);
518 }
519 }
520
521 static inline int xhci_running(XHCIState *xhci)
522 {
523 return !(xhci->usbsts & USBSTS_HCH) && !xhci->er_full;
524 }
525
526 static void xhci_die(XHCIState *xhci)
527 {
528 xhci->usbsts |= USBSTS_HCE;
529 fprintf(stderr, "xhci: asserted controller error\n");
530 }
531
532 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event)
533 {
534 XHCITRB ev_trb;
535 target_phys_addr_t addr;
536
537 ev_trb.parameter = cpu_to_le64(event->ptr);
538 ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24));
539 ev_trb.control = (event->slotid << 24) | (event->epid << 16) |
540 event->flags | (event->type << TRB_TYPE_SHIFT);
541 if (xhci->er_pcs) {
542 ev_trb.control |= TRB_C;
543 }
544 ev_trb.control = cpu_to_le32(ev_trb.control);
545
546 DPRINTF("xhci_write_event(): [%d] %016"PRIx64" %08x %08x %s\n",
547 xhci->er_ep_idx, ev_trb.parameter, ev_trb.status, ev_trb.control,
548 trb_name(&ev_trb));
549
550 addr = xhci->er_start + TRB_SIZE*xhci->er_ep_idx;
551 cpu_physical_memory_write(addr, (uint8_t *) &ev_trb, TRB_SIZE);
552
553 xhci->er_ep_idx++;
554 if (xhci->er_ep_idx >= xhci->er_size) {
555 xhci->er_ep_idx = 0;
556 xhci->er_pcs = !xhci->er_pcs;
557 }
558 }
559
560 static void xhci_events_update(XHCIState *xhci)
561 {
562 target_phys_addr_t erdp;
563 unsigned int dp_idx;
564 bool do_irq = 0;
565
566 if (xhci->usbsts & USBSTS_HCH) {
567 return;
568 }
569
570 erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
571 if (erdp < xhci->er_start ||
572 erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
573 fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp);
574 fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n",
575 xhci->er_start, xhci->er_size);
576 xhci_die(xhci);
577 return;
578 }
579 dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
580 assert(dp_idx < xhci->er_size);
581
582 /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus
583 * deadlocks when the ER is full. Hack it by holding off events until
584 * the driver decides to free at least half of the ring */
585 if (xhci->er_full) {
586 int er_free = dp_idx - xhci->er_ep_idx;
587 if (er_free <= 0) {
588 er_free += xhci->er_size;
589 }
590 if (er_free < (xhci->er_size/2)) {
591 DPRINTF("xhci_events_update(): event ring still "
592 "more than half full (hack)\n");
593 return;
594 }
595 }
596
597 while (xhci->ev_buffer_put != xhci->ev_buffer_get) {
598 assert(xhci->er_full);
599 if (((xhci->er_ep_idx+1) % xhci->er_size) == dp_idx) {
600 DPRINTF("xhci_events_update(): event ring full again\n");
601 #ifndef ER_FULL_HACK
602 XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
603 xhci_write_event(xhci, &full);
604 #endif
605 do_irq = 1;
606 break;
607 }
608 XHCIEvent *event = &xhci->ev_buffer[xhci->ev_buffer_get];
609 xhci_write_event(xhci, event);
610 xhci->ev_buffer_get++;
611 do_irq = 1;
612 if (xhci->ev_buffer_get == EV_QUEUE) {
613 xhci->ev_buffer_get = 0;
614 }
615 }
616
617 if (do_irq) {
618 xhci->erdp_low |= ERDP_EHB;
619 xhci->iman |= IMAN_IP;
620 xhci->usbsts |= USBSTS_EINT;
621 xhci_irq_update(xhci);
622 }
623
624 if (xhci->er_full && xhci->ev_buffer_put == xhci->ev_buffer_get) {
625 DPRINTF("xhci_events_update(): event ring no longer full\n");
626 xhci->er_full = 0;
627 }
628 return;
629 }
630
631 static void xhci_event(XHCIState *xhci, XHCIEvent *event)
632 {
633 target_phys_addr_t erdp;
634 unsigned int dp_idx;
635
636 if (xhci->er_full) {
637 DPRINTF("xhci_event(): ER full, queueing\n");
638 if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
639 fprintf(stderr, "xhci: event queue full, dropping event!\n");
640 return;
641 }
642 xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
643 if (xhci->ev_buffer_put == EV_QUEUE) {
644 xhci->ev_buffer_put = 0;
645 }
646 return;
647 }
648
649 erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
650 if (erdp < xhci->er_start ||
651 erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
652 fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp);
653 fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n",
654 xhci->er_start, xhci->er_size);
655 xhci_die(xhci);
656 return;
657 }
658
659 dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
660 assert(dp_idx < xhci->er_size);
661
662 if ((xhci->er_ep_idx+1) % xhci->er_size == dp_idx) {
663 DPRINTF("xhci_event(): ER full, queueing\n");
664 #ifndef ER_FULL_HACK
665 XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
666 xhci_write_event(xhci, &full);
667 #endif
668 xhci->er_full = 1;
669 if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
670 fprintf(stderr, "xhci: event queue full, dropping event!\n");
671 return;
672 }
673 xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
674 if (xhci->ev_buffer_put == EV_QUEUE) {
675 xhci->ev_buffer_put = 0;
676 }
677 } else {
678 xhci_write_event(xhci, event);
679 }
680
681 xhci->erdp_low |= ERDP_EHB;
682 xhci->iman |= IMAN_IP;
683 xhci->usbsts |= USBSTS_EINT;
684
685 xhci_irq_update(xhci);
686 }
687
688 static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring,
689 target_phys_addr_t base)
690 {
691 ring->base = base;
692 ring->dequeue = base;
693 ring->ccs = 1;
694 }
695
696 static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb,
697 target_phys_addr_t *addr)
698 {
699 while (1) {
700 TRBType type;
701 cpu_physical_memory_read(ring->dequeue, (uint8_t *) trb, TRB_SIZE);
702 trb->addr = ring->dequeue;
703 trb->ccs = ring->ccs;
704 le64_to_cpus(&trb->parameter);
705 le32_to_cpus(&trb->status);
706 le32_to_cpus(&trb->control);
707
708 DPRINTF("xhci: TRB fetched [" TARGET_FMT_plx "]: "
709 "%016" PRIx64 " %08x %08x %s\n",
710 ring->dequeue, trb->parameter, trb->status, trb->control,
711 trb_name(trb));
712
713 if ((trb->control & TRB_C) != ring->ccs) {
714 return 0;
715 }
716
717 type = TRB_TYPE(*trb);
718
719 if (type != TR_LINK) {
720 if (addr) {
721 *addr = ring->dequeue;
722 }
723 ring->dequeue += TRB_SIZE;
724 return type;
725 } else {
726 ring->dequeue = xhci_mask64(trb->parameter);
727 if (trb->control & TRB_LK_TC) {
728 ring->ccs = !ring->ccs;
729 }
730 }
731 }
732 }
733
734 static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring)
735 {
736 XHCITRB trb;
737 int length = 0;
738 target_phys_addr_t dequeue = ring->dequeue;
739 bool ccs = ring->ccs;
740 /* hack to bundle together the two/three TDs that make a setup transfer */
741 bool control_td_set = 0;
742
743 while (1) {
744 TRBType type;
745 cpu_physical_memory_read(dequeue, (uint8_t *) &trb, TRB_SIZE);
746 le64_to_cpus(&trb.parameter);
747 le32_to_cpus(&trb.status);
748 le32_to_cpus(&trb.control);
749
750 DPRINTF("xhci: TRB peeked [" TARGET_FMT_plx "]: "
751 "%016" PRIx64 " %08x %08x\n",
752 dequeue, trb.parameter, trb.status, trb.control);
753
754 if ((trb.control & TRB_C) != ccs) {
755 return -length;
756 }
757
758 type = TRB_TYPE(trb);
759
760 if (type == TR_LINK) {
761 dequeue = xhci_mask64(trb.parameter);
762 if (trb.control & TRB_LK_TC) {
763 ccs = !ccs;
764 }
765 continue;
766 }
767
768 length += 1;
769 dequeue += TRB_SIZE;
770
771 if (type == TR_SETUP) {
772 control_td_set = 1;
773 } else if (type == TR_STATUS) {
774 control_td_set = 0;
775 }
776
777 if (!control_td_set && !(trb.control & TRB_TR_CH)) {
778 return length;
779 }
780 }
781 }
782
783 static void xhci_er_reset(XHCIState *xhci)
784 {
785 XHCIEvRingSeg seg;
786
787 /* cache the (sole) event ring segment location */
788 if (xhci->erstsz != 1) {
789 fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", xhci->erstsz);
790 xhci_die(xhci);
791 return;
792 }
793 target_phys_addr_t erstba = xhci_addr64(xhci->erstba_low, xhci->erstba_high);
794 cpu_physical_memory_read(erstba, (uint8_t *) &seg, sizeof(seg));
795 le32_to_cpus(&seg.addr_low);
796 le32_to_cpus(&seg.addr_high);
797 le32_to_cpus(&seg.size);
798 if (seg.size < 16 || seg.size > 4096) {
799 fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size);
800 xhci_die(xhci);
801 return;
802 }
803 xhci->er_start = xhci_addr64(seg.addr_low, seg.addr_high);
804 xhci->er_size = seg.size;
805
806 xhci->er_ep_idx = 0;
807 xhci->er_pcs = 1;
808 xhci->er_full = 0;
809
810 DPRINTF("xhci: event ring:" TARGET_FMT_plx " [%d]\n",
811 xhci->er_start, xhci->er_size);
812 }
813
814 static void xhci_run(XHCIState *xhci)
815 {
816 DPRINTF("xhci_run()\n");
817
818 xhci->usbsts &= ~USBSTS_HCH;
819 }
820
821 static void xhci_stop(XHCIState *xhci)
822 {
823 DPRINTF("xhci_stop()\n");
824 xhci->usbsts |= USBSTS_HCH;
825 xhci->crcr_low &= ~CRCR_CRR;
826 }
827
828 static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx,
829 uint32_t state)
830 {
831 uint32_t ctx[5];
832 if (epctx->state == state) {
833 return;
834 }
835
836 cpu_physical_memory_read(epctx->pctx, (uint8_t *) ctx, sizeof(ctx));
837 ctx[0] &= ~EP_STATE_MASK;
838 ctx[0] |= state;
839 ctx[2] = epctx->ring.dequeue | epctx->ring.ccs;
840 ctx[3] = (epctx->ring.dequeue >> 16) >> 16;
841 DPRINTF("xhci: set epctx: " TARGET_FMT_plx " state=%d dequeue=%08x%08x\n",
842 epctx->pctx, state, ctx[3], ctx[2]);
843 cpu_physical_memory_write(epctx->pctx, (uint8_t *) ctx, sizeof(ctx));
844 epctx->state = state;
845 }
846
847 static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid,
848 unsigned int epid, target_phys_addr_t pctx,
849 uint32_t *ctx)
850 {
851 XHCISlot *slot;
852 XHCIEPContext *epctx;
853 target_phys_addr_t dequeue;
854 int i;
855
856 assert(slotid >= 1 && slotid <= MAXSLOTS);
857 assert(epid >= 1 && epid <= 31);
858
859 DPRINTF("xhci_enable_ep(%d, %d)\n", slotid, epid);
860
861 slot = &xhci->slots[slotid-1];
862 if (slot->eps[epid-1]) {
863 fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
864 return CC_TRB_ERROR;
865 }
866
867 epctx = g_malloc(sizeof(XHCIEPContext));
868 memset(epctx, 0, sizeof(XHCIEPContext));
869
870 slot->eps[epid-1] = epctx;
871
872 dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]);
873 xhci_ring_init(xhci, &epctx->ring, dequeue);
874 epctx->ring.ccs = ctx[2] & 1;
875
876 epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK;
877 DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type);
878 epctx->pctx = pctx;
879 epctx->max_psize = ctx[1]>>16;
880 epctx->max_psize *= 1+((ctx[1]>>8)&0xff);
881 epctx->has_bg = false;
882 if (epctx->type == ET_ISO_IN) {
883 epctx->has_bg = true;
884 }
885 DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n",
886 epid/2, epid%2, epctx->max_psize);
887 for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
888 usb_packet_init(&epctx->transfers[i].packet);
889 }
890
891 epctx->state = EP_RUNNING;
892 ctx[0] &= ~EP_STATE_MASK;
893 ctx[0] |= EP_RUNNING;
894
895 return CC_SUCCESS;
896 }
897
898 static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid,
899 unsigned int epid)
900 {
901 XHCISlot *slot;
902 XHCIEPContext *epctx;
903 int i, xferi, killed = 0;
904 assert(slotid >= 1 && slotid <= MAXSLOTS);
905 assert(epid >= 1 && epid <= 31);
906
907 DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid);
908
909 slot = &xhci->slots[slotid-1];
910
911 if (!slot->eps[epid-1]) {
912 return 0;
913 }
914
915 epctx = slot->eps[epid-1];
916
917 xferi = epctx->next_xfer;
918 for (i = 0; i < TD_QUEUE; i++) {
919 XHCITransfer *t = &epctx->transfers[xferi];
920 if (t->running_async) {
921 usb_cancel_packet(&t->packet);
922 t->running_async = 0;
923 t->cancelled = 1;
924 DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i);
925 killed++;
926 }
927 if (t->running_retry) {
928 t->running_retry = 0;
929 epctx->retry = NULL;
930 }
931 if (t->backgrounded) {
932 t->backgrounded = 0;
933 }
934 if (t->trbs) {
935 g_free(t->trbs);
936 }
937 if (t->data) {
938 g_free(t->data);
939 }
940
941 t->trbs = NULL;
942 t->data = NULL;
943 t->trb_count = t->trb_alloced = 0;
944 t->data_length = t->data_alloced = 0;
945 xferi = (xferi + 1) % TD_QUEUE;
946 }
947 if (epctx->has_bg) {
948 xferi = epctx->next_bg;
949 for (i = 0; i < BG_XFERS; i++) {
950 XHCITransfer *t = &epctx->bg_transfers[xferi];
951 if (t->running_async) {
952 usb_cancel_packet(&t->packet);
953 t->running_async = 0;
954 t->cancelled = 1;
955 DPRINTF("xhci: cancelling bg transfer %d, waiting for it to complete...\n", i);
956 killed++;
957 }
958 if (t->data) {
959 g_free(t->data);
960 }
961
962 t->data = NULL;
963 xferi = (xferi + 1) % BG_XFERS;
964 }
965 }
966 return killed;
967 }
968
969 static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid,
970 unsigned int epid)
971 {
972 XHCISlot *slot;
973 XHCIEPContext *epctx;
974
975 assert(slotid >= 1 && slotid <= MAXSLOTS);
976 assert(epid >= 1 && epid <= 31);
977
978 DPRINTF("xhci_disable_ep(%d, %d)\n", slotid, epid);
979
980 slot = &xhci->slots[slotid-1];
981
982 if (!slot->eps[epid-1]) {
983 DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid);
984 return CC_SUCCESS;
985 }
986
987 xhci_ep_nuke_xfers(xhci, slotid, epid);
988
989 epctx = slot->eps[epid-1];
990
991 xhci_set_ep_state(xhci, epctx, EP_DISABLED);
992
993 g_free(epctx);
994 slot->eps[epid-1] = NULL;
995
996 return CC_SUCCESS;
997 }
998
999 static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
1000 unsigned int epid)
1001 {
1002 XHCISlot *slot;
1003 XHCIEPContext *epctx;
1004
1005 DPRINTF("xhci_stop_ep(%d, %d)\n", slotid, epid);
1006
1007 assert(slotid >= 1 && slotid <= MAXSLOTS);
1008
1009 if (epid < 1 || epid > 31) {
1010 fprintf(stderr, "xhci: bad ep %d\n", epid);
1011 return CC_TRB_ERROR;
1012 }
1013
1014 slot = &xhci->slots[slotid-1];
1015
1016 if (!slot->eps[epid-1]) {
1017 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1018 return CC_EP_NOT_ENABLED_ERROR;
1019 }
1020
1021 if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1022 fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, "
1023 "data might be lost\n");
1024 }
1025
1026 epctx = slot->eps[epid-1];
1027
1028 xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1029
1030 return CC_SUCCESS;
1031 }
1032
1033 static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
1034 unsigned int epid)
1035 {
1036 XHCISlot *slot;
1037 XHCIEPContext *epctx;
1038 USBDevice *dev;
1039
1040 assert(slotid >= 1 && slotid <= MAXSLOTS);
1041
1042 DPRINTF("xhci_reset_ep(%d, %d)\n", slotid, epid);
1043
1044 if (epid < 1 || epid > 31) {
1045 fprintf(stderr, "xhci: bad ep %d\n", epid);
1046 return CC_TRB_ERROR;
1047 }
1048
1049 slot = &xhci->slots[slotid-1];
1050
1051 if (!slot->eps[epid-1]) {
1052 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1053 return CC_EP_NOT_ENABLED_ERROR;
1054 }
1055
1056 epctx = slot->eps[epid-1];
1057
1058 if (epctx->state != EP_HALTED) {
1059 fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n",
1060 epid, epctx->state);
1061 return CC_CONTEXT_STATE_ERROR;
1062 }
1063
1064 if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1065 fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, "
1066 "data might be lost\n");
1067 }
1068
1069 uint8_t ep = epid>>1;
1070
1071 if (epid & 1) {
1072 ep |= 0x80;
1073 }
1074
1075 dev = xhci->ports[xhci->slots[slotid-1].port-1].port.dev;
1076 if (!dev) {
1077 return CC_USB_TRANSACTION_ERROR;
1078 }
1079
1080 xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1081
1082 return CC_SUCCESS;
1083 }
1084
1085 static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
1086 unsigned int epid, uint64_t pdequeue)
1087 {
1088 XHCISlot *slot;
1089 XHCIEPContext *epctx;
1090 target_phys_addr_t dequeue;
1091
1092 assert(slotid >= 1 && slotid <= MAXSLOTS);
1093
1094 if (epid < 1 || epid > 31) {
1095 fprintf(stderr, "xhci: bad ep %d\n", epid);
1096 return CC_TRB_ERROR;
1097 }
1098
1099 DPRINTF("xhci_set_ep_dequeue(%d, %d, %016"PRIx64")\n", slotid, epid, pdequeue);
1100 dequeue = xhci_mask64(pdequeue);
1101
1102 slot = &xhci->slots[slotid-1];
1103
1104 if (!slot->eps[epid-1]) {
1105 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1106 return CC_EP_NOT_ENABLED_ERROR;
1107 }
1108
1109 epctx = slot->eps[epid-1];
1110
1111
1112 if (epctx->state != EP_STOPPED) {
1113 fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
1114 return CC_CONTEXT_STATE_ERROR;
1115 }
1116
1117 xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF);
1118 epctx->ring.ccs = dequeue & 1;
1119
1120 xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1121
1122 return CC_SUCCESS;
1123 }
1124
1125 static int xhci_xfer_data(XHCITransfer *xfer, uint8_t *data,
1126 unsigned int length, bool in_xfer, bool out_xfer,
1127 bool report)
1128 {
1129 int i;
1130 uint32_t edtla = 0;
1131 unsigned int transferred = 0;
1132 unsigned int left = length;
1133 bool reported = 0;
1134 bool shortpkt = 0;
1135 XHCIEvent event = {ER_TRANSFER, CC_SUCCESS};
1136 XHCIState *xhci = xfer->xhci;
1137
1138 DPRINTF("xhci_xfer_data(len=%d, in_xfer=%d, out_xfer=%d, report=%d)\n",
1139 length, in_xfer, out_xfer, report);
1140
1141 assert(!(in_xfer && out_xfer));
1142
1143 for (i = 0; i < xfer->trb_count; i++) {
1144 XHCITRB *trb = &xfer->trbs[i];
1145 target_phys_addr_t addr;
1146 unsigned int chunk = 0;
1147
1148 switch (TRB_TYPE(*trb)) {
1149 case TR_DATA:
1150 if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
1151 fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n");
1152 xhci_die(xhci);
1153 return transferred;
1154 }
1155 /* fallthrough */
1156 case TR_NORMAL:
1157 case TR_ISOCH:
1158 addr = xhci_mask64(trb->parameter);
1159 chunk = trb->status & 0x1ffff;
1160 if (chunk > left) {
1161 chunk = left;
1162 shortpkt = 1;
1163 }
1164 if (in_xfer || out_xfer) {
1165 if (trb->control & TRB_TR_IDT) {
1166 uint64_t idata;
1167 if (chunk > 8 || in_xfer) {
1168 fprintf(stderr, "xhci: invalid immediate data TRB\n");
1169 xhci_die(xhci);
1170 return transferred;
1171 }
1172 idata = le64_to_cpu(trb->parameter);
1173 memcpy(data, &idata, chunk);
1174 } else {
1175 DPRINTF("xhci_xfer_data: r/w(%d) %d bytes at "
1176 TARGET_FMT_plx "\n", in_xfer, chunk, addr);
1177 if (in_xfer) {
1178 cpu_physical_memory_write(addr, data, chunk);
1179 } else {
1180 cpu_physical_memory_read(addr, data, chunk);
1181 }
1182 #ifdef DEBUG_DATA
1183 unsigned int count = chunk;
1184 int i;
1185 if (count > 16) {
1186 count = 16;
1187 }
1188 DPRINTF(" ::");
1189 for (i = 0; i < count; i++) {
1190 DPRINTF(" %02x", data[i]);
1191 }
1192 DPRINTF("\n");
1193 #endif
1194 }
1195 }
1196 left -= chunk;
1197 data += chunk;
1198 edtla += chunk;
1199 transferred += chunk;
1200 break;
1201 case TR_STATUS:
1202 reported = 0;
1203 shortpkt = 0;
1204 break;
1205 }
1206
1207 if (report && !reported && (trb->control & TRB_TR_IOC ||
1208 (shortpkt && (trb->control & TRB_TR_ISP)))) {
1209 event.slotid = xfer->slotid;
1210 event.epid = xfer->epid;
1211 event.length = (trb->status & 0x1ffff) - chunk;
1212 event.flags = 0;
1213 event.ptr = trb->addr;
1214 if (xfer->status == CC_SUCCESS) {
1215 event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS;
1216 } else {
1217 event.ccode = xfer->status;
1218 }
1219 if (TRB_TYPE(*trb) == TR_EVDATA) {
1220 event.ptr = trb->parameter;
1221 event.flags |= TRB_EV_ED;
1222 event.length = edtla & 0xffffff;
1223 DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length);
1224 edtla = 0;
1225 }
1226 xhci_event(xhci, &event);
1227 reported = 1;
1228 }
1229 }
1230 return transferred;
1231 }
1232
1233 static void xhci_stall_ep(XHCITransfer *xfer)
1234 {
1235 XHCIState *xhci = xfer->xhci;
1236 XHCISlot *slot = &xhci->slots[xfer->slotid-1];
1237 XHCIEPContext *epctx = slot->eps[xfer->epid-1];
1238
1239 epctx->ring.dequeue = xfer->trbs[0].addr;
1240 epctx->ring.ccs = xfer->trbs[0].ccs;
1241 xhci_set_ep_state(xhci, epctx, EP_HALTED);
1242 DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid);
1243 DPRINTF("xhci: will continue at "TARGET_FMT_plx"\n", epctx->ring.dequeue);
1244 }
1245
1246 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer,
1247 XHCIEPContext *epctx);
1248
1249 static void xhci_bg_update(XHCIState *xhci, XHCIEPContext *epctx)
1250 {
1251 if (epctx->bg_updating) {
1252 return;
1253 }
1254 DPRINTF("xhci_bg_update(%p, %p)\n", xhci, epctx);
1255 assert(epctx->has_bg);
1256 DPRINTF("xhci: fg=%d bg=%d\n", epctx->comp_xfer, epctx->next_bg);
1257 epctx->bg_updating = 1;
1258 while (epctx->transfers[epctx->comp_xfer].backgrounded &&
1259 epctx->bg_transfers[epctx->next_bg].complete) {
1260 XHCITransfer *fg = &epctx->transfers[epctx->comp_xfer];
1261 XHCITransfer *bg = &epctx->bg_transfers[epctx->next_bg];
1262 #if 0
1263 DPRINTF("xhci: completing fg %d from bg %d.%d (stat: %d)\n",
1264 epctx->comp_xfer, epctx->next_bg, bg->cur_pkt,
1265 bg->usbxfer->iso_packet_desc[bg->cur_pkt].status
1266 );
1267 #endif
1268 assert(epctx->type == ET_ISO_IN);
1269 assert(bg->iso_xfer);
1270 assert(bg->in_xfer);
1271 uint8_t *p = bg->data + bg->cur_pkt * bg->pktsize;
1272 #if 0
1273 int len = bg->usbxfer->iso_packet_desc[bg->cur_pkt].actual_length;
1274 fg->status = libusb_to_ccode(bg->usbxfer->iso_packet_desc[bg->cur_pkt].status);
1275 #else
1276 int len = 0;
1277 FIXME();
1278 #endif
1279 fg->complete = 1;
1280 fg->backgrounded = 0;
1281
1282 if (fg->status == CC_STALL_ERROR) {
1283 xhci_stall_ep(fg);
1284 }
1285
1286 xhci_xfer_data(fg, p, len, 1, 0, 1);
1287
1288 epctx->comp_xfer++;
1289 if (epctx->comp_xfer == TD_QUEUE) {
1290 epctx->comp_xfer = 0;
1291 }
1292 DPRINTF("next fg xfer: %d\n", epctx->comp_xfer);
1293 bg->cur_pkt++;
1294 if (bg->cur_pkt == bg->pkts) {
1295 bg->complete = 0;
1296 if (xhci_submit(xhci, bg, epctx) < 0) {
1297 fprintf(stderr, "xhci: bg resubmit failed\n");
1298 }
1299 epctx->next_bg++;
1300 if (epctx->next_bg == BG_XFERS) {
1301 epctx->next_bg = 0;
1302 }
1303 DPRINTF("next bg xfer: %d\n", epctx->next_bg);
1304
1305 xhci_kick_ep(xhci, fg->slotid, fg->epid);
1306 }
1307 }
1308 epctx->bg_updating = 0;
1309 }
1310
1311 #if 0
1312 static void xhci_xfer_cb(struct libusb_transfer *transfer)
1313 {
1314 XHCIState *xhci;
1315 XHCITransfer *xfer;
1316
1317 xfer = (XHCITransfer *)transfer->user_data;
1318 xhci = xfer->xhci;
1319
1320 DPRINTF("xhci_xfer_cb(slot=%d, ep=%d, status=%d)\n", xfer->slotid,
1321 xfer->epid, transfer->status);
1322
1323 assert(xfer->slotid >= 1 && xfer->slotid <= MAXSLOTS);
1324 assert(xfer->epid >= 1 && xfer->epid <= 31);
1325
1326 if (xfer->cancelled) {
1327 DPRINTF("xhci: transfer cancelled, not reporting anything\n");
1328 xfer->running = 0;
1329 return;
1330 }
1331
1332 XHCIEPContext *epctx;
1333 XHCISlot *slot;
1334 slot = &xhci->slots[xfer->slotid-1];
1335 assert(slot->eps[xfer->epid-1]);
1336 epctx = slot->eps[xfer->epid-1];
1337
1338 if (xfer->bg_xfer) {
1339 DPRINTF("xhci: background transfer, updating\n");
1340 xfer->complete = 1;
1341 xfer->running = 0;
1342 xhci_bg_update(xhci, epctx);
1343 return;
1344 }
1345
1346 if (xfer->iso_xfer) {
1347 transfer->status = transfer->iso_packet_desc[0].status;
1348 transfer->actual_length = transfer->iso_packet_desc[0].actual_length;
1349 }
1350
1351 xfer->status = libusb_to_ccode(transfer->status);
1352
1353 xfer->complete = 1;
1354 xfer->running = 0;
1355
1356 if (transfer->status == LIBUSB_TRANSFER_STALL)
1357 xhci_stall_ep(xhci, epctx, xfer);
1358
1359 DPRINTF("xhci: transfer actual length = %d\n", transfer->actual_length);
1360
1361 if (xfer->in_xfer) {
1362 if (xfer->epid == 1) {
1363 xhci_xfer_data(xhci, xfer, xfer->data + 8,
1364 transfer->actual_length, 1, 0, 1);
1365 } else {
1366 xhci_xfer_data(xhci, xfer, xfer->data,
1367 transfer->actual_length, 1, 0, 1);
1368 }
1369 } else {
1370 xhci_xfer_data(xhci, xfer, NULL, transfer->actual_length, 0, 0, 1);
1371 }
1372
1373 xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1374 }
1375
1376 static int xhci_hle_control(XHCIState *xhci, XHCITransfer *xfer,
1377 uint8_t bmRequestType, uint8_t bRequest,
1378 uint16_t wValue, uint16_t wIndex, uint16_t wLength)
1379 {
1380 uint16_t type_req = (bmRequestType << 8) | bRequest;
1381
1382 switch (type_req) {
1383 case 0x0000 | USB_REQ_SET_CONFIGURATION:
1384 DPRINTF("xhci: HLE switch configuration\n");
1385 return xhci_switch_config(xhci, xfer->slotid, wValue) == 0;
1386 case 0x0100 | USB_REQ_SET_INTERFACE:
1387 DPRINTF("xhci: HLE set interface altsetting\n");
1388 return xhci_set_iface_alt(xhci, xfer->slotid, wIndex, wValue) == 0;
1389 case 0x0200 | USB_REQ_CLEAR_FEATURE:
1390 if (wValue == 0) { // endpoint halt
1391 DPRINTF("xhci: HLE clear halt\n");
1392 return xhci_clear_halt(xhci, xfer->slotid, wIndex);
1393 }
1394 case 0x0000 | USB_REQ_SET_ADDRESS:
1395 fprintf(stderr, "xhci: warn: illegal SET_ADDRESS request\n");
1396 return 0;
1397 default:
1398 return 0;
1399 }
1400 }
1401 #endif
1402
1403 static int xhci_setup_packet(XHCITransfer *xfer, USBDevice *dev)
1404 {
1405 USBEndpoint *ep;
1406 int dir;
1407
1408 dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT;
1409 ep = usb_ep_get(dev, dir, xfer->epid >> 1);
1410 usb_packet_setup(&xfer->packet, dir, ep);
1411 usb_packet_addbuf(&xfer->packet, xfer->data, xfer->data_length);
1412 DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n",
1413 xfer->packet.pid, dev->addr, ep->nr);
1414 return 0;
1415 }
1416
1417 static int xhci_complete_packet(XHCITransfer *xfer, int ret)
1418 {
1419 if (ret == USB_RET_ASYNC) {
1420 xfer->running_async = 1;
1421 xfer->running_retry = 0;
1422 xfer->complete = 0;
1423 xfer->cancelled = 0;
1424 return 0;
1425 } else if (ret == USB_RET_NAK) {
1426 xfer->running_async = 0;
1427 xfer->running_retry = 1;
1428 xfer->complete = 0;
1429 xfer->cancelled = 0;
1430 return 0;
1431 } else {
1432 xfer->running_async = 0;
1433 xfer->running_retry = 0;
1434 xfer->complete = 1;
1435 }
1436
1437 if (ret >= 0) {
1438 xfer->status = CC_SUCCESS;
1439 xhci_xfer_data(xfer, xfer->data, ret, xfer->in_xfer, 0, 1);
1440 return 0;
1441 }
1442
1443 /* error */
1444 switch (ret) {
1445 case USB_RET_NODEV:
1446 xfer->status = CC_USB_TRANSACTION_ERROR;
1447 xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
1448 xhci_stall_ep(xfer);
1449 break;
1450 case USB_RET_STALL:
1451 xfer->status = CC_STALL_ERROR;
1452 xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
1453 xhci_stall_ep(xfer);
1454 break;
1455 default:
1456 fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret);
1457 FIXME();
1458 }
1459 return 0;
1460 }
1461
1462 static USBDevice *xhci_find_device(XHCIPort *port, uint8_t addr)
1463 {
1464 if (!(port->portsc & PORTSC_PED)) {
1465 return NULL;
1466 }
1467 return usb_find_device(&port->port, addr);
1468 }
1469
1470 static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
1471 {
1472 XHCITRB *trb_setup, *trb_status;
1473 uint8_t bmRequestType, bRequest;
1474 uint16_t wValue, wLength, wIndex;
1475 XHCIPort *port;
1476 USBDevice *dev;
1477 int ret;
1478
1479 DPRINTF("xhci_fire_ctl_transfer(slot=%d)\n", xfer->slotid);
1480
1481 trb_setup = &xfer->trbs[0];
1482 trb_status = &xfer->trbs[xfer->trb_count-1];
1483
1484 /* at most one Event Data TRB allowed after STATUS */
1485 if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
1486 trb_status--;
1487 }
1488
1489 /* do some sanity checks */
1490 if (TRB_TYPE(*trb_setup) != TR_SETUP) {
1491 fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n",
1492 TRB_TYPE(*trb_setup));
1493 return -1;
1494 }
1495 if (TRB_TYPE(*trb_status) != TR_STATUS) {
1496 fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n",
1497 TRB_TYPE(*trb_status));
1498 return -1;
1499 }
1500 if (!(trb_setup->control & TRB_TR_IDT)) {
1501 fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n");
1502 return -1;
1503 }
1504 if ((trb_setup->status & 0x1ffff) != 8) {
1505 fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n",
1506 (trb_setup->status & 0x1ffff));
1507 return -1;
1508 }
1509
1510 bmRequestType = trb_setup->parameter;
1511 bRequest = trb_setup->parameter >> 8;
1512 wValue = trb_setup->parameter >> 16;
1513 wIndex = trb_setup->parameter >> 32;
1514 wLength = trb_setup->parameter >> 48;
1515
1516 if (xfer->data && xfer->data_alloced < wLength) {
1517 xfer->data_alloced = 0;
1518 g_free(xfer->data);
1519 xfer->data = NULL;
1520 }
1521 if (!xfer->data) {
1522 DPRINTF("xhci: alloc %d bytes data\n", wLength);
1523 xfer->data = g_malloc(wLength+1);
1524 xfer->data_alloced = wLength;
1525 }
1526 xfer->data_length = wLength;
1527
1528 port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1529 dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1530 if (!dev) {
1531 fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
1532 xhci->slots[xfer->slotid-1].port);
1533 return -1;
1534 }
1535
1536 xfer->in_xfer = bmRequestType & USB_DIR_IN;
1537 xfer->iso_xfer = false;
1538
1539 xhci_setup_packet(xfer, dev);
1540 if (!xfer->in_xfer) {
1541 xhci_xfer_data(xfer, xfer->data, wLength, 0, 1, 0);
1542 }
1543 ret = usb_device_handle_control(dev, &xfer->packet,
1544 (bmRequestType << 8) | bRequest,
1545 wValue, wIndex, wLength, xfer->data);
1546
1547 xhci_complete_packet(xfer, ret);
1548 if (!xfer->running_async && !xfer->running_retry) {
1549 xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1550 }
1551 return 0;
1552 }
1553
1554 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1555 {
1556 XHCIPort *port;
1557 USBDevice *dev;
1558 int ret;
1559
1560 DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1561
1562 xfer->in_xfer = epctx->type>>2;
1563
1564 if (xfer->data && xfer->data_alloced < xfer->data_length) {
1565 xfer->data_alloced = 0;
1566 g_free(xfer->data);
1567 xfer->data = NULL;
1568 }
1569 if (!xfer->data && xfer->data_length) {
1570 DPRINTF("xhci: alloc %d bytes data\n", xfer->data_length);
1571 xfer->data = g_malloc(xfer->data_length);
1572 xfer->data_alloced = xfer->data_length;
1573 }
1574 if (epctx->type == ET_ISO_IN || epctx->type == ET_ISO_OUT) {
1575 if (!xfer->bg_xfer) {
1576 xfer->pkts = 1;
1577 }
1578 } else {
1579 xfer->pkts = 0;
1580 }
1581
1582 port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1583 dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1584 if (!dev) {
1585 fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
1586 xhci->slots[xfer->slotid-1].port);
1587 return -1;
1588 }
1589
1590 xhci_setup_packet(xfer, dev);
1591
1592 switch(epctx->type) {
1593 case ET_INTR_OUT:
1594 case ET_INTR_IN:
1595 case ET_BULK_OUT:
1596 case ET_BULK_IN:
1597 break;
1598 case ET_ISO_OUT:
1599 case ET_ISO_IN:
1600 FIXME();
1601 break;
1602 default:
1603 fprintf(stderr, "xhci: unknown or unhandled EP "
1604 "(type %d, in %d, ep %02x)\n",
1605 epctx->type, xfer->in_xfer, xfer->epid);
1606 return -1;
1607 }
1608
1609 if (!xfer->in_xfer) {
1610 xhci_xfer_data(xfer, xfer->data, xfer->data_length, 0, 1, 0);
1611 }
1612 ret = usb_handle_packet(dev, &xfer->packet);
1613
1614 xhci_complete_packet(xfer, ret);
1615 if (!xfer->running_async && !xfer->running_retry) {
1616 xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1617 }
1618 return 0;
1619 }
1620
1621 static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1622 {
1623 int i;
1624 unsigned int length = 0;
1625 XHCITRB *trb;
1626
1627 DPRINTF("xhci_fire_transfer(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1628
1629 for (i = 0; i < xfer->trb_count; i++) {
1630 trb = &xfer->trbs[i];
1631 if (TRB_TYPE(*trb) == TR_NORMAL || TRB_TYPE(*trb) == TR_ISOCH) {
1632 length += trb->status & 0x1ffff;
1633 }
1634 }
1635 DPRINTF("xhci: total TD length=%d\n", length);
1636
1637 if (!epctx->has_bg) {
1638 xfer->data_length = length;
1639 xfer->backgrounded = 0;
1640 return xhci_submit(xhci, xfer, epctx);
1641 } else {
1642 if (!epctx->bg_running) {
1643 for (i = 0; i < BG_XFERS; i++) {
1644 XHCITransfer *t = &epctx->bg_transfers[i];
1645 t->xhci = xhci;
1646 t->epid = xfer->epid;
1647 t->slotid = xfer->slotid;
1648 t->pkts = BG_PKTS;
1649 t->pktsize = epctx->max_psize;
1650 t->data_length = t->pkts * t->pktsize;
1651 t->bg_xfer = 1;
1652 if (xhci_submit(xhci, t, epctx) < 0) {
1653 fprintf(stderr, "xhci: bg submit failed\n");
1654 return -1;
1655 }
1656 }
1657 epctx->bg_running = 1;
1658 }
1659 xfer->backgrounded = 1;
1660 xhci_bg_update(xhci, epctx);
1661 return 0;
1662 }
1663 }
1664
1665 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid)
1666 {
1667 XHCIEPContext *epctx;
1668 int length;
1669 int i;
1670
1671 assert(slotid >= 1 && slotid <= MAXSLOTS);
1672 assert(epid >= 1 && epid <= 31);
1673 DPRINTF("xhci_kick_ep(%d, %d)\n", slotid, epid);
1674
1675 if (!xhci->slots[slotid-1].enabled) {
1676 fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
1677 return;
1678 }
1679 epctx = xhci->slots[slotid-1].eps[epid-1];
1680 if (!epctx) {
1681 fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
1682 epid, slotid);
1683 return;
1684 }
1685
1686 if (epctx->retry) {
1687 /* retry nak'ed transfer */
1688 XHCITransfer *xfer = epctx->retry;
1689 int result;
1690
1691 DPRINTF("xhci: retry nack'ed transfer ...\n");
1692 assert(xfer->running_retry);
1693 xhci_setup_packet(xfer, xfer->packet.ep->dev);
1694 result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1695 if (result == USB_RET_NAK) {
1696 DPRINTF("xhci: ... xfer still nacked\n");
1697 return;
1698 }
1699 DPRINTF("xhci: ... result %d\n", result);
1700 xhci_complete_packet(xfer, result);
1701 assert(!xfer->running_retry);
1702 epctx->retry = NULL;
1703 }
1704
1705 if (epctx->state == EP_HALTED) {
1706 DPRINTF("xhci: ep halted, not running schedule\n");
1707 return;
1708 }
1709
1710 xhci_set_ep_state(xhci, epctx, EP_RUNNING);
1711
1712 while (1) {
1713 XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
1714 if (xfer->running_async || xfer->running_retry || xfer->backgrounded) {
1715 DPRINTF("xhci: ep is busy (#%d,%d,%d,%d)\n",
1716 epctx->next_xfer, xfer->running_async,
1717 xfer->running_retry, xfer->backgrounded);
1718 break;
1719 } else {
1720 DPRINTF("xhci: ep: using #%d\n", epctx->next_xfer);
1721 }
1722 length = xhci_ring_chain_length(xhci, &epctx->ring);
1723 if (length < 0) {
1724 DPRINTF("xhci: incomplete TD (%d TRBs)\n", -length);
1725 break;
1726 } else if (length == 0) {
1727 break;
1728 }
1729 DPRINTF("xhci: fetching %d-TRB TD\n", length);
1730 if (xfer->trbs && xfer->trb_alloced < length) {
1731 xfer->trb_count = 0;
1732 xfer->trb_alloced = 0;
1733 g_free(xfer->trbs);
1734 xfer->trbs = NULL;
1735 }
1736 if (!xfer->trbs) {
1737 xfer->trbs = g_malloc(sizeof(XHCITRB) * length);
1738 xfer->trb_alloced = length;
1739 }
1740 xfer->trb_count = length;
1741
1742 for (i = 0; i < length; i++) {
1743 assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL));
1744 }
1745 xfer->xhci = xhci;
1746 xfer->epid = epid;
1747 xfer->slotid = slotid;
1748
1749 if (epid == 1) {
1750 if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) {
1751 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1752 } else {
1753 fprintf(stderr, "xhci: error firing CTL transfer\n");
1754 }
1755 } else {
1756 if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
1757 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1758 } else {
1759 fprintf(stderr, "xhci: error firing data transfer\n");
1760 }
1761 }
1762
1763 if (epctx->state == EP_HALTED) {
1764 DPRINTF("xhci: ep halted, stopping schedule\n");
1765 break;
1766 }
1767 if (xfer->running_retry) {
1768 DPRINTF("xhci: xfer nacked, stopping schedule\n");
1769 epctx->retry = xfer;
1770 break;
1771 }
1772
1773 /*
1774 * Qemu usb can't handle multiple in-flight xfers.
1775 * Stop here for now.
1776 */
1777 break;
1778 }
1779 }
1780
1781 static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
1782 {
1783 assert(slotid >= 1 && slotid <= MAXSLOTS);
1784 DPRINTF("xhci_enable_slot(%d)\n", slotid);
1785 xhci->slots[slotid-1].enabled = 1;
1786 xhci->slots[slotid-1].port = 0;
1787 memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
1788
1789 return CC_SUCCESS;
1790 }
1791
1792 static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid)
1793 {
1794 int i;
1795
1796 assert(slotid >= 1 && slotid <= MAXSLOTS);
1797 DPRINTF("xhci_disable_slot(%d)\n", slotid);
1798
1799 for (i = 1; i <= 31; i++) {
1800 if (xhci->slots[slotid-1].eps[i-1]) {
1801 xhci_disable_ep(xhci, slotid, i);
1802 }
1803 }
1804
1805 xhci->slots[slotid-1].enabled = 0;
1806 return CC_SUCCESS;
1807 }
1808
1809 static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
1810 uint64_t pictx, bool bsr)
1811 {
1812 XHCISlot *slot;
1813 USBDevice *dev;
1814 target_phys_addr_t ictx, octx, dcbaap;
1815 uint64_t poctx;
1816 uint32_t ictl_ctx[2];
1817 uint32_t slot_ctx[4];
1818 uint32_t ep0_ctx[5];
1819 unsigned int port;
1820 int i;
1821 TRBCCode res;
1822
1823 assert(slotid >= 1 && slotid <= MAXSLOTS);
1824 DPRINTF("xhci_address_slot(%d)\n", slotid);
1825
1826 dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
1827 cpu_physical_memory_read(dcbaap + 8*slotid,
1828 (uint8_t *) &poctx, sizeof(poctx));
1829 ictx = xhci_mask64(pictx);
1830 octx = xhci_mask64(le64_to_cpu(poctx));
1831
1832 DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
1833 DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
1834
1835 cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
1836
1837 if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
1838 fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1839 ictl_ctx[0], ictl_ctx[1]);
1840 return CC_TRB_ERROR;
1841 }
1842
1843 cpu_physical_memory_read(ictx+32, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1844 cpu_physical_memory_read(ictx+64, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
1845
1846 DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
1847 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1848
1849 DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
1850 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1851
1852 port = (slot_ctx[1]>>16) & 0xFF;
1853 dev = xhci->ports[port-1].port.dev;
1854
1855 if (port < 1 || port > MAXPORTS) {
1856 fprintf(stderr, "xhci: bad port %d\n", port);
1857 return CC_TRB_ERROR;
1858 } else if (!dev) {
1859 fprintf(stderr, "xhci: port %d not connected\n", port);
1860 return CC_USB_TRANSACTION_ERROR;
1861 }
1862
1863 for (i = 0; i < MAXSLOTS; i++) {
1864 if (xhci->slots[i].port == port) {
1865 fprintf(stderr, "xhci: port %d already assigned to slot %d\n",
1866 port, i+1);
1867 return CC_TRB_ERROR;
1868 }
1869 }
1870
1871 slot = &xhci->slots[slotid-1];
1872 slot->port = port;
1873 slot->ctx = octx;
1874
1875 if (bsr) {
1876 slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT;
1877 } else {
1878 slot->devaddr = xhci->devaddr++;
1879 slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr;
1880 DPRINTF("xhci: device address is %d\n", slot->devaddr);
1881 usb_device_handle_control(dev, NULL,
1882 DeviceOutRequest | USB_REQ_SET_ADDRESS,
1883 slot->devaddr, 0, 0, NULL);
1884 }
1885
1886 res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx);
1887
1888 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1889 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1890 DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
1891 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1892
1893 cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1894 cpu_physical_memory_write(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
1895
1896 return res;
1897 }
1898
1899
1900 static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
1901 uint64_t pictx, bool dc)
1902 {
1903 target_phys_addr_t ictx, octx;
1904 uint32_t ictl_ctx[2];
1905 uint32_t slot_ctx[4];
1906 uint32_t islot_ctx[4];
1907 uint32_t ep_ctx[5];
1908 int i;
1909 TRBCCode res;
1910
1911 assert(slotid >= 1 && slotid <= MAXSLOTS);
1912 DPRINTF("xhci_configure_slot(%d)\n", slotid);
1913
1914 ictx = xhci_mask64(pictx);
1915 octx = xhci->slots[slotid-1].ctx;
1916
1917 DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
1918 DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
1919
1920 if (dc) {
1921 for (i = 2; i <= 31; i++) {
1922 if (xhci->slots[slotid-1].eps[i-1]) {
1923 xhci_disable_ep(xhci, slotid, i);
1924 }
1925 }
1926
1927 cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1928 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1929 slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT;
1930 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1931 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1932 cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1933
1934 return CC_SUCCESS;
1935 }
1936
1937 cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
1938
1939 if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
1940 fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1941 ictl_ctx[0], ictl_ctx[1]);
1942 return CC_TRB_ERROR;
1943 }
1944
1945 cpu_physical_memory_read(ictx+32, (uint8_t *) islot_ctx, sizeof(islot_ctx));
1946 cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1947
1948 if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
1949 fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]);
1950 return CC_CONTEXT_STATE_ERROR;
1951 }
1952
1953 for (i = 2; i <= 31; i++) {
1954 if (ictl_ctx[0] & (1<<i)) {
1955 xhci_disable_ep(xhci, slotid, i);
1956 }
1957 if (ictl_ctx[1] & (1<<i)) {
1958 cpu_physical_memory_read(ictx+32+(32*i),
1959 (uint8_t *) ep_ctx, sizeof(ep_ctx));
1960 DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n",
1961 i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1962 ep_ctx[3], ep_ctx[4]);
1963 xhci_disable_ep(xhci, slotid, i);
1964 res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx);
1965 if (res != CC_SUCCESS) {
1966 return res;
1967 }
1968 DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n",
1969 i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1970 ep_ctx[3], ep_ctx[4]);
1971 cpu_physical_memory_write(octx+(32*i),
1972 (uint8_t *) ep_ctx, sizeof(ep_ctx));
1973 }
1974 }
1975
1976 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1977 slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT;
1978 slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT);
1979 slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK <<
1980 SLOT_CONTEXT_ENTRIES_SHIFT);
1981 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1982 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1983
1984 cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1985
1986 return CC_SUCCESS;
1987 }
1988
1989
1990 static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
1991 uint64_t pictx)
1992 {
1993 target_phys_addr_t ictx, octx;
1994 uint32_t ictl_ctx[2];
1995 uint32_t iep0_ctx[5];
1996 uint32_t ep0_ctx[5];
1997 uint32_t islot_ctx[4];
1998 uint32_t slot_ctx[4];
1999
2000 assert(slotid >= 1 && slotid <= MAXSLOTS);
2001 DPRINTF("xhci_evaluate_slot(%d)\n", slotid);
2002
2003 ictx = xhci_mask64(pictx);
2004 octx = xhci->slots[slotid-1].ctx;
2005
2006 DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
2007 DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
2008
2009 cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
2010
2011 if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
2012 fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
2013 ictl_ctx[0], ictl_ctx[1]);
2014 return CC_TRB_ERROR;
2015 }
2016
2017 if (ictl_ctx[1] & 0x1) {
2018 cpu_physical_memory_read(ictx+32,
2019 (uint8_t *) islot_ctx, sizeof(islot_ctx));
2020
2021 DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
2022 islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]);
2023
2024 cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2025
2026 slot_ctx[1] &= ~0xFFFF; /* max exit latency */
2027 slot_ctx[1] |= islot_ctx[1] & 0xFFFF;
2028 slot_ctx[2] &= ~0xFF00000; /* interrupter target */
2029 slot_ctx[2] |= islot_ctx[2] & 0xFF000000;
2030
2031 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2032 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2033
2034 cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2035 }
2036
2037 if (ictl_ctx[1] & 0x2) {
2038 cpu_physical_memory_read(ictx+64,
2039 (uint8_t *) iep0_ctx, sizeof(iep0_ctx));
2040
2041 DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
2042 iep0_ctx[0], iep0_ctx[1], iep0_ctx[2],
2043 iep0_ctx[3], iep0_ctx[4]);
2044
2045 cpu_physical_memory_read(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
2046
2047 ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/
2048 ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000;
2049
2050 DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
2051 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
2052
2053 cpu_physical_memory_write(octx+32,
2054 (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
2055 }
2056
2057 return CC_SUCCESS;
2058 }
2059
2060 static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid)
2061 {
2062 uint32_t slot_ctx[4];
2063 target_phys_addr_t octx;
2064 int i;
2065
2066 assert(slotid >= 1 && slotid <= MAXSLOTS);
2067 DPRINTF("xhci_reset_slot(%d)\n", slotid);
2068
2069 octx = xhci->slots[slotid-1].ctx;
2070
2071 DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
2072
2073 for (i = 2; i <= 31; i++) {
2074 if (xhci->slots[slotid-1].eps[i-1]) {
2075 xhci_disable_ep(xhci, slotid, i);
2076 }
2077 }
2078
2079 cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2080 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
2081 slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT;
2082 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2083 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2084 cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2085
2086 return CC_SUCCESS;
2087 }
2088
2089 static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb)
2090 {
2091 unsigned int slotid;
2092 slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
2093 if (slotid < 1 || slotid > MAXSLOTS) {
2094 fprintf(stderr, "xhci: bad slot id %d\n", slotid);
2095 event->ccode = CC_TRB_ERROR;
2096 return 0;
2097 } else if (!xhci->slots[slotid-1].enabled) {
2098 fprintf(stderr, "xhci: slot id %d not enabled\n", slotid);
2099 event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
2100 return 0;
2101 }
2102 return slotid;
2103 }
2104
2105 static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx)
2106 {
2107 target_phys_addr_t ctx;
2108 uint8_t bw_ctx[MAXPORTS+1];
2109
2110 DPRINTF("xhci_get_port_bandwidth()\n");
2111
2112 ctx = xhci_mask64(pctx);
2113
2114 DPRINTF("xhci: bandwidth context at "TARGET_FMT_plx"\n", ctx);
2115
2116 /* TODO: actually implement real values here */
2117 bw_ctx[0] = 0;
2118 memset(&bw_ctx[1], 80, MAXPORTS); /* 80% */
2119 cpu_physical_memory_write(ctx, bw_ctx, sizeof(bw_ctx));
2120
2121 return CC_SUCCESS;
2122 }
2123
2124 static uint32_t rotl(uint32_t v, unsigned count)
2125 {
2126 count &= 31;
2127 return (v << count) | (v >> (32 - count));
2128 }
2129
2130
2131 static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo)
2132 {
2133 uint32_t val;
2134 val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F));
2135 val += rotl(lo + 0x49434878, hi & 0x1F);
2136 val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F);
2137 return ~val;
2138 }
2139
2140 static void xhci_via_challenge(uint64_t addr)
2141 {
2142 uint32_t buf[8];
2143 uint32_t obuf[8];
2144 target_phys_addr_t paddr = xhci_mask64(addr);
2145
2146 cpu_physical_memory_read(paddr, (uint8_t *) &buf, 32);
2147
2148 memcpy(obuf, buf, sizeof(obuf));
2149
2150 if ((buf[0] & 0xff) == 2) {
2151 obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3];
2152 obuf[0] |= (buf[2] * buf[3]) & 0xff;
2153 obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3];
2154 obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3];
2155 obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3];
2156 obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3];
2157 obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3];
2158 obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956;
2159 obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593;
2160 }
2161
2162 cpu_physical_memory_write(paddr, (uint8_t *) &obuf, 32);
2163 }
2164
2165 static void xhci_process_commands(XHCIState *xhci)
2166 {
2167 XHCITRB trb;
2168 TRBType type;
2169 XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS};
2170 target_phys_addr_t addr;
2171 unsigned int i, slotid = 0;
2172
2173 DPRINTF("xhci_process_commands()\n");
2174 if (!xhci_running(xhci)) {
2175 DPRINTF("xhci_process_commands() called while xHC stopped or paused\n");
2176 return;
2177 }
2178
2179 xhci->crcr_low |= CRCR_CRR;
2180
2181 while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) {
2182 event.ptr = addr;
2183 switch (type) {
2184 case CR_ENABLE_SLOT:
2185 for (i = 0; i < MAXSLOTS; i++) {
2186 if (!xhci->slots[i].enabled) {
2187 break;
2188 }
2189 }
2190 if (i >= MAXSLOTS) {
2191 fprintf(stderr, "xhci: no device slots available\n");
2192 event.ccode = CC_NO_SLOTS_ERROR;
2193 } else {
2194 slotid = i+1;
2195 event.ccode = xhci_enable_slot(xhci, slotid);
2196 }
2197 break;
2198 case CR_DISABLE_SLOT:
2199 slotid = xhci_get_slot(xhci, &event, &trb);
2200 if (slotid) {
2201 event.ccode = xhci_disable_slot(xhci, slotid);
2202 }
2203 break;
2204 case CR_ADDRESS_DEVICE:
2205 slotid = xhci_get_slot(xhci, &event, &trb);
2206 if (slotid) {
2207 event.ccode = xhci_address_slot(xhci, slotid, trb.parameter,
2208 trb.control & TRB_CR_BSR);
2209 }
2210 break;
2211 case CR_CONFIGURE_ENDPOINT:
2212 slotid = xhci_get_slot(xhci, &event, &trb);
2213 if (slotid) {
2214 event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter,
2215 trb.control & TRB_CR_DC);
2216 }
2217 break;
2218 case CR_EVALUATE_CONTEXT:
2219 slotid = xhci_get_slot(xhci, &event, &trb);
2220 if (slotid) {
2221 event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter);
2222 }
2223 break;
2224 case CR_STOP_ENDPOINT:
2225 slotid = xhci_get_slot(xhci, &event, &trb);
2226 if (slotid) {
2227 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2228 & TRB_CR_EPID_MASK;
2229 event.ccode = xhci_stop_ep(xhci, slotid, epid);
2230 }
2231 break;
2232 case CR_RESET_ENDPOINT:
2233 slotid = xhci_get_slot(xhci, &event, &trb);
2234 if (slotid) {
2235 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2236 & TRB_CR_EPID_MASK;
2237 event.ccode = xhci_reset_ep(xhci, slotid, epid);
2238 }
2239 break;
2240 case CR_SET_TR_DEQUEUE:
2241 slotid = xhci_get_slot(xhci, &event, &trb);
2242 if (slotid) {
2243 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2244 & TRB_CR_EPID_MASK;
2245 event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid,
2246 trb.parameter);
2247 }
2248 break;
2249 case CR_RESET_DEVICE:
2250 slotid = xhci_get_slot(xhci, &event, &trb);
2251 if (slotid) {
2252 event.ccode = xhci_reset_slot(xhci, slotid);
2253 }
2254 break;
2255 case CR_GET_PORT_BANDWIDTH:
2256 event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter);
2257 break;
2258 case CR_VENDOR_VIA_CHALLENGE_RESPONSE:
2259 xhci_via_challenge(trb.parameter);
2260 break;
2261 case CR_VENDOR_NEC_FIRMWARE_REVISION:
2262 event.type = 48; /* NEC reply */
2263 event.length = 0x3025;
2264 break;
2265 case CR_VENDOR_NEC_CHALLENGE_RESPONSE:
2266 {
2267 uint32_t chi = trb.parameter >> 32;
2268 uint32_t clo = trb.parameter;
2269 uint32_t val = xhci_nec_challenge(chi, clo);
2270 event.length = val & 0xFFFF;
2271 event.epid = val >> 16;
2272 slotid = val >> 24;
2273 event.type = 48; /* NEC reply */
2274 }
2275 break;
2276 default:
2277 fprintf(stderr, "xhci: unimplemented command %d\n", type);
2278 event.ccode = CC_TRB_ERROR;
2279 break;
2280 }
2281 event.slotid = slotid;
2282 xhci_event(xhci, &event);
2283 }
2284 }
2285
2286 static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach)
2287 {
2288 int nr = port->port.index + 1;
2289
2290 port->portsc = PORTSC_PP;
2291 if (port->port.dev && !is_detach) {
2292 port->portsc |= PORTSC_CCS;
2293 switch (port->port.dev->speed) {
2294 case USB_SPEED_LOW:
2295 port->portsc |= PORTSC_SPEED_LOW;
2296 break;
2297 case USB_SPEED_FULL:
2298 port->portsc |= PORTSC_SPEED_FULL;
2299 break;
2300 case USB_SPEED_HIGH:
2301 port->portsc |= PORTSC_SPEED_HIGH;
2302 break;
2303 }
2304 }
2305
2306 if (xhci_running(xhci)) {
2307 port->portsc |= PORTSC_CSC;
2308 XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
2309 xhci_event(xhci, &ev);
2310 DPRINTF("xhci: port change event for port %d\n", nr);
2311 }
2312 }
2313
2314 static void xhci_reset(void *opaque)
2315 {
2316 XHCIState *xhci = opaque;
2317 int i;
2318
2319 DPRINTF("xhci: full reset\n");
2320 if (!(xhci->usbsts & USBSTS_HCH)) {
2321 fprintf(stderr, "xhci: reset while running!\n");
2322 }
2323
2324 xhci->usbcmd = 0;
2325 xhci->usbsts = USBSTS_HCH;
2326 xhci->dnctrl = 0;
2327 xhci->crcr_low = 0;
2328 xhci->crcr_high = 0;
2329 xhci->dcbaap_low = 0;
2330 xhci->dcbaap_high = 0;
2331 xhci->config = 0;
2332 xhci->devaddr = 2;
2333
2334 for (i = 0; i < MAXSLOTS; i++) {
2335 xhci_disable_slot(xhci, i+1);
2336 }
2337
2338 for (i = 0; i < MAXPORTS; i++) {
2339 xhci_update_port(xhci, xhci->ports + i, 0);
2340 }
2341
2342 xhci->mfindex = 0;
2343 xhci->iman = 0;
2344 xhci->imod = 0;
2345 xhci->erstsz = 0;
2346 xhci->erstba_low = 0;
2347 xhci->erstba_high = 0;
2348 xhci->erdp_low = 0;
2349 xhci->erdp_high = 0;
2350
2351 xhci->er_ep_idx = 0;
2352 xhci->er_pcs = 1;
2353 xhci->er_full = 0;
2354 xhci->ev_buffer_put = 0;
2355 xhci->ev_buffer_get = 0;
2356 }
2357
2358 static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg)
2359 {
2360 DPRINTF("xhci_cap_read(0x%x)\n", reg);
2361
2362 switch (reg) {
2363 case 0x00: /* HCIVERSION, CAPLENGTH */
2364 return 0x01000000 | LEN_CAP;
2365 case 0x04: /* HCSPARAMS 1 */
2366 return (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS;
2367 case 0x08: /* HCSPARAMS 2 */
2368 return 0x0000000f;
2369 case 0x0c: /* HCSPARAMS 3 */
2370 return 0x00000000;
2371 case 0x10: /* HCCPARAMS */
2372 #if TARGET_PHYS_ADDR_BITS > 32
2373 return 0x00081001;
2374 #else
2375 return 0x00081000;
2376 #endif
2377 case 0x14: /* DBOFF */
2378 return OFF_DOORBELL;
2379 case 0x18: /* RTSOFF */
2380 return OFF_RUNTIME;
2381
2382 /* extended capabilities */
2383 case 0x20: /* Supported Protocol:00 */
2384 #if USB3_PORTS > 0
2385 return 0x02000402; /* USB 2.0 */
2386 #else
2387 return 0x02000002; /* USB 2.0 */
2388 #endif
2389 case 0x24: /* Supported Protocol:04 */
2390 return 0x20425455; /* "USB " */
2391 case 0x28: /* Supported Protocol:08 */
2392 return 0x00000001 | (USB2_PORTS<<8);
2393 case 0x2c: /* Supported Protocol:0c */
2394 return 0x00000000; /* reserved */
2395 #if USB3_PORTS > 0
2396 case 0x30: /* Supported Protocol:00 */
2397 return 0x03000002; /* USB 3.0 */
2398 case 0x34: /* Supported Protocol:04 */
2399 return 0x20425455; /* "USB " */
2400 case 0x38: /* Supported Protocol:08 */
2401 return 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8);
2402 case 0x3c: /* Supported Protocol:0c */
2403 return 0x00000000; /* reserved */
2404 #endif
2405 default:
2406 fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg);
2407 }
2408 return 0;
2409 }
2410
2411 static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg)
2412 {
2413 uint32_t port = reg >> 4;
2414 if (port >= MAXPORTS) {
2415 fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2416 return 0;
2417 }
2418
2419 switch (reg & 0xf) {
2420 case 0x00: /* PORTSC */
2421 return xhci->ports[port].portsc;
2422 case 0x04: /* PORTPMSC */
2423 case 0x08: /* PORTLI */
2424 return 0;
2425 case 0x0c: /* reserved */
2426 default:
2427 fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
2428 port, reg);
2429 return 0;
2430 }
2431 }
2432
2433 static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2434 {
2435 uint32_t port = reg >> 4;
2436 uint32_t portsc;
2437
2438 if (port >= MAXPORTS) {
2439 fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2440 return;
2441 }
2442
2443 switch (reg & 0xf) {
2444 case 0x00: /* PORTSC */
2445 portsc = xhci->ports[port].portsc;
2446 /* write-1-to-clear bits*/
2447 portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC|
2448 PORTSC_PRC|PORTSC_PLC|PORTSC_CEC));
2449 if (val & PORTSC_LWS) {
2450 /* overwrite PLS only when LWS=1 */
2451 portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2452 portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2453 }
2454 /* read/write bits */
2455 portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE);
2456 portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE));
2457 /* write-1-to-start bits */
2458 if (val & PORTSC_PR) {
2459 DPRINTF("xhci: port %d reset\n", port);
2460 usb_device_reset(xhci->ports[port].port.dev);
2461 portsc |= PORTSC_PRC | PORTSC_PED;
2462 }
2463 xhci->ports[port].portsc = portsc;
2464 break;
2465 case 0x04: /* PORTPMSC */
2466 case 0x08: /* PORTLI */
2467 default:
2468 fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n",
2469 port, reg);
2470 }
2471 }
2472
2473 static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg)
2474 {
2475 DPRINTF("xhci_oper_read(0x%x)\n", reg);
2476
2477 if (reg >= 0x400) {
2478 return xhci_port_read(xhci, reg - 0x400);
2479 }
2480
2481 switch (reg) {
2482 case 0x00: /* USBCMD */
2483 return xhci->usbcmd;
2484 case 0x04: /* USBSTS */
2485 return xhci->usbsts;
2486 case 0x08: /* PAGESIZE */
2487 return 1; /* 4KiB */
2488 case 0x14: /* DNCTRL */
2489 return xhci->dnctrl;
2490 case 0x18: /* CRCR low */
2491 return xhci->crcr_low & ~0xe;
2492 case 0x1c: /* CRCR high */
2493 return xhci->crcr_high;
2494 case 0x30: /* DCBAAP low */
2495 return xhci->dcbaap_low;
2496 case 0x34: /* DCBAAP high */
2497 return xhci->dcbaap_high;
2498 case 0x38: /* CONFIG */
2499 return xhci->config;
2500 default:
2501 fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg);
2502 }
2503 return 0;
2504 }
2505
2506 static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2507 {
2508 DPRINTF("xhci_oper_write(0x%x, 0x%08x)\n", reg, val);
2509
2510 if (reg >= 0x400) {
2511 xhci_port_write(xhci, reg - 0x400, val);
2512 return;
2513 }
2514
2515 switch (reg) {
2516 case 0x00: /* USBCMD */
2517 if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
2518 xhci_run(xhci);
2519 } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) {
2520 xhci_stop(xhci);
2521 }
2522 xhci->usbcmd = val & 0xc0f;
2523 if (val & USBCMD_HCRST) {
2524 xhci_reset(xhci);
2525 }
2526 xhci_irq_update(xhci);
2527 break;
2528
2529 case 0x04: /* USBSTS */
2530 /* these bits are write-1-to-clear */
2531 xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE));
2532 xhci_irq_update(xhci);
2533 break;
2534
2535 case 0x14: /* DNCTRL */
2536 xhci->dnctrl = val & 0xffff;
2537 break;
2538 case 0x18: /* CRCR low */
2539 xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR);
2540 break;
2541 case 0x1c: /* CRCR high */
2542 xhci->crcr_high = val;
2543 if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) {
2544 XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED};
2545 xhci->crcr_low &= ~CRCR_CRR;
2546 xhci_event(xhci, &event);
2547 DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low);
2548 } else {
2549 target_phys_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val);
2550 xhci_ring_init(xhci, &xhci->cmd_ring, base);
2551 }
2552 xhci->crcr_low &= ~(CRCR_CA | CRCR_CS);
2553 break;
2554 case 0x30: /* DCBAAP low */
2555 xhci->dcbaap_low = val & 0xffffffc0;
2556 break;
2557 case 0x34: /* DCBAAP high */
2558 xhci->dcbaap_high = val;
2559 break;
2560 case 0x38: /* CONFIG */
2561 xhci->config = val & 0xff;
2562 break;
2563 default:
2564 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2565 }
2566 }
2567
2568 static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg)
2569 {
2570 DPRINTF("xhci_runtime_read(0x%x)\n", reg);
2571
2572 switch (reg) {
2573 case 0x00: /* MFINDEX */
2574 fprintf(stderr, "xhci_runtime_read: MFINDEX not yet implemented\n");
2575 return xhci->mfindex;
2576 case 0x20: /* IMAN */
2577 return xhci->iman;
2578 case 0x24: /* IMOD */
2579 return xhci->imod;
2580 case 0x28: /* ERSTSZ */
2581 return xhci->erstsz;
2582 case 0x30: /* ERSTBA low */
2583 return xhci->erstba_low;
2584 case 0x34: /* ERSTBA high */
2585 return xhci->erstba_high;
2586 case 0x38: /* ERDP low */
2587 return xhci->erdp_low;
2588 case 0x3c: /* ERDP high */
2589 return xhci->erdp_high;
2590 default:
2591 fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg);
2592 }
2593 return 0;
2594 }
2595
2596 static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2597 {
2598 DPRINTF("xhci_runtime_write(0x%x, 0x%08x)\n", reg, val);
2599
2600 switch (reg) {
2601 case 0x20: /* IMAN */
2602 if (val & IMAN_IP) {
2603 xhci->iman &= ~IMAN_IP;
2604 }
2605 xhci->iman &= ~IMAN_IE;
2606 xhci->iman |= val & IMAN_IE;
2607 xhci_irq_update(xhci);
2608 break;
2609 case 0x24: /* IMOD */
2610 xhci->imod = val;
2611 break;
2612 case 0x28: /* ERSTSZ */
2613 xhci->erstsz = val & 0xffff;
2614 break;
2615 case 0x30: /* ERSTBA low */
2616 /* XXX NEC driver bug: it doesn't align this to 64 bytes
2617 xhci->erstba_low = val & 0xffffffc0; */
2618 xhci->erstba_low = val & 0xfffffff0;
2619 break;
2620 case 0x34: /* ERSTBA high */
2621 xhci->erstba_high = val;
2622 xhci_er_reset(xhci);
2623 break;
2624 case 0x38: /* ERDP low */
2625 if (val & ERDP_EHB) {
2626 xhci->erdp_low &= ~ERDP_EHB;
2627 }
2628 xhci->erdp_low = (val & ~ERDP_EHB) | (xhci->erdp_low & ERDP_EHB);
2629 break;
2630 case 0x3c: /* ERDP high */
2631 xhci->erdp_high = val;
2632 xhci_events_update(xhci);
2633 break;
2634 default:
2635 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2636 }
2637 }
2638
2639 static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg)
2640 {
2641 DPRINTF("xhci_doorbell_read(0x%x)\n", reg);
2642 /* doorbells always read as 0 */
2643 return 0;
2644 }
2645
2646 static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2647 {
2648 DPRINTF("xhci_doorbell_write(0x%x, 0x%08x)\n", reg, val);
2649
2650 if (!xhci_running(xhci)) {
2651 fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
2652 return;
2653 }
2654
2655 reg >>= 2;
2656
2657 if (reg == 0) {
2658 if (val == 0) {
2659 xhci_process_commands(xhci);
2660 } else {
2661 fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", val);
2662 }
2663 } else {
2664 if (reg > MAXSLOTS) {
2665 fprintf(stderr, "xhci: bad doorbell %d\n", reg);
2666 } else if (val > 31) {
2667 fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", reg, val);
2668 } else {
2669 xhci_kick_ep(xhci, reg, val);
2670 }
2671 }
2672 }
2673
2674 static uint64_t xhci_mem_read(void *ptr, target_phys_addr_t addr,
2675 unsigned size)
2676 {
2677 XHCIState *xhci = ptr;
2678
2679 /* Only aligned reads are allowed on xHCI */
2680 if (addr & 3) {
2681 fprintf(stderr, "xhci_mem_read: Mis-aligned read\n");
2682 return 0;
2683 }
2684
2685 if (addr < LEN_CAP) {
2686 return xhci_cap_read(xhci, addr);
2687 } else if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2688 return xhci_oper_read(xhci, addr - OFF_OPER);
2689 } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2690 return xhci_runtime_read(xhci, addr - OFF_RUNTIME);
2691 } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2692 return xhci_doorbell_read(xhci, addr - OFF_DOORBELL);
2693 } else {
2694 fprintf(stderr, "xhci_mem_read: Bad offset %x\n", (int)addr);
2695 return 0;
2696 }
2697 }
2698
2699 static void xhci_mem_write(void *ptr, target_phys_addr_t addr,
2700 uint64_t val, unsigned size)
2701 {
2702 XHCIState *xhci = ptr;
2703
2704 /* Only aligned writes are allowed on xHCI */
2705 if (addr & 3) {
2706 fprintf(stderr, "xhci_mem_write: Mis-aligned write\n");
2707 return;
2708 }
2709
2710 if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2711 xhci_oper_write(xhci, addr - OFF_OPER, val);
2712 } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2713 xhci_runtime_write(xhci, addr - OFF_RUNTIME, val);
2714 } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2715 xhci_doorbell_write(xhci, addr - OFF_DOORBELL, val);
2716 } else {
2717 fprintf(stderr, "xhci_mem_write: Bad offset %x\n", (int)addr);
2718 }
2719 }
2720
2721 static const MemoryRegionOps xhci_mem_ops = {
2722 .read = xhci_mem_read,
2723 .write = xhci_mem_write,
2724 .valid.min_access_size = 4,
2725 .valid.max_access_size = 4,
2726 .endianness = DEVICE_LITTLE_ENDIAN,
2727 };
2728
2729 static void xhci_attach(USBPort *usbport)
2730 {
2731 XHCIState *xhci = usbport->opaque;
2732 XHCIPort *port = &xhci->ports[usbport->index];
2733
2734 xhci_update_port(xhci, port, 0);
2735 }
2736
2737 static void xhci_detach(USBPort *usbport)
2738 {
2739 XHCIState *xhci = usbport->opaque;
2740 XHCIPort *port = &xhci->ports[usbport->index];
2741
2742 xhci_update_port(xhci, port, 1);
2743 }
2744
2745 static void xhci_wakeup(USBPort *usbport)
2746 {
2747 XHCIState *xhci = usbport->opaque;
2748 XHCIPort *port = &xhci->ports[usbport->index];
2749 int nr = port->port.index + 1;
2750 XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
2751 uint32_t pls;
2752
2753 pls = (port->portsc >> PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK;
2754 if (pls != 3) {
2755 return;
2756 }
2757 port->portsc |= 0xf << PORTSC_PLS_SHIFT;
2758 if (port->portsc & PORTSC_PLC) {
2759 return;
2760 }
2761 port->portsc |= PORTSC_PLC;
2762 xhci_event(xhci, &ev);
2763 }
2764
2765 static void xhci_complete(USBPort *port, USBPacket *packet)
2766 {
2767 XHCITransfer *xfer = container_of(packet, XHCITransfer, packet);
2768
2769 xhci_complete_packet(xfer, packet->result);
2770 xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid);
2771 }
2772
2773 static void xhci_child_detach(USBPort *port, USBDevice *child)
2774 {
2775 FIXME();
2776 }
2777
2778 static USBPortOps xhci_port_ops = {
2779 .attach = xhci_attach,
2780 .detach = xhci_detach,
2781 .wakeup = xhci_wakeup,
2782 .complete = xhci_complete,
2783 .child_detach = xhci_child_detach,
2784 };
2785
2786 static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev)
2787 {
2788 XHCISlot *slot;
2789 int slotid;
2790
2791 for (slotid = 1; slotid <= MAXSLOTS; slotid++) {
2792 slot = &xhci->slots[slotid-1];
2793 if (slot->devaddr == dev->addr) {
2794 return slotid;
2795 }
2796 }
2797 return 0;
2798 }
2799
2800 static int xhci_find_epid(USBEndpoint *ep)
2801 {
2802 if (ep->nr == 0) {
2803 return 1;
2804 }
2805 if (ep->pid == USB_TOKEN_IN) {
2806 return ep->nr * 2 + 1;
2807 } else {
2808 return ep->nr * 2;
2809 }
2810 }
2811
2812 static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep)
2813 {
2814 XHCIState *xhci = container_of(bus, XHCIState, bus);
2815 int slotid;
2816
2817 DPRINTF("%s\n", __func__);
2818 slotid = xhci_find_slotid(xhci, ep->dev);
2819 if (slotid == 0 || !xhci->slots[slotid-1].enabled) {
2820 DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr);
2821 return;
2822 }
2823 xhci_kick_ep(xhci, slotid, xhci_find_epid(ep));
2824 }
2825
2826 static USBBusOps xhci_bus_ops = {
2827 .wakeup_endpoint = xhci_wakeup_endpoint,
2828 };
2829
2830 static void usb_xhci_init(XHCIState *xhci, DeviceState *dev)
2831 {
2832 int i;
2833
2834 xhci->usbsts = USBSTS_HCH;
2835
2836 usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev);
2837
2838 for (i = 0; i < MAXPORTS; i++) {
2839 memset(&xhci->ports[i], 0, sizeof(xhci->ports[i]));
2840 usb_register_port(&xhci->bus, &xhci->ports[i].port, xhci, i,
2841 &xhci_port_ops,
2842 USB_SPEED_MASK_LOW |
2843 USB_SPEED_MASK_FULL |
2844 USB_SPEED_MASK_HIGH);
2845 }
2846 for (i = 0; i < MAXSLOTS; i++) {
2847 xhci->slots[i].enabled = 0;
2848 }
2849
2850 qemu_register_reset(xhci_reset, xhci);
2851 }
2852
2853 static int usb_xhci_initfn(struct PCIDevice *dev)
2854 {
2855 int ret;
2856
2857 XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2858
2859 xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30; /* xHCI */
2860 xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */
2861 xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10;
2862 xhci->pci_dev.config[0x60] = 0x30; /* release number */
2863
2864 usb_xhci_init(xhci, &dev->qdev);
2865
2866 xhci->irq = xhci->pci_dev.irq[0];
2867
2868 memory_region_init_io(&xhci->mem, &xhci_mem_ops, xhci,
2869 "xhci", LEN_REGS);
2870 pci_register_bar(&xhci->pci_dev, 0,
2871 PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64,
2872 &xhci->mem);
2873
2874 ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0);
2875 assert(ret >= 0);
2876
2877 if (xhci->msi) {
2878 ret = msi_init(&xhci->pci_dev, 0x70, 1, true, false);
2879 assert(ret >= 0);
2880 }
2881
2882 return 0;
2883 }
2884
2885 static void xhci_write_config(PCIDevice *dev, uint32_t addr, uint32_t val,
2886 int len)
2887 {
2888 XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2889
2890 pci_default_write_config(dev, addr, val, len);
2891 if (xhci->msi) {
2892 msi_write_config(dev, addr, val, len);
2893 }
2894 }
2895
2896 static const VMStateDescription vmstate_xhci = {
2897 .name = "xhci",
2898 .unmigratable = 1,
2899 };
2900
2901 static Property xhci_properties[] = {
2902 DEFINE_PROP_UINT32("msi", XHCIState, msi, 0),
2903 DEFINE_PROP_END_OF_LIST(),
2904 };
2905
2906 static void xhci_class_init(ObjectClass *klass, void *data)
2907 {
2908 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2909 DeviceClass *dc = DEVICE_CLASS(klass);
2910
2911 dc->vmsd = &vmstate_xhci;
2912 dc->props = xhci_properties;
2913 k->init = usb_xhci_initfn;
2914 k->vendor_id = PCI_VENDOR_ID_NEC;
2915 k->device_id = PCI_DEVICE_ID_NEC_UPD720200;
2916 k->class_id = PCI_CLASS_SERIAL_USB;
2917 k->revision = 0x03;
2918 k->is_express = 1;
2919 k->config_write = xhci_write_config;
2920 }
2921
2922 static TypeInfo xhci_info = {
2923 .name = "nec-usb-xhci",
2924 .parent = TYPE_PCI_DEVICE,
2925 .instance_size = sizeof(XHCIState),
2926 .class_init = xhci_class_init,
2927 };
2928
2929 static void xhci_register_types(void)
2930 {
2931 type_register_static(&xhci_info);
2932 }
2933
2934 type_init(xhci_register_types)