]> git.proxmox.com Git - mirror_qemu.git/blob - hw/vfio/pci-quirks.c
Include hw/hw.h exactly where needed
[mirror_qemu.git] / hw / vfio / pci-quirks.c
1 /*
2 * device quirks for PCI devices
3 *
4 * Copyright Red Hat, Inc. 2012-2015
5 *
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qemu/units.h"
15 #include "qemu/error-report.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/module.h"
18 #include "qemu/range.h"
19 #include "qapi/error.h"
20 #include "qapi/visitor.h"
21 #include <sys/ioctl.h>
22 #include "hw/hw.h"
23 #include "hw/nvram/fw_cfg.h"
24 #include "pci.h"
25 #include "trace.h"
26
27 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
28 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
29 {
30 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
31 (device == PCI_ANY_ID || device == vdev->device_id);
32 }
33
34 static bool vfio_is_vga(VFIOPCIDevice *vdev)
35 {
36 PCIDevice *pdev = &vdev->pdev;
37 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
38
39 return class == PCI_CLASS_DISPLAY_VGA;
40 }
41
42 /*
43 * List of device ids/vendor ids for which to disable
44 * option rom loading. This avoids the guest hangs during rom
45 * execution as noticed with the BCM 57810 card for lack of a
46 * more better way to handle such issues.
47 * The user can still override by specifying a romfile or
48 * rombar=1.
49 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
50 * for an analysis of the 57810 card hang. When adding
51 * a new vendor id/device id combination below, please also add
52 * your card/environment details and information that could
53 * help in debugging to the bug tracking this issue
54 */
55 static const struct {
56 uint32_t vendor;
57 uint32_t device;
58 } romblacklist[] = {
59 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
60 };
61
62 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
63 {
64 int i;
65
66 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
67 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
68 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
69 romblacklist[i].vendor,
70 romblacklist[i].device);
71 return true;
72 }
73 }
74 return false;
75 }
76
77 /*
78 * Device specific region quirks (mostly backdoors to PCI config space)
79 */
80
81 /*
82 * The generic window quirks operate on an address and data register,
83 * vfio_generic_window_address_quirk handles the address register and
84 * vfio_generic_window_data_quirk handles the data register. These ops
85 * pass reads and writes through to hardware until a value matching the
86 * stored address match/mask is written. When this occurs, the data
87 * register access emulated PCI config space for the device rather than
88 * passing through accesses. This enables devices where PCI config space
89 * is accessible behind a window register to maintain the virtualization
90 * provided through vfio.
91 */
92 typedef struct VFIOConfigWindowMatch {
93 uint32_t match;
94 uint32_t mask;
95 } VFIOConfigWindowMatch;
96
97 typedef struct VFIOConfigWindowQuirk {
98 struct VFIOPCIDevice *vdev;
99
100 uint32_t address_val;
101
102 uint32_t address_offset;
103 uint32_t data_offset;
104
105 bool window_enabled;
106 uint8_t bar;
107
108 MemoryRegion *addr_mem;
109 MemoryRegion *data_mem;
110
111 uint32_t nr_matches;
112 VFIOConfigWindowMatch matches[];
113 } VFIOConfigWindowQuirk;
114
115 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
116 hwaddr addr,
117 unsigned size)
118 {
119 VFIOConfigWindowQuirk *window = opaque;
120 VFIOPCIDevice *vdev = window->vdev;
121
122 return vfio_region_read(&vdev->bars[window->bar].region,
123 addr + window->address_offset, size);
124 }
125
126 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
127 uint64_t data,
128 unsigned size)
129 {
130 VFIOConfigWindowQuirk *window = opaque;
131 VFIOPCIDevice *vdev = window->vdev;
132 int i;
133
134 window->window_enabled = false;
135
136 vfio_region_write(&vdev->bars[window->bar].region,
137 addr + window->address_offset, data, size);
138
139 for (i = 0; i < window->nr_matches; i++) {
140 if ((data & ~window->matches[i].mask) == window->matches[i].match) {
141 window->window_enabled = true;
142 window->address_val = data & window->matches[i].mask;
143 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
144 memory_region_name(window->addr_mem), data);
145 break;
146 }
147 }
148 }
149
150 static const MemoryRegionOps vfio_generic_window_address_quirk = {
151 .read = vfio_generic_window_quirk_address_read,
152 .write = vfio_generic_window_quirk_address_write,
153 .endianness = DEVICE_LITTLE_ENDIAN,
154 };
155
156 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
157 hwaddr addr, unsigned size)
158 {
159 VFIOConfigWindowQuirk *window = opaque;
160 VFIOPCIDevice *vdev = window->vdev;
161 uint64_t data;
162
163 /* Always read data reg, discard if window enabled */
164 data = vfio_region_read(&vdev->bars[window->bar].region,
165 addr + window->data_offset, size);
166
167 if (window->window_enabled) {
168 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
169 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
170 memory_region_name(window->data_mem), data);
171 }
172
173 return data;
174 }
175
176 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
177 uint64_t data, unsigned size)
178 {
179 VFIOConfigWindowQuirk *window = opaque;
180 VFIOPCIDevice *vdev = window->vdev;
181
182 if (window->window_enabled) {
183 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
184 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
185 memory_region_name(window->data_mem), data);
186 return;
187 }
188
189 vfio_region_write(&vdev->bars[window->bar].region,
190 addr + window->data_offset, data, size);
191 }
192
193 static const MemoryRegionOps vfio_generic_window_data_quirk = {
194 .read = vfio_generic_window_quirk_data_read,
195 .write = vfio_generic_window_quirk_data_write,
196 .endianness = DEVICE_LITTLE_ENDIAN,
197 };
198
199 /*
200 * The generic mirror quirk handles devices which expose PCI config space
201 * through a region within a BAR. When enabled, reads and writes are
202 * redirected through to emulated PCI config space. XXX if PCI config space
203 * used memory regions, this could just be an alias.
204 */
205 typedef struct VFIOConfigMirrorQuirk {
206 struct VFIOPCIDevice *vdev;
207 uint32_t offset;
208 uint8_t bar;
209 MemoryRegion *mem;
210 uint8_t data[];
211 } VFIOConfigMirrorQuirk;
212
213 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
214 hwaddr addr, unsigned size)
215 {
216 VFIOConfigMirrorQuirk *mirror = opaque;
217 VFIOPCIDevice *vdev = mirror->vdev;
218 uint64_t data;
219
220 /* Read and discard in case the hardware cares */
221 (void)vfio_region_read(&vdev->bars[mirror->bar].region,
222 addr + mirror->offset, size);
223
224 data = vfio_pci_read_config(&vdev->pdev, addr, size);
225 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
226 memory_region_name(mirror->mem),
227 addr, data);
228 return data;
229 }
230
231 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
232 uint64_t data, unsigned size)
233 {
234 VFIOConfigMirrorQuirk *mirror = opaque;
235 VFIOPCIDevice *vdev = mirror->vdev;
236
237 vfio_pci_write_config(&vdev->pdev, addr, data, size);
238 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
239 memory_region_name(mirror->mem),
240 addr, data);
241 }
242
243 static const MemoryRegionOps vfio_generic_mirror_quirk = {
244 .read = vfio_generic_quirk_mirror_read,
245 .write = vfio_generic_quirk_mirror_write,
246 .endianness = DEVICE_LITTLE_ENDIAN,
247 };
248
249 /* Is range1 fully contained within range2? */
250 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
251 uint64_t first2, uint64_t len2) {
252 return (first1 >= first2 && first1 + len1 <= first2 + len2);
253 }
254
255 #define PCI_VENDOR_ID_ATI 0x1002
256
257 /*
258 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
259 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
260 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
261 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
262 * I/O port BAR address. Originally this was coded to return the virtual BAR
263 * address only if the physical register read returns the actual BAR address,
264 * but users have reported greater success if we return the virtual address
265 * unconditionally.
266 */
267 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
268 hwaddr addr, unsigned size)
269 {
270 VFIOPCIDevice *vdev = opaque;
271 uint64_t data = vfio_pci_read_config(&vdev->pdev,
272 PCI_BASE_ADDRESS_4 + 1, size);
273
274 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
275
276 return data;
277 }
278
279 static const MemoryRegionOps vfio_ati_3c3_quirk = {
280 .read = vfio_ati_3c3_quirk_read,
281 .endianness = DEVICE_LITTLE_ENDIAN,
282 };
283
284 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
285 {
286 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
287 QLIST_INIT(&quirk->ioeventfds);
288 quirk->mem = g_new0(MemoryRegion, nr_mem);
289 quirk->nr_mem = nr_mem;
290
291 return quirk;
292 }
293
294 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
295 {
296 QLIST_REMOVE(ioeventfd, next);
297 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
298 true, ioeventfd->data, &ioeventfd->e);
299
300 if (ioeventfd->vfio) {
301 struct vfio_device_ioeventfd vfio_ioeventfd;
302
303 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
304 vfio_ioeventfd.flags = ioeventfd->size;
305 vfio_ioeventfd.data = ioeventfd->data;
306 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
307 ioeventfd->region_addr;
308 vfio_ioeventfd.fd = -1;
309
310 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
311 error_report("Failed to remove vfio ioeventfd for %s+0x%"
312 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
313 memory_region_name(ioeventfd->mr), ioeventfd->addr,
314 ioeventfd->size, ioeventfd->data);
315 }
316 } else {
317 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
318 NULL, NULL, NULL);
319 }
320
321 event_notifier_cleanup(&ioeventfd->e);
322 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
323 (uint64_t)ioeventfd->addr, ioeventfd->size,
324 ioeventfd->data);
325 g_free(ioeventfd);
326 }
327
328 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
329 {
330 VFIOIOEventFD *ioeventfd, *tmp;
331
332 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
333 if (ioeventfd->dynamic) {
334 vfio_ioeventfd_exit(vdev, ioeventfd);
335 }
336 }
337 }
338
339 static void vfio_ioeventfd_handler(void *opaque)
340 {
341 VFIOIOEventFD *ioeventfd = opaque;
342
343 if (event_notifier_test_and_clear(&ioeventfd->e)) {
344 vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
345 ioeventfd->data, ioeventfd->size);
346 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
347 (uint64_t)ioeventfd->addr, ioeventfd->size,
348 ioeventfd->data);
349 }
350 }
351
352 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
353 MemoryRegion *mr, hwaddr addr,
354 unsigned size, uint64_t data,
355 VFIORegion *region,
356 hwaddr region_addr, bool dynamic)
357 {
358 VFIOIOEventFD *ioeventfd;
359
360 if (vdev->no_kvm_ioeventfd) {
361 return NULL;
362 }
363
364 ioeventfd = g_malloc0(sizeof(*ioeventfd));
365
366 if (event_notifier_init(&ioeventfd->e, 0)) {
367 g_free(ioeventfd);
368 return NULL;
369 }
370
371 /*
372 * MemoryRegion and relative offset, plus additional ioeventfd setup
373 * parameters for configuring and later tearing down KVM ioeventfd.
374 */
375 ioeventfd->mr = mr;
376 ioeventfd->addr = addr;
377 ioeventfd->size = size;
378 ioeventfd->data = data;
379 ioeventfd->dynamic = dynamic;
380 /*
381 * VFIORegion and relative offset for implementing the userspace
382 * handler. data & size fields shared for both uses.
383 */
384 ioeventfd->region = region;
385 ioeventfd->region_addr = region_addr;
386
387 if (!vdev->no_vfio_ioeventfd) {
388 struct vfio_device_ioeventfd vfio_ioeventfd;
389
390 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
391 vfio_ioeventfd.flags = ioeventfd->size;
392 vfio_ioeventfd.data = ioeventfd->data;
393 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
394 ioeventfd->region_addr;
395 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
396
397 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
398 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
399 }
400
401 if (!ioeventfd->vfio) {
402 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
403 vfio_ioeventfd_handler, NULL, ioeventfd);
404 }
405
406 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
407 true, ioeventfd->data, &ioeventfd->e);
408 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
409 size, data, ioeventfd->vfio);
410
411 return ioeventfd;
412 }
413
414 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
415 {
416 VFIOQuirk *quirk;
417
418 /*
419 * As long as the BAR is >= 256 bytes it will be aligned such that the
420 * lower byte is always zero. Filter out anything else, if it exists.
421 */
422 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
423 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
424 return;
425 }
426
427 quirk = vfio_quirk_alloc(1);
428
429 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
430 "vfio-ati-3c3-quirk", 1);
431 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
432 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
433
434 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
435 quirk, next);
436
437 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
438 }
439
440 /*
441 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
442 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
443 * the MMIO space directly, but a window to this space is provided through
444 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
445 * data register. When the address is programmed to a range of 0x4000-0x4fff
446 * PCI configuration space is available. Experimentation seems to indicate
447 * that read-only may be provided by hardware.
448 */
449 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
450 {
451 VFIOQuirk *quirk;
452 VFIOConfigWindowQuirk *window;
453
454 /* This windows doesn't seem to be used except by legacy VGA code */
455 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
456 !vdev->vga || nr != 4) {
457 return;
458 }
459
460 quirk = vfio_quirk_alloc(2);
461 window = quirk->data = g_malloc0(sizeof(*window) +
462 sizeof(VFIOConfigWindowMatch));
463 window->vdev = vdev;
464 window->address_offset = 0;
465 window->data_offset = 4;
466 window->nr_matches = 1;
467 window->matches[0].match = 0x4000;
468 window->matches[0].mask = vdev->config_size - 1;
469 window->bar = nr;
470 window->addr_mem = &quirk->mem[0];
471 window->data_mem = &quirk->mem[1];
472
473 memory_region_init_io(window->addr_mem, OBJECT(vdev),
474 &vfio_generic_window_address_quirk, window,
475 "vfio-ati-bar4-window-address-quirk", 4);
476 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
477 window->address_offset,
478 window->addr_mem, 1);
479
480 memory_region_init_io(window->data_mem, OBJECT(vdev),
481 &vfio_generic_window_data_quirk, window,
482 "vfio-ati-bar4-window-data-quirk", 4);
483 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
484 window->data_offset,
485 window->data_mem, 1);
486
487 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
488
489 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
490 }
491
492 /*
493 * Trap the BAR2 MMIO mirror to config space as well.
494 */
495 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
496 {
497 VFIOQuirk *quirk;
498 VFIOConfigMirrorQuirk *mirror;
499
500 /* Only enable on newer devices where BAR2 is 64bit */
501 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
502 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
503 return;
504 }
505
506 quirk = vfio_quirk_alloc(1);
507 mirror = quirk->data = g_malloc0(sizeof(*mirror));
508 mirror->mem = quirk->mem;
509 mirror->vdev = vdev;
510 mirror->offset = 0x4000;
511 mirror->bar = nr;
512
513 memory_region_init_io(mirror->mem, OBJECT(vdev),
514 &vfio_generic_mirror_quirk, mirror,
515 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
516 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
517 mirror->offset, mirror->mem, 1);
518
519 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
520
521 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
522 }
523
524 /*
525 * Older ATI/AMD cards like the X550 have a similar window to that above.
526 * I/O port BAR1 provides a window to a mirror of PCI config space located
527 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
528 * note it for future reference.
529 */
530
531 /*
532 * Nvidia has several different methods to get to config space, the
533 * nouveu project has several of these documented here:
534 * https://github.com/pathscale/envytools/tree/master/hwdocs
535 *
536 * The first quirk is actually not documented in envytools and is found
537 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
538 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
539 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
540 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
541 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
542 * is written for a write to 0x3d4. The BAR0 offset is then accessible
543 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
544 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
545 */
546 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
547 static const char *nv3d0_states[] = { "NONE", "SELECT",
548 "WINDOW", "READ", "WRITE" };
549
550 typedef struct VFIONvidia3d0Quirk {
551 VFIOPCIDevice *vdev;
552 VFIONvidia3d0State state;
553 uint32_t offset;
554 } VFIONvidia3d0Quirk;
555
556 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
557 hwaddr addr, unsigned size)
558 {
559 VFIONvidia3d0Quirk *quirk = opaque;
560 VFIOPCIDevice *vdev = quirk->vdev;
561
562 quirk->state = NONE;
563
564 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
565 addr + 0x14, size);
566 }
567
568 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
569 uint64_t data, unsigned size)
570 {
571 VFIONvidia3d0Quirk *quirk = opaque;
572 VFIOPCIDevice *vdev = quirk->vdev;
573 VFIONvidia3d0State old_state = quirk->state;
574
575 quirk->state = NONE;
576
577 switch (data) {
578 case 0x338:
579 if (old_state == NONE) {
580 quirk->state = SELECT;
581 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
582 nv3d0_states[quirk->state]);
583 }
584 break;
585 case 0x538:
586 if (old_state == WINDOW) {
587 quirk->state = READ;
588 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
589 nv3d0_states[quirk->state]);
590 }
591 break;
592 case 0x738:
593 if (old_state == WINDOW) {
594 quirk->state = WRITE;
595 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
596 nv3d0_states[quirk->state]);
597 }
598 break;
599 }
600
601 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
602 addr + 0x14, data, size);
603 }
604
605 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
606 .read = vfio_nvidia_3d4_quirk_read,
607 .write = vfio_nvidia_3d4_quirk_write,
608 .endianness = DEVICE_LITTLE_ENDIAN,
609 };
610
611 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
612 hwaddr addr, unsigned size)
613 {
614 VFIONvidia3d0Quirk *quirk = opaque;
615 VFIOPCIDevice *vdev = quirk->vdev;
616 VFIONvidia3d0State old_state = quirk->state;
617 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
618 addr + 0x10, size);
619
620 quirk->state = NONE;
621
622 if (old_state == READ &&
623 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
624 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
625
626 data = vfio_pci_read_config(&vdev->pdev, offset, size);
627 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
628 offset, size, data);
629 }
630
631 return data;
632 }
633
634 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
635 uint64_t data, unsigned size)
636 {
637 VFIONvidia3d0Quirk *quirk = opaque;
638 VFIOPCIDevice *vdev = quirk->vdev;
639 VFIONvidia3d0State old_state = quirk->state;
640
641 quirk->state = NONE;
642
643 if (old_state == SELECT) {
644 quirk->offset = (uint32_t)data;
645 quirk->state = WINDOW;
646 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
647 nv3d0_states[quirk->state]);
648 } else if (old_state == WRITE) {
649 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
650 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
651
652 vfio_pci_write_config(&vdev->pdev, offset, data, size);
653 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
654 offset, data, size);
655 return;
656 }
657 }
658
659 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
660 addr + 0x10, data, size);
661 }
662
663 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
664 .read = vfio_nvidia_3d0_quirk_read,
665 .write = vfio_nvidia_3d0_quirk_write,
666 .endianness = DEVICE_LITTLE_ENDIAN,
667 };
668
669 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
670 {
671 VFIOQuirk *quirk;
672 VFIONvidia3d0Quirk *data;
673
674 if (vdev->no_geforce_quirks ||
675 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
676 !vdev->bars[1].region.size) {
677 return;
678 }
679
680 quirk = vfio_quirk_alloc(2);
681 quirk->data = data = g_malloc0(sizeof(*data));
682 data->vdev = vdev;
683
684 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
685 data, "vfio-nvidia-3d4-quirk", 2);
686 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
687 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
688
689 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
690 data, "vfio-nvidia-3d0-quirk", 2);
691 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
692 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
693
694 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
695 quirk, next);
696
697 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
698 }
699
700 /*
701 * The second quirk is documented in envytools. The I/O port BAR5 is just
702 * a set of address/data ports to the MMIO BARs. The BAR we care about is
703 * again BAR0. This backdoor is apparently a bit newer than the one above
704 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
705 * space, including extended space is available at the 4k @0x88000.
706 */
707 typedef struct VFIONvidiaBAR5Quirk {
708 uint32_t master;
709 uint32_t enable;
710 MemoryRegion *addr_mem;
711 MemoryRegion *data_mem;
712 bool enabled;
713 VFIOConfigWindowQuirk window; /* last for match data */
714 } VFIONvidiaBAR5Quirk;
715
716 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
717 {
718 VFIOPCIDevice *vdev = bar5->window.vdev;
719
720 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
721 return;
722 }
723
724 bar5->enabled = !bar5->enabled;
725 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
726 bar5->enabled ? "Enable" : "Disable");
727 memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
728 memory_region_set_enabled(bar5->data_mem, bar5->enabled);
729 }
730
731 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
732 hwaddr addr, unsigned size)
733 {
734 VFIONvidiaBAR5Quirk *bar5 = opaque;
735 VFIOPCIDevice *vdev = bar5->window.vdev;
736
737 return vfio_region_read(&vdev->bars[5].region, addr, size);
738 }
739
740 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
741 uint64_t data, unsigned size)
742 {
743 VFIONvidiaBAR5Quirk *bar5 = opaque;
744 VFIOPCIDevice *vdev = bar5->window.vdev;
745
746 vfio_region_write(&vdev->bars[5].region, addr, data, size);
747
748 bar5->master = data;
749 vfio_nvidia_bar5_enable(bar5);
750 }
751
752 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
753 .read = vfio_nvidia_bar5_quirk_master_read,
754 .write = vfio_nvidia_bar5_quirk_master_write,
755 .endianness = DEVICE_LITTLE_ENDIAN,
756 };
757
758 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
759 hwaddr addr, unsigned size)
760 {
761 VFIONvidiaBAR5Quirk *bar5 = opaque;
762 VFIOPCIDevice *vdev = bar5->window.vdev;
763
764 return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
765 }
766
767 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
768 uint64_t data, unsigned size)
769 {
770 VFIONvidiaBAR5Quirk *bar5 = opaque;
771 VFIOPCIDevice *vdev = bar5->window.vdev;
772
773 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
774
775 bar5->enable = data;
776 vfio_nvidia_bar5_enable(bar5);
777 }
778
779 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
780 .read = vfio_nvidia_bar5_quirk_enable_read,
781 .write = vfio_nvidia_bar5_quirk_enable_write,
782 .endianness = DEVICE_LITTLE_ENDIAN,
783 };
784
785 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
786 {
787 VFIOQuirk *quirk;
788 VFIONvidiaBAR5Quirk *bar5;
789 VFIOConfigWindowQuirk *window;
790
791 if (vdev->no_geforce_quirks ||
792 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
793 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
794 return;
795 }
796
797 quirk = vfio_quirk_alloc(4);
798 bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
799 (sizeof(VFIOConfigWindowMatch) * 2));
800 window = &bar5->window;
801
802 window->vdev = vdev;
803 window->address_offset = 0x8;
804 window->data_offset = 0xc;
805 window->nr_matches = 2;
806 window->matches[0].match = 0x1800;
807 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
808 window->matches[1].match = 0x88000;
809 window->matches[1].mask = vdev->config_size - 1;
810 window->bar = nr;
811 window->addr_mem = bar5->addr_mem = &quirk->mem[0];
812 window->data_mem = bar5->data_mem = &quirk->mem[1];
813
814 memory_region_init_io(window->addr_mem, OBJECT(vdev),
815 &vfio_generic_window_address_quirk, window,
816 "vfio-nvidia-bar5-window-address-quirk", 4);
817 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
818 window->address_offset,
819 window->addr_mem, 1);
820 memory_region_set_enabled(window->addr_mem, false);
821
822 memory_region_init_io(window->data_mem, OBJECT(vdev),
823 &vfio_generic_window_data_quirk, window,
824 "vfio-nvidia-bar5-window-data-quirk", 4);
825 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
826 window->data_offset,
827 window->data_mem, 1);
828 memory_region_set_enabled(window->data_mem, false);
829
830 memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
831 &vfio_nvidia_bar5_quirk_master, bar5,
832 "vfio-nvidia-bar5-master-quirk", 4);
833 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
834 0, &quirk->mem[2], 1);
835
836 memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
837 &vfio_nvidia_bar5_quirk_enable, bar5,
838 "vfio-nvidia-bar5-enable-quirk", 4);
839 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
840 4, &quirk->mem[3], 1);
841
842 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
843
844 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
845 }
846
847 typedef struct LastDataSet {
848 VFIOQuirk *quirk;
849 hwaddr addr;
850 uint64_t data;
851 unsigned size;
852 int hits;
853 int added;
854 } LastDataSet;
855
856 #define MAX_DYN_IOEVENTFD 10
857 #define HITS_FOR_IOEVENTFD 10
858
859 /*
860 * Finally, BAR0 itself. We want to redirect any accesses to either
861 * 0x1800 or 0x88000 through the PCI config space access functions.
862 */
863 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
864 uint64_t data, unsigned size)
865 {
866 VFIOConfigMirrorQuirk *mirror = opaque;
867 VFIOPCIDevice *vdev = mirror->vdev;
868 PCIDevice *pdev = &vdev->pdev;
869 LastDataSet *last = (LastDataSet *)&mirror->data;
870
871 vfio_generic_quirk_mirror_write(opaque, addr, data, size);
872
873 /*
874 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
875 * MSI capability ID register. Both the ID and next register are
876 * read-only, so we allow writes covering either of those to real hw.
877 */
878 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
879 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
880 vfio_region_write(&vdev->bars[mirror->bar].region,
881 addr + mirror->offset, data, size);
882 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
883 }
884
885 /*
886 * Automatically add an ioeventfd to handle any repeated write with the
887 * same data and size above the standard PCI config space header. This is
888 * primarily expected to accelerate the MSI-ACK behavior, such as noted
889 * above. Current hardware/drivers should trigger an ioeventfd at config
890 * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
891 *
892 * The criteria of 10 successive hits is arbitrary but reliably adds the
893 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd,
894 * the remaining ones have a greater chance of being seen successively.
895 * To avoid the pathological case of burning up all of QEMU's open file
896 * handles, arbitrarily limit this algorithm from adding no more than 10
897 * ioeventfds, print an error if we would have added an 11th, and then
898 * stop counting.
899 */
900 if (!vdev->no_kvm_ioeventfd &&
901 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
902 if (addr != last->addr || data != last->data || size != last->size) {
903 last->addr = addr;
904 last->data = data;
905 last->size = size;
906 last->hits = 1;
907 } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
908 if (last->added < MAX_DYN_IOEVENTFD) {
909 VFIOIOEventFD *ioeventfd;
910 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
911 data, &vdev->bars[mirror->bar].region,
912 mirror->offset + addr, true);
913 if (ioeventfd) {
914 VFIOQuirk *quirk = last->quirk;
915
916 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
917 last->added++;
918 }
919 } else {
920 last->added++;
921 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
922 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
923 "size %u", vdev->vbasedev.name, addr, data, size);
924 }
925 }
926 }
927 }
928
929 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
930 .read = vfio_generic_quirk_mirror_read,
931 .write = vfio_nvidia_quirk_mirror_write,
932 .endianness = DEVICE_LITTLE_ENDIAN,
933 };
934
935 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
936 {
937 VFIOConfigMirrorQuirk *mirror = quirk->data;
938 LastDataSet *last = (LastDataSet *)&mirror->data;
939
940 last->addr = last->data = last->size = last->hits = last->added = 0;
941
942 vfio_drop_dynamic_eventfds(vdev, quirk);
943 }
944
945 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
946 {
947 VFIOQuirk *quirk;
948 VFIOConfigMirrorQuirk *mirror;
949 LastDataSet *last;
950
951 if (vdev->no_geforce_quirks ||
952 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
953 !vfio_is_vga(vdev) || nr != 0) {
954 return;
955 }
956
957 quirk = vfio_quirk_alloc(1);
958 quirk->reset = vfio_nvidia_bar0_quirk_reset;
959 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
960 mirror->mem = quirk->mem;
961 mirror->vdev = vdev;
962 mirror->offset = 0x88000;
963 mirror->bar = nr;
964 last = (LastDataSet *)&mirror->data;
965 last->quirk = quirk;
966
967 memory_region_init_io(mirror->mem, OBJECT(vdev),
968 &vfio_nvidia_mirror_quirk, mirror,
969 "vfio-nvidia-bar0-88000-mirror-quirk",
970 vdev->config_size);
971 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
972 mirror->offset, mirror->mem, 1);
973
974 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
975
976 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
977 if (vdev->vga) {
978 quirk = vfio_quirk_alloc(1);
979 quirk->reset = vfio_nvidia_bar0_quirk_reset;
980 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
981 mirror->mem = quirk->mem;
982 mirror->vdev = vdev;
983 mirror->offset = 0x1800;
984 mirror->bar = nr;
985 last = (LastDataSet *)&mirror->data;
986 last->quirk = quirk;
987
988 memory_region_init_io(mirror->mem, OBJECT(vdev),
989 &vfio_nvidia_mirror_quirk, mirror,
990 "vfio-nvidia-bar0-1800-mirror-quirk",
991 PCI_CONFIG_SPACE_SIZE);
992 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
993 mirror->offset, mirror->mem, 1);
994
995 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
996 }
997
998 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
999 }
1000
1001 /*
1002 * TODO - Some Nvidia devices provide config access to their companion HDA
1003 * device and even to their parent bridge via these config space mirrors.
1004 * Add quirks for those regions.
1005 */
1006
1007 #define PCI_VENDOR_ID_REALTEK 0x10ec
1008
1009 /*
1010 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1011 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1012 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1013 * when the "type" portion of the address register is set to 0x1. This appears
1014 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1015 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1016 * ignore because the MSI-X table should always be accessed as a dword (full
1017 * mask). Bits 0:11 is offset within the type.
1018 *
1019 * Example trace:
1020 *
1021 * Read from MSI-X table offset 0
1022 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1023 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1025 *
1026 * Write 0xfee00000 to MSI-X table offset 0
1027 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1028 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1029 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1030 */
1031 typedef struct VFIOrtl8168Quirk {
1032 VFIOPCIDevice *vdev;
1033 uint32_t addr;
1034 uint32_t data;
1035 bool enabled;
1036 } VFIOrtl8168Quirk;
1037
1038 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1039 hwaddr addr, unsigned size)
1040 {
1041 VFIOrtl8168Quirk *rtl = opaque;
1042 VFIOPCIDevice *vdev = rtl->vdev;
1043 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1044
1045 if (rtl->enabled) {
1046 data = rtl->addr ^ 0x80000000U; /* latch/complete */
1047 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1048 }
1049
1050 return data;
1051 }
1052
1053 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1054 uint64_t data, unsigned size)
1055 {
1056 VFIOrtl8168Quirk *rtl = opaque;
1057 VFIOPCIDevice *vdev = rtl->vdev;
1058
1059 rtl->enabled = false;
1060
1061 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1062 rtl->enabled = true;
1063 rtl->addr = (uint32_t)data;
1064
1065 if (data & 0x80000000U) { /* Do write */
1066 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1067 hwaddr offset = data & 0xfff;
1068 uint64_t val = rtl->data;
1069
1070 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1071 (uint16_t)offset, val);
1072
1073 /* Write to the proper guest MSI-X table instead */
1074 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1075 offset, val, size,
1076 MEMTXATTRS_UNSPECIFIED);
1077 }
1078 return; /* Do not write guest MSI-X data to hardware */
1079 }
1080 }
1081
1082 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1083 }
1084
1085 static const MemoryRegionOps vfio_rtl_address_quirk = {
1086 .read = vfio_rtl8168_quirk_address_read,
1087 .write = vfio_rtl8168_quirk_address_write,
1088 .valid = {
1089 .min_access_size = 4,
1090 .max_access_size = 4,
1091 .unaligned = false,
1092 },
1093 .endianness = DEVICE_LITTLE_ENDIAN,
1094 };
1095
1096 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1097 hwaddr addr, unsigned size)
1098 {
1099 VFIOrtl8168Quirk *rtl = opaque;
1100 VFIOPCIDevice *vdev = rtl->vdev;
1101 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1102
1103 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1104 hwaddr offset = rtl->addr & 0xfff;
1105 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1106 &data, size, MEMTXATTRS_UNSPECIFIED);
1107 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1108 }
1109
1110 return data;
1111 }
1112
1113 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1114 uint64_t data, unsigned size)
1115 {
1116 VFIOrtl8168Quirk *rtl = opaque;
1117 VFIOPCIDevice *vdev = rtl->vdev;
1118
1119 rtl->data = (uint32_t)data;
1120
1121 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1122 }
1123
1124 static const MemoryRegionOps vfio_rtl_data_quirk = {
1125 .read = vfio_rtl8168_quirk_data_read,
1126 .write = vfio_rtl8168_quirk_data_write,
1127 .valid = {
1128 .min_access_size = 4,
1129 .max_access_size = 4,
1130 .unaligned = false,
1131 },
1132 .endianness = DEVICE_LITTLE_ENDIAN,
1133 };
1134
1135 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1136 {
1137 VFIOQuirk *quirk;
1138 VFIOrtl8168Quirk *rtl;
1139
1140 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1141 return;
1142 }
1143
1144 quirk = vfio_quirk_alloc(2);
1145 quirk->data = rtl = g_malloc0(sizeof(*rtl));
1146 rtl->vdev = vdev;
1147
1148 memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1149 &vfio_rtl_address_quirk, rtl,
1150 "vfio-rtl8168-window-address-quirk", 4);
1151 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1152 0x74, &quirk->mem[0], 1);
1153
1154 memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1155 &vfio_rtl_data_quirk, rtl,
1156 "vfio-rtl8168-window-data-quirk", 4);
1157 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1158 0x70, &quirk->mem[1], 1);
1159
1160 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1161
1162 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1163 }
1164
1165 /*
1166 * Intel IGD support
1167 *
1168 * Obviously IGD is not a discrete device, this is evidenced not only by it
1169 * being integrated into the CPU, but by the various chipset and BIOS
1170 * dependencies that it brings along with it. Intel is trying to move away
1171 * from this and Broadwell and newer devices can run in what Intel calls
1172 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
1173 * more is required beyond assigning the IGD device to a VM. There are
1174 * however support limitations to this mode. It only supports IGD as a
1175 * secondary graphics device in the VM and it doesn't officially support any
1176 * physical outputs.
1177 *
1178 * The code here attempts to enable what we'll call legacy mode assignment,
1179 * IGD retains most of the capabilities we expect for it to have on bare
1180 * metal. To enable this mode, the IGD device must be assigned to the VM
1181 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1182 * support, we must have VM BIOS support for reserving and populating some
1183 * of the required tables, and we need to tweak the chipset with revisions
1184 * and IDs and an LPC/ISA bridge device. The intention is to make all of
1185 * this happen automatically by installing the device at the correct VM PCI
1186 * bus address. If any of the conditions are not met, we cross our fingers
1187 * and hope the user knows better.
1188 *
1189 * NB - It is possible to enable physical outputs in UPT mode by supplying
1190 * an OpRegion table. We don't do this by default because the guest driver
1191 * behaves differently if an OpRegion is provided and no monitor is attached
1192 * vs no OpRegion and a monitor being attached or not. Effectively, if a
1193 * headless setup is desired, the OpRegion gets in the way of that.
1194 */
1195
1196 /*
1197 * This presumes the device is already known to be an Intel VGA device, so we
1198 * take liberties in which device ID bits match which generation. This should
1199 * not be taken as an indication that all the devices are supported, or even
1200 * supportable, some of them don't even support VT-d.
1201 * See linux:include/drm/i915_pciids.h for IDs.
1202 */
1203 static int igd_gen(VFIOPCIDevice *vdev)
1204 {
1205 if ((vdev->device_id & 0xfff) == 0xa84) {
1206 return 8; /* Broxton */
1207 }
1208
1209 switch (vdev->device_id & 0xff00) {
1210 /* Old, untested, unavailable, unknown */
1211 case 0x0000:
1212 case 0x2500:
1213 case 0x2700:
1214 case 0x2900:
1215 case 0x2a00:
1216 case 0x2e00:
1217 case 0x3500:
1218 case 0xa000:
1219 return -1;
1220 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1221 case 0x0100:
1222 case 0x0400:
1223 case 0x0a00:
1224 case 0x0c00:
1225 case 0x0d00:
1226 case 0x0f00:
1227 return 6;
1228 /* BroadWell, CherryView, SkyLake, KabyLake */
1229 case 0x1600:
1230 case 0x1900:
1231 case 0x2200:
1232 case 0x5900:
1233 return 8;
1234 }
1235
1236 return 8; /* Assume newer is compatible */
1237 }
1238
1239 typedef struct VFIOIGDQuirk {
1240 struct VFIOPCIDevice *vdev;
1241 uint32_t index;
1242 uint32_t bdsm;
1243 } VFIOIGDQuirk;
1244
1245 #define IGD_GMCH 0x50 /* Graphics Control Register */
1246 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1247 #define IGD_ASLS 0xfc /* ASL Storage Register */
1248
1249 /*
1250 * The OpRegion includes the Video BIOS Table, which seems important for
1251 * telling the driver what sort of outputs it has. Without this, the device
1252 * may work in the guest, but we may not get output. This also requires BIOS
1253 * support to reserve and populate a section of guest memory sufficient for
1254 * the table and to write the base address of that memory to the ASLS register
1255 * of the IGD device.
1256 */
1257 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1258 struct vfio_region_info *info, Error **errp)
1259 {
1260 int ret;
1261
1262 vdev->igd_opregion = g_malloc0(info->size);
1263 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1264 info->size, info->offset);
1265 if (ret != info->size) {
1266 error_setg(errp, "failed to read IGD OpRegion");
1267 g_free(vdev->igd_opregion);
1268 vdev->igd_opregion = NULL;
1269 return -EINVAL;
1270 }
1271
1272 /*
1273 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1274 * allocate 32bit reserved memory for, copy these contents into, and write
1275 * the reserved memory base address to the device ASLS register at 0xFC.
1276 * Alignment of this reserved region seems flexible, but using a 4k page
1277 * alignment seems to work well. This interface assumes a single IGD
1278 * device, which may be at VM address 00:02.0 in legacy mode or another
1279 * address in UPT mode.
1280 *
1281 * NB, there may be future use cases discovered where the VM should have
1282 * direct interaction with the host OpRegion, in which case the write to
1283 * the ASLS register would trigger MemoryRegion setup to enable that.
1284 */
1285 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1286 vdev->igd_opregion, info->size);
1287
1288 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1289
1290 pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1291 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1292 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1293
1294 return 0;
1295 }
1296
1297 /*
1298 * The rather short list of registers that we copy from the host devices.
1299 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1300 * host bridge values may or may not be needed depending on the guest OS.
1301 * Since we're only munging revision and subsystem values on the host bridge,
1302 * we don't require our own device. The LPC/ISA bridge needs to be our very
1303 * own though.
1304 */
1305 typedef struct {
1306 uint8_t offset;
1307 uint8_t len;
1308 } IGDHostInfo;
1309
1310 static const IGDHostInfo igd_host_bridge_infos[] = {
1311 {PCI_REVISION_ID, 2},
1312 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1313 {PCI_SUBSYSTEM_ID, 2},
1314 };
1315
1316 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1317 {PCI_VENDOR_ID, 2},
1318 {PCI_DEVICE_ID, 2},
1319 {PCI_REVISION_ID, 2},
1320 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1321 {PCI_SUBSYSTEM_ID, 2},
1322 };
1323
1324 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1325 struct vfio_region_info *info,
1326 const IGDHostInfo *list, int len)
1327 {
1328 int i, ret;
1329
1330 for (i = 0; i < len; i++) {
1331 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1332 list[i].len, info->offset + list[i].offset);
1333 if (ret != list[i].len) {
1334 error_report("IGD copy failed: %m");
1335 return -errno;
1336 }
1337 }
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * Stuff a few values into the host bridge.
1344 */
1345 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1346 struct vfio_region_info *info)
1347 {
1348 PCIBus *bus;
1349 PCIDevice *host_bridge;
1350 int ret;
1351
1352 bus = pci_device_root_bus(&vdev->pdev);
1353 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1354
1355 if (!host_bridge) {
1356 error_report("Can't find host bridge");
1357 return -ENODEV;
1358 }
1359
1360 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1361 ARRAY_SIZE(igd_host_bridge_infos));
1362 if (!ret) {
1363 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1364 }
1365
1366 return ret;
1367 }
1368
1369 /*
1370 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1371 * arbitrary values into just any bridge, so we must create our own. We try
1372 * to handle if the user has created it for us, which they might want to do
1373 * to enable multifunction so we don't occupy the whole PCI slot.
1374 */
1375 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1376 {
1377 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1378 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1379 }
1380 }
1381
1382 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1383 {
1384 DeviceClass *dc = DEVICE_CLASS(klass);
1385 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1386
1387 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1388 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1389 dc->hotpluggable = false;
1390 k->realize = vfio_pci_igd_lpc_bridge_realize;
1391 k->class_id = PCI_CLASS_BRIDGE_ISA;
1392 }
1393
1394 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1395 .name = "vfio-pci-igd-lpc-bridge",
1396 .parent = TYPE_PCI_DEVICE,
1397 .class_init = vfio_pci_igd_lpc_bridge_class_init,
1398 .interfaces = (InterfaceInfo[]) {
1399 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1400 { },
1401 },
1402 };
1403
1404 static void vfio_pci_igd_register_types(void)
1405 {
1406 type_register_static(&vfio_pci_igd_lpc_bridge_info);
1407 }
1408
1409 type_init(vfio_pci_igd_register_types)
1410
1411 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1412 struct vfio_region_info *info)
1413 {
1414 PCIDevice *lpc_bridge;
1415 int ret;
1416
1417 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1418 0, PCI_DEVFN(0x1f, 0));
1419 if (!lpc_bridge) {
1420 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1421 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1422 }
1423
1424 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1425 ARRAY_SIZE(igd_lpc_bridge_infos));
1426 if (!ret) {
1427 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1428 }
1429
1430 return ret;
1431 }
1432
1433 /*
1434 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1435 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1436 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1437 * for programming the GTT.
1438 *
1439 * See linux:include/drm/i915_drm.h for shift and mask values.
1440 */
1441 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1442 {
1443 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1444 int ggms, gen = igd_gen(vdev);
1445
1446 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1447 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1448 if (gen > 6) {
1449 ggms = 1 << ggms;
1450 }
1451
1452 ggms *= MiB;
1453
1454 return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1455 }
1456
1457 /*
1458 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1459 * Somehow the host stolen memory range is used for this, but how the ROM gets
1460 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1461 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1462 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1463 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1464 * IOBAR address and data registers to detect a write sequence targeting the
1465 * GTTADR. This code is developed by observed behavior and doesn't have a
1466 * direct spec reference, unfortunately.
1467 */
1468 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1469 hwaddr addr, unsigned size)
1470 {
1471 VFIOIGDQuirk *igd = opaque;
1472 VFIOPCIDevice *vdev = igd->vdev;
1473
1474 igd->index = ~0;
1475
1476 return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1477 }
1478
1479 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1480 uint64_t data, unsigned size)
1481 {
1482 VFIOIGDQuirk *igd = opaque;
1483 VFIOPCIDevice *vdev = igd->vdev;
1484 uint64_t val = data;
1485 int gen = igd_gen(vdev);
1486
1487 /*
1488 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1489 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1490 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1491 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1492 * to a 4k page, which we translate to a page from the VM allocated region,
1493 * pointed to by the BDSM register. If this is not set, we fail.
1494 *
1495 * We trap writes to the full configured GTT size, but we typically only
1496 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1497 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1498 * write of that last entry does work, but is hopefully unnecessary since
1499 * we clear the previous GTT on initialization.
1500 */
1501 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1502 if (gen < 8 || (igd->index % 8 == 1)) {
1503 uint32_t base;
1504
1505 base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1506 if (!base) {
1507 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1508 "BIOS reserved stolen memory. Unsupported BIOS?");
1509 }
1510
1511 val = data - igd->bdsm + base;
1512 } else {
1513 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1514 }
1515
1516 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1517 igd->index, data, val);
1518 }
1519
1520 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1521
1522 igd->index = ~0;
1523 }
1524
1525 static const MemoryRegionOps vfio_igd_data_quirk = {
1526 .read = vfio_igd_quirk_data_read,
1527 .write = vfio_igd_quirk_data_write,
1528 .endianness = DEVICE_LITTLE_ENDIAN,
1529 };
1530
1531 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1532 hwaddr addr, unsigned size)
1533 {
1534 VFIOIGDQuirk *igd = opaque;
1535 VFIOPCIDevice *vdev = igd->vdev;
1536
1537 igd->index = ~0;
1538
1539 return vfio_region_read(&vdev->bars[4].region, addr, size);
1540 }
1541
1542 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1543 uint64_t data, unsigned size)
1544 {
1545 VFIOIGDQuirk *igd = opaque;
1546 VFIOPCIDevice *vdev = igd->vdev;
1547
1548 igd->index = data;
1549
1550 vfio_region_write(&vdev->bars[4].region, addr, data, size);
1551 }
1552
1553 static const MemoryRegionOps vfio_igd_index_quirk = {
1554 .read = vfio_igd_quirk_index_read,
1555 .write = vfio_igd_quirk_index_write,
1556 .endianness = DEVICE_LITTLE_ENDIAN,
1557 };
1558
1559 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1560 {
1561 struct vfio_region_info *rom = NULL, *opregion = NULL,
1562 *host = NULL, *lpc = NULL;
1563 VFIOQuirk *quirk;
1564 VFIOIGDQuirk *igd;
1565 PCIDevice *lpc_bridge;
1566 int i, ret, ggms_mb, gms_mb = 0, gen;
1567 uint64_t *bdsm_size;
1568 uint32_t gmch;
1569 uint16_t cmd_orig, cmd;
1570 Error *err = NULL;
1571
1572 /*
1573 * This must be an Intel VGA device at address 00:02.0 for us to even
1574 * consider enabling legacy mode. The vBIOS has dependencies on the
1575 * PCI bus address.
1576 */
1577 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1578 !vfio_is_vga(vdev) || nr != 4 ||
1579 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1580 0, PCI_DEVFN(0x2, 0))) {
1581 return;
1582 }
1583
1584 /*
1585 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1586 * can stuff host values into, so if there's already one there and it's not
1587 * one we can hack on, legacy mode is no-go. Sorry Q35.
1588 */
1589 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1590 0, PCI_DEVFN(0x1f, 0));
1591 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1592 "vfio-pci-igd-lpc-bridge")) {
1593 error_report("IGD device %s cannot support legacy mode due to existing "
1594 "devices at address 1f.0", vdev->vbasedev.name);
1595 return;
1596 }
1597
1598 /*
1599 * IGD is not a standard, they like to change their specs often. We
1600 * only attempt to support back to SandBridge and we hope that newer
1601 * devices maintain compatibility with generation 8.
1602 */
1603 gen = igd_gen(vdev);
1604 if (gen != 6 && gen != 8) {
1605 error_report("IGD device %s is unsupported in legacy mode, "
1606 "try SandyBridge or newer", vdev->vbasedev.name);
1607 return;
1608 }
1609
1610 /*
1611 * Most of what we're doing here is to enable the ROM to run, so if
1612 * there's no ROM, there's no point in setting up this quirk.
1613 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1614 */
1615 ret = vfio_get_region_info(&vdev->vbasedev,
1616 VFIO_PCI_ROM_REGION_INDEX, &rom);
1617 if ((ret || !rom->size) && !vdev->pdev.romfile) {
1618 error_report("IGD device %s has no ROM, legacy mode disabled",
1619 vdev->vbasedev.name);
1620 goto out;
1621 }
1622
1623 /*
1624 * Ignore the hotplug corner case, mark the ROM failed, we can't
1625 * create the devices we need for legacy mode in the hotplug scenario.
1626 */
1627 if (vdev->pdev.qdev.hotplugged) {
1628 error_report("IGD device %s hotplugged, ROM disabled, "
1629 "legacy mode disabled", vdev->vbasedev.name);
1630 vdev->rom_read_failed = true;
1631 goto out;
1632 }
1633
1634 /*
1635 * Check whether we have all the vfio device specific regions to
1636 * support legacy mode (added in Linux v4.6). If not, bail.
1637 */
1638 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1639 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1640 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1641 if (ret) {
1642 error_report("IGD device %s does not support OpRegion access,"
1643 "legacy mode disabled", vdev->vbasedev.name);
1644 goto out;
1645 }
1646
1647 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1648 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1649 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1650 if (ret) {
1651 error_report("IGD device %s does not support host bridge access,"
1652 "legacy mode disabled", vdev->vbasedev.name);
1653 goto out;
1654 }
1655
1656 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1657 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1658 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1659 if (ret) {
1660 error_report("IGD device %s does not support LPC bridge access,"
1661 "legacy mode disabled", vdev->vbasedev.name);
1662 goto out;
1663 }
1664
1665 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1666
1667 /*
1668 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1669 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1670 * but also no point in us enabling VGA if disabled in hardware.
1671 */
1672 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1673 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1674 error_report("IGD device %s failed to enable VGA access, "
1675 "legacy mode disabled", vdev->vbasedev.name);
1676 goto out;
1677 }
1678
1679 /* Create our LPC/ISA bridge */
1680 ret = vfio_pci_igd_lpc_init(vdev, lpc);
1681 if (ret) {
1682 error_report("IGD device %s failed to create LPC bridge, "
1683 "legacy mode disabled", vdev->vbasedev.name);
1684 goto out;
1685 }
1686
1687 /* Stuff some host values into the VM PCI host bridge */
1688 ret = vfio_pci_igd_host_init(vdev, host);
1689 if (ret) {
1690 error_report("IGD device %s failed to modify host bridge, "
1691 "legacy mode disabled", vdev->vbasedev.name);
1692 goto out;
1693 }
1694
1695 /* Setup OpRegion access */
1696 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1697 if (ret) {
1698 error_append_hint(&err, "IGD legacy mode disabled\n");
1699 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1700 goto out;
1701 }
1702
1703 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1704 quirk = vfio_quirk_alloc(2);
1705 igd = quirk->data = g_malloc0(sizeof(*igd));
1706 igd->vdev = vdev;
1707 igd->index = ~0;
1708 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1709 igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1710
1711 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1712 igd, "vfio-igd-index-quirk", 4);
1713 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1714 0, &quirk->mem[0], 1);
1715
1716 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1717 igd, "vfio-igd-data-quirk", 4);
1718 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1719 4, &quirk->mem[1], 1);
1720
1721 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1722
1723 /* Determine the size of stolen memory needed for GTT */
1724 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1725 if (gen > 6) {
1726 ggms_mb = 1 << ggms_mb;
1727 }
1728
1729 /*
1730 * Assume we have no GMS memory, but allow it to be overrided by device
1731 * option (experimental). The spec doesn't actually allow zero GMS when
1732 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1733 * so let's not waste VM memory for it.
1734 */
1735 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1736
1737 if (vdev->igd_gms) {
1738 if (vdev->igd_gms <= 0x10) {
1739 gms_mb = vdev->igd_gms * 32;
1740 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1741 } else {
1742 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1743 vdev->igd_gms = 0;
1744 }
1745 }
1746
1747 /*
1748 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1749 * must allocate a 1MB aligned reserved memory region below 4GB with
1750 * the requested size (in bytes) for use by the Intel PCI class VGA
1751 * device at VM address 00:02.0. The base address of this reserved
1752 * memory region must be written to the device BDSM regsiter at PCI
1753 * config offset 0x5C.
1754 */
1755 bdsm_size = g_malloc(sizeof(*bdsm_size));
1756 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1757 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1758 bdsm_size, sizeof(*bdsm_size));
1759
1760 /* GMCH is read-only, emulated */
1761 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1762 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1763 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1764
1765 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1766 pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1767 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1768 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1769
1770 /*
1771 * This IOBAR gives us access to GTTADR, which allows us to write to
1772 * the GTT itself. So let's go ahead and write zero to all the GTT
1773 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1774 * before talking to the device.
1775 */
1776 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1777 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1778 error_report("IGD device %s - failed to read PCI command register",
1779 vdev->vbasedev.name);
1780 }
1781
1782 cmd = cmd_orig | PCI_COMMAND_IO;
1783
1784 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1785 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1786 error_report("IGD device %s - failed to write PCI command register",
1787 vdev->vbasedev.name);
1788 }
1789
1790 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1791 vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1792 vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1793 }
1794
1795 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1796 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1797 error_report("IGD device %s - failed to restore PCI command register",
1798 vdev->vbasedev.name);
1799 }
1800
1801 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1802
1803 out:
1804 g_free(rom);
1805 g_free(opregion);
1806 g_free(host);
1807 g_free(lpc);
1808 }
1809
1810 /*
1811 * Common quirk probe entry points.
1812 */
1813 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1814 {
1815 vfio_vga_probe_ati_3c3_quirk(vdev);
1816 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1817 }
1818
1819 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1820 {
1821 VFIOQuirk *quirk;
1822 int i, j;
1823
1824 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1825 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1826 for (j = 0; j < quirk->nr_mem; j++) {
1827 memory_region_del_subregion(&vdev->vga->region[i].mem,
1828 &quirk->mem[j]);
1829 }
1830 }
1831 }
1832 }
1833
1834 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1835 {
1836 int i, j;
1837
1838 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1839 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1840 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1841 QLIST_REMOVE(quirk, next);
1842 for (j = 0; j < quirk->nr_mem; j++) {
1843 object_unparent(OBJECT(&quirk->mem[j]));
1844 }
1845 g_free(quirk->mem);
1846 g_free(quirk->data);
1847 g_free(quirk);
1848 }
1849 }
1850 }
1851
1852 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1853 {
1854 vfio_probe_ati_bar4_quirk(vdev, nr);
1855 vfio_probe_ati_bar2_quirk(vdev, nr);
1856 vfio_probe_nvidia_bar5_quirk(vdev, nr);
1857 vfio_probe_nvidia_bar0_quirk(vdev, nr);
1858 vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1859 vfio_probe_igd_bar4_quirk(vdev, nr);
1860 }
1861
1862 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1863 {
1864 VFIOBAR *bar = &vdev->bars[nr];
1865 VFIOQuirk *quirk;
1866 int i;
1867
1868 QLIST_FOREACH(quirk, &bar->quirks, next) {
1869 while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1870 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1871 }
1872
1873 for (i = 0; i < quirk->nr_mem; i++) {
1874 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1875 }
1876 }
1877 }
1878
1879 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1880 {
1881 VFIOBAR *bar = &vdev->bars[nr];
1882 int i;
1883
1884 while (!QLIST_EMPTY(&bar->quirks)) {
1885 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1886 QLIST_REMOVE(quirk, next);
1887 for (i = 0; i < quirk->nr_mem; i++) {
1888 object_unparent(OBJECT(&quirk->mem[i]));
1889 }
1890 g_free(quirk->mem);
1891 g_free(quirk->data);
1892 g_free(quirk);
1893 }
1894 }
1895
1896 /*
1897 * Reset quirks
1898 */
1899 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1900 {
1901 int i;
1902
1903 for (i = 0; i < PCI_ROM_SLOT; i++) {
1904 VFIOQuirk *quirk;
1905 VFIOBAR *bar = &vdev->bars[i];
1906
1907 QLIST_FOREACH(quirk, &bar->quirks, next) {
1908 if (quirk->reset) {
1909 quirk->reset(vdev, quirk);
1910 }
1911 }
1912 }
1913 }
1914
1915 /*
1916 * AMD Radeon PCI config reset, based on Linux:
1917 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1918 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1919 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1920 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1921 * IDs: include/drm/drm_pciids.h
1922 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1923 *
1924 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1925 * hardware that should be fixed on future ASICs. The symptom of this is that
1926 * once the accerlated driver loads, Windows guests will bsod on subsequent
1927 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1928 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1929 * reset. The PCI config reset only works if SMC firmware is running, so we
1930 * have a dependency on the state of the device as to whether this reset will
1931 * be effective. There are still cases where we won't be able to kick the
1932 * device into working, but this greatly improves the usability overall. The
1933 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1934 * poking is largely ASIC specific.
1935 */
1936 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1937 {
1938 uint32_t clk, pc_c;
1939
1940 /*
1941 * Registers 200h and 204h are index and data registers for accessing
1942 * indirect configuration registers within the device.
1943 */
1944 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1945 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1946 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1947 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1948
1949 return (!(clk & 1) && (0x20100 <= pc_c));
1950 }
1951
1952 /*
1953 * The scope of a config reset is controlled by a mode bit in the misc register
1954 * and a fuse, exposed as a bit in another register. The fuse is the default
1955 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1956 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1957 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1958 * to flip the value of the bit in the misc register.
1959 */
1960 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1961 {
1962 uint32_t misc, fuse;
1963 bool a, b;
1964
1965 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1966 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1967 b = fuse & 64;
1968
1969 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1970 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1971 a = misc & 2;
1972
1973 if (a == b) {
1974 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1975 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1976 }
1977 }
1978
1979 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1980 {
1981 PCIDevice *pdev = &vdev->pdev;
1982 int i, ret = 0;
1983 uint32_t data;
1984
1985 /* Defer to a kernel implemented reset */
1986 if (vdev->vbasedev.reset_works) {
1987 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1988 return -ENODEV;
1989 }
1990
1991 /* Enable only memory BAR access */
1992 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1993
1994 /* Reset only works if SMC firmware is loaded and running */
1995 if (!vfio_radeon_smc_is_running(vdev)) {
1996 ret = -EINVAL;
1997 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1998 goto out;
1999 }
2000
2001 /* Make sure only the GFX function is reset */
2002 vfio_radeon_set_gfx_only_reset(vdev);
2003
2004 /* AMD PCI config reset */
2005 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2006 usleep(100);
2007
2008 /* Read back the memory size to make sure we're out of reset */
2009 for (i = 0; i < 100000; i++) {
2010 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2011 goto reset_smc;
2012 }
2013 usleep(1);
2014 }
2015
2016 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2017
2018 reset_smc:
2019 /* Reset SMC */
2020 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2021 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2022 data |= 1;
2023 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2024
2025 /* Disable SMC clock */
2026 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2027 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2028 data |= 1;
2029 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2030
2031 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2032
2033 out:
2034 /* Restore PCI command register */
2035 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2036
2037 return ret;
2038 }
2039
2040 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2041 {
2042 switch (vdev->vendor_id) {
2043 case 0x1002:
2044 switch (vdev->device_id) {
2045 /* Bonaire */
2046 case 0x6649: /* Bonaire [FirePro W5100] */
2047 case 0x6650:
2048 case 0x6651:
2049 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2050 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2051 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2052 /* Hawaii */
2053 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2054 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2055 case 0x67A2:
2056 case 0x67A8:
2057 case 0x67A9:
2058 case 0x67AA:
2059 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2060 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2061 case 0x67B8:
2062 case 0x67B9:
2063 case 0x67BA:
2064 case 0x67BE:
2065 vdev->resetfn = vfio_radeon_reset;
2066 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2067 break;
2068 }
2069 break;
2070 }
2071 }
2072
2073 /*
2074 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2075 * devices as a member of a clique. Devices within the same clique ID
2076 * are capable of direct P2P. It's the user's responsibility that this
2077 * is correct. The spec says that this may reside at any unused config
2078 * offset, but reserves and recommends hypervisors place this at C8h.
2079 * The spec also states that the hypervisor should place this capability
2080 * at the end of the capability list, thus next is defined as 0h.
2081 *
2082 * +----------------+----------------+----------------+----------------+
2083 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
2084 * +----------------+----------------+----------------+----------------+
2085 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
2086 * +---------------------------------+---------------------------------+
2087 *
2088 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2089 */
2090 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2091 const char *name, void *opaque,
2092 Error **errp)
2093 {
2094 DeviceState *dev = DEVICE(obj);
2095 Property *prop = opaque;
2096 uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2097
2098 visit_type_uint8(v, name, ptr, errp);
2099 }
2100
2101 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2102 const char *name, void *opaque,
2103 Error **errp)
2104 {
2105 DeviceState *dev = DEVICE(obj);
2106 Property *prop = opaque;
2107 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2108 Error *local_err = NULL;
2109
2110 if (dev->realized) {
2111 qdev_prop_set_after_realize(dev, name, errp);
2112 return;
2113 }
2114
2115 visit_type_uint8(v, name, &value, &local_err);
2116 if (local_err) {
2117 error_propagate(errp, local_err);
2118 return;
2119 }
2120
2121 if (value & ~0xF) {
2122 error_setg(errp, "Property %s: valid range 0-15", name);
2123 return;
2124 }
2125
2126 *ptr = value;
2127 }
2128
2129 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2130 .name = "uint4",
2131 .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2132 .get = get_nv_gpudirect_clique_id,
2133 .set = set_nv_gpudirect_clique_id,
2134 };
2135
2136 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2137 {
2138 PCIDevice *pdev = &vdev->pdev;
2139 int ret, pos = 0xC8;
2140
2141 if (vdev->nv_gpudirect_clique == 0xFF) {
2142 return 0;
2143 }
2144
2145 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2146 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2147 return -EINVAL;
2148 }
2149
2150 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2151 PCI_BASE_CLASS_DISPLAY) {
2152 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2153 return -EINVAL;
2154 }
2155
2156 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2157 if (ret < 0) {
2158 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2159 return ret;
2160 }
2161
2162 memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2163 pos += PCI_CAP_FLAGS;
2164 pci_set_byte(pdev->config + pos++, 8);
2165 pci_set_byte(pdev->config + pos++, 'P');
2166 pci_set_byte(pdev->config + pos++, '2');
2167 pci_set_byte(pdev->config + pos++, 'P');
2168 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2169 pci_set_byte(pdev->config + pos, 0);
2170
2171 return 0;
2172 }
2173
2174 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2175 {
2176 int ret;
2177
2178 ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2179 if (ret) {
2180 return ret;
2181 }
2182
2183 return 0;
2184 }
2185
2186 static void vfio_pci_nvlink2_get_tgt(Object *obj, Visitor *v,
2187 const char *name,
2188 void *opaque, Error **errp)
2189 {
2190 uint64_t tgt = (uintptr_t) opaque;
2191 visit_type_uint64(v, name, &tgt, errp);
2192 }
2193
2194 static void vfio_pci_nvlink2_get_link_speed(Object *obj, Visitor *v,
2195 const char *name,
2196 void *opaque, Error **errp)
2197 {
2198 uint32_t link_speed = (uint32_t)(uintptr_t) opaque;
2199 visit_type_uint32(v, name, &link_speed, errp);
2200 }
2201
2202 int vfio_pci_nvidia_v100_ram_init(VFIOPCIDevice *vdev, Error **errp)
2203 {
2204 int ret;
2205 void *p;
2206 struct vfio_region_info *nv2reg = NULL;
2207 struct vfio_info_cap_header *hdr;
2208 struct vfio_region_info_cap_nvlink2_ssatgt *cap;
2209 VFIOQuirk *quirk;
2210
2211 ret = vfio_get_dev_region_info(&vdev->vbasedev,
2212 VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
2213 PCI_VENDOR_ID_NVIDIA,
2214 VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM,
2215 &nv2reg);
2216 if (ret) {
2217 return ret;
2218 }
2219
2220 hdr = vfio_get_region_info_cap(nv2reg, VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
2221 if (!hdr) {
2222 ret = -ENODEV;
2223 goto free_exit;
2224 }
2225 cap = (void *) hdr;
2226
2227 p = mmap(NULL, nv2reg->size, PROT_READ | PROT_WRITE | PROT_EXEC,
2228 MAP_SHARED, vdev->vbasedev.fd, nv2reg->offset);
2229 if (p == MAP_FAILED) {
2230 ret = -errno;
2231 goto free_exit;
2232 }
2233
2234 quirk = vfio_quirk_alloc(1);
2235 memory_region_init_ram_ptr(&quirk->mem[0], OBJECT(vdev), "nvlink2-mr",
2236 nv2reg->size, p);
2237 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
2238
2239 object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64",
2240 vfio_pci_nvlink2_get_tgt, NULL, NULL,
2241 (void *) (uintptr_t) cap->tgt, NULL);
2242 trace_vfio_pci_nvidia_gpu_setup_quirk(vdev->vbasedev.name, cap->tgt,
2243 nv2reg->size);
2244 free_exit:
2245 g_free(nv2reg);
2246
2247 return ret;
2248 }
2249
2250 int vfio_pci_nvlink2_init(VFIOPCIDevice *vdev, Error **errp)
2251 {
2252 int ret;
2253 void *p;
2254 struct vfio_region_info *atsdreg = NULL;
2255 struct vfio_info_cap_header *hdr;
2256 struct vfio_region_info_cap_nvlink2_ssatgt *captgt;
2257 struct vfio_region_info_cap_nvlink2_lnkspd *capspeed;
2258 VFIOQuirk *quirk;
2259
2260 ret = vfio_get_dev_region_info(&vdev->vbasedev,
2261 VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
2262 PCI_VENDOR_ID_IBM,
2263 VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD,
2264 &atsdreg);
2265 if (ret) {
2266 return ret;
2267 }
2268
2269 hdr = vfio_get_region_info_cap(atsdreg,
2270 VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
2271 if (!hdr) {
2272 ret = -ENODEV;
2273 goto free_exit;
2274 }
2275 captgt = (void *) hdr;
2276
2277 hdr = vfio_get_region_info_cap(atsdreg,
2278 VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD);
2279 if (!hdr) {
2280 ret = -ENODEV;
2281 goto free_exit;
2282 }
2283 capspeed = (void *) hdr;
2284
2285 /* Some NVLink bridges may not have assigned ATSD */
2286 if (atsdreg->size) {
2287 p = mmap(NULL, atsdreg->size, PROT_READ | PROT_WRITE | PROT_EXEC,
2288 MAP_SHARED, vdev->vbasedev.fd, atsdreg->offset);
2289 if (p == MAP_FAILED) {
2290 ret = -errno;
2291 goto free_exit;
2292 }
2293
2294 quirk = vfio_quirk_alloc(1);
2295 memory_region_init_ram_device_ptr(&quirk->mem[0], OBJECT(vdev),
2296 "nvlink2-atsd-mr", atsdreg->size, p);
2297 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
2298 }
2299
2300 object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64",
2301 vfio_pci_nvlink2_get_tgt, NULL, NULL,
2302 (void *) (uintptr_t) captgt->tgt, NULL);
2303 trace_vfio_pci_nvlink2_setup_quirk_ssatgt(vdev->vbasedev.name, captgt->tgt,
2304 atsdreg->size);
2305
2306 object_property_add(OBJECT(vdev), "nvlink2-link-speed", "uint32",
2307 vfio_pci_nvlink2_get_link_speed, NULL, NULL,
2308 (void *) (uintptr_t) capspeed->link_speed, NULL);
2309 trace_vfio_pci_nvlink2_setup_quirk_lnkspd(vdev->vbasedev.name,
2310 capspeed->link_speed);
2311 free_exit:
2312 g_free(atsdreg);
2313
2314 return ret;
2315 }