]> git.proxmox.com Git - mirror_qemu.git/blob - hw/vfio/pci-quirks.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190816' into...
[mirror_qemu.git] / hw / vfio / pci-quirks.c
1 /*
2 * device quirks for PCI devices
3 *
4 * Copyright Red Hat, Inc. 2012-2015
5 *
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qemu/units.h"
15 #include "qemu/error-report.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/module.h"
18 #include "qemu/range.h"
19 #include "qapi/error.h"
20 #include "qapi/visitor.h"
21 #include <sys/ioctl.h>
22 #include "hw/hw.h"
23 #include "hw/nvram/fw_cfg.h"
24 #include "hw/qdev-properties.h"
25 #include "pci.h"
26 #include "trace.h"
27
28 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
29 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
30 {
31 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
32 (device == PCI_ANY_ID || device == vdev->device_id);
33 }
34
35 static bool vfio_is_vga(VFIOPCIDevice *vdev)
36 {
37 PCIDevice *pdev = &vdev->pdev;
38 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
39
40 return class == PCI_CLASS_DISPLAY_VGA;
41 }
42
43 /*
44 * List of device ids/vendor ids for which to disable
45 * option rom loading. This avoids the guest hangs during rom
46 * execution as noticed with the BCM 57810 card for lack of a
47 * more better way to handle such issues.
48 * The user can still override by specifying a romfile or
49 * rombar=1.
50 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
51 * for an analysis of the 57810 card hang. When adding
52 * a new vendor id/device id combination below, please also add
53 * your card/environment details and information that could
54 * help in debugging to the bug tracking this issue
55 */
56 static const struct {
57 uint32_t vendor;
58 uint32_t device;
59 } romblacklist[] = {
60 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
61 };
62
63 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
64 {
65 int i;
66
67 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
68 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
69 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
70 romblacklist[i].vendor,
71 romblacklist[i].device);
72 return true;
73 }
74 }
75 return false;
76 }
77
78 /*
79 * Device specific region quirks (mostly backdoors to PCI config space)
80 */
81
82 /*
83 * The generic window quirks operate on an address and data register,
84 * vfio_generic_window_address_quirk handles the address register and
85 * vfio_generic_window_data_quirk handles the data register. These ops
86 * pass reads and writes through to hardware until a value matching the
87 * stored address match/mask is written. When this occurs, the data
88 * register access emulated PCI config space for the device rather than
89 * passing through accesses. This enables devices where PCI config space
90 * is accessible behind a window register to maintain the virtualization
91 * provided through vfio.
92 */
93 typedef struct VFIOConfigWindowMatch {
94 uint32_t match;
95 uint32_t mask;
96 } VFIOConfigWindowMatch;
97
98 typedef struct VFIOConfigWindowQuirk {
99 struct VFIOPCIDevice *vdev;
100
101 uint32_t address_val;
102
103 uint32_t address_offset;
104 uint32_t data_offset;
105
106 bool window_enabled;
107 uint8_t bar;
108
109 MemoryRegion *addr_mem;
110 MemoryRegion *data_mem;
111
112 uint32_t nr_matches;
113 VFIOConfigWindowMatch matches[];
114 } VFIOConfigWindowQuirk;
115
116 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
117 hwaddr addr,
118 unsigned size)
119 {
120 VFIOConfigWindowQuirk *window = opaque;
121 VFIOPCIDevice *vdev = window->vdev;
122
123 return vfio_region_read(&vdev->bars[window->bar].region,
124 addr + window->address_offset, size);
125 }
126
127 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
128 uint64_t data,
129 unsigned size)
130 {
131 VFIOConfigWindowQuirk *window = opaque;
132 VFIOPCIDevice *vdev = window->vdev;
133 int i;
134
135 window->window_enabled = false;
136
137 vfio_region_write(&vdev->bars[window->bar].region,
138 addr + window->address_offset, data, size);
139
140 for (i = 0; i < window->nr_matches; i++) {
141 if ((data & ~window->matches[i].mask) == window->matches[i].match) {
142 window->window_enabled = true;
143 window->address_val = data & window->matches[i].mask;
144 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
145 memory_region_name(window->addr_mem), data);
146 break;
147 }
148 }
149 }
150
151 static const MemoryRegionOps vfio_generic_window_address_quirk = {
152 .read = vfio_generic_window_quirk_address_read,
153 .write = vfio_generic_window_quirk_address_write,
154 .endianness = DEVICE_LITTLE_ENDIAN,
155 };
156
157 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
158 hwaddr addr, unsigned size)
159 {
160 VFIOConfigWindowQuirk *window = opaque;
161 VFIOPCIDevice *vdev = window->vdev;
162 uint64_t data;
163
164 /* Always read data reg, discard if window enabled */
165 data = vfio_region_read(&vdev->bars[window->bar].region,
166 addr + window->data_offset, size);
167
168 if (window->window_enabled) {
169 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
170 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
171 memory_region_name(window->data_mem), data);
172 }
173
174 return data;
175 }
176
177 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
178 uint64_t data, unsigned size)
179 {
180 VFIOConfigWindowQuirk *window = opaque;
181 VFIOPCIDevice *vdev = window->vdev;
182
183 if (window->window_enabled) {
184 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
185 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
186 memory_region_name(window->data_mem), data);
187 return;
188 }
189
190 vfio_region_write(&vdev->bars[window->bar].region,
191 addr + window->data_offset, data, size);
192 }
193
194 static const MemoryRegionOps vfio_generic_window_data_quirk = {
195 .read = vfio_generic_window_quirk_data_read,
196 .write = vfio_generic_window_quirk_data_write,
197 .endianness = DEVICE_LITTLE_ENDIAN,
198 };
199
200 /*
201 * The generic mirror quirk handles devices which expose PCI config space
202 * through a region within a BAR. When enabled, reads and writes are
203 * redirected through to emulated PCI config space. XXX if PCI config space
204 * used memory regions, this could just be an alias.
205 */
206 typedef struct VFIOConfigMirrorQuirk {
207 struct VFIOPCIDevice *vdev;
208 uint32_t offset;
209 uint8_t bar;
210 MemoryRegion *mem;
211 uint8_t data[];
212 } VFIOConfigMirrorQuirk;
213
214 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
215 hwaddr addr, unsigned size)
216 {
217 VFIOConfigMirrorQuirk *mirror = opaque;
218 VFIOPCIDevice *vdev = mirror->vdev;
219 uint64_t data;
220
221 /* Read and discard in case the hardware cares */
222 (void)vfio_region_read(&vdev->bars[mirror->bar].region,
223 addr + mirror->offset, size);
224
225 data = vfio_pci_read_config(&vdev->pdev, addr, size);
226 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
227 memory_region_name(mirror->mem),
228 addr, data);
229 return data;
230 }
231
232 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
233 uint64_t data, unsigned size)
234 {
235 VFIOConfigMirrorQuirk *mirror = opaque;
236 VFIOPCIDevice *vdev = mirror->vdev;
237
238 vfio_pci_write_config(&vdev->pdev, addr, data, size);
239 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
240 memory_region_name(mirror->mem),
241 addr, data);
242 }
243
244 static const MemoryRegionOps vfio_generic_mirror_quirk = {
245 .read = vfio_generic_quirk_mirror_read,
246 .write = vfio_generic_quirk_mirror_write,
247 .endianness = DEVICE_LITTLE_ENDIAN,
248 };
249
250 /* Is range1 fully contained within range2? */
251 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
252 uint64_t first2, uint64_t len2) {
253 return (first1 >= first2 && first1 + len1 <= first2 + len2);
254 }
255
256 #define PCI_VENDOR_ID_ATI 0x1002
257
258 /*
259 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
260 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
261 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
262 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
263 * I/O port BAR address. Originally this was coded to return the virtual BAR
264 * address only if the physical register read returns the actual BAR address,
265 * but users have reported greater success if we return the virtual address
266 * unconditionally.
267 */
268 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
269 hwaddr addr, unsigned size)
270 {
271 VFIOPCIDevice *vdev = opaque;
272 uint64_t data = vfio_pci_read_config(&vdev->pdev,
273 PCI_BASE_ADDRESS_4 + 1, size);
274
275 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
276
277 return data;
278 }
279
280 static const MemoryRegionOps vfio_ati_3c3_quirk = {
281 .read = vfio_ati_3c3_quirk_read,
282 .endianness = DEVICE_LITTLE_ENDIAN,
283 };
284
285 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
286 {
287 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
288 QLIST_INIT(&quirk->ioeventfds);
289 quirk->mem = g_new0(MemoryRegion, nr_mem);
290 quirk->nr_mem = nr_mem;
291
292 return quirk;
293 }
294
295 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
296 {
297 QLIST_REMOVE(ioeventfd, next);
298 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
299 true, ioeventfd->data, &ioeventfd->e);
300
301 if (ioeventfd->vfio) {
302 struct vfio_device_ioeventfd vfio_ioeventfd;
303
304 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
305 vfio_ioeventfd.flags = ioeventfd->size;
306 vfio_ioeventfd.data = ioeventfd->data;
307 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
308 ioeventfd->region_addr;
309 vfio_ioeventfd.fd = -1;
310
311 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
312 error_report("Failed to remove vfio ioeventfd for %s+0x%"
313 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
314 memory_region_name(ioeventfd->mr), ioeventfd->addr,
315 ioeventfd->size, ioeventfd->data);
316 }
317 } else {
318 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
319 NULL, NULL, NULL);
320 }
321
322 event_notifier_cleanup(&ioeventfd->e);
323 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
324 (uint64_t)ioeventfd->addr, ioeventfd->size,
325 ioeventfd->data);
326 g_free(ioeventfd);
327 }
328
329 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
330 {
331 VFIOIOEventFD *ioeventfd, *tmp;
332
333 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
334 if (ioeventfd->dynamic) {
335 vfio_ioeventfd_exit(vdev, ioeventfd);
336 }
337 }
338 }
339
340 static void vfio_ioeventfd_handler(void *opaque)
341 {
342 VFIOIOEventFD *ioeventfd = opaque;
343
344 if (event_notifier_test_and_clear(&ioeventfd->e)) {
345 vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
346 ioeventfd->data, ioeventfd->size);
347 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
348 (uint64_t)ioeventfd->addr, ioeventfd->size,
349 ioeventfd->data);
350 }
351 }
352
353 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
354 MemoryRegion *mr, hwaddr addr,
355 unsigned size, uint64_t data,
356 VFIORegion *region,
357 hwaddr region_addr, bool dynamic)
358 {
359 VFIOIOEventFD *ioeventfd;
360
361 if (vdev->no_kvm_ioeventfd) {
362 return NULL;
363 }
364
365 ioeventfd = g_malloc0(sizeof(*ioeventfd));
366
367 if (event_notifier_init(&ioeventfd->e, 0)) {
368 g_free(ioeventfd);
369 return NULL;
370 }
371
372 /*
373 * MemoryRegion and relative offset, plus additional ioeventfd setup
374 * parameters for configuring and later tearing down KVM ioeventfd.
375 */
376 ioeventfd->mr = mr;
377 ioeventfd->addr = addr;
378 ioeventfd->size = size;
379 ioeventfd->data = data;
380 ioeventfd->dynamic = dynamic;
381 /*
382 * VFIORegion and relative offset for implementing the userspace
383 * handler. data & size fields shared for both uses.
384 */
385 ioeventfd->region = region;
386 ioeventfd->region_addr = region_addr;
387
388 if (!vdev->no_vfio_ioeventfd) {
389 struct vfio_device_ioeventfd vfio_ioeventfd;
390
391 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
392 vfio_ioeventfd.flags = ioeventfd->size;
393 vfio_ioeventfd.data = ioeventfd->data;
394 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
395 ioeventfd->region_addr;
396 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
397
398 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
399 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
400 }
401
402 if (!ioeventfd->vfio) {
403 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
404 vfio_ioeventfd_handler, NULL, ioeventfd);
405 }
406
407 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
408 true, ioeventfd->data, &ioeventfd->e);
409 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
410 size, data, ioeventfd->vfio);
411
412 return ioeventfd;
413 }
414
415 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
416 {
417 VFIOQuirk *quirk;
418
419 /*
420 * As long as the BAR is >= 256 bytes it will be aligned such that the
421 * lower byte is always zero. Filter out anything else, if it exists.
422 */
423 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
424 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
425 return;
426 }
427
428 quirk = vfio_quirk_alloc(1);
429
430 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
431 "vfio-ati-3c3-quirk", 1);
432 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
433 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
434
435 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
436 quirk, next);
437
438 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
439 }
440
441 /*
442 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
443 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
444 * the MMIO space directly, but a window to this space is provided through
445 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
446 * data register. When the address is programmed to a range of 0x4000-0x4fff
447 * PCI configuration space is available. Experimentation seems to indicate
448 * that read-only may be provided by hardware.
449 */
450 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
451 {
452 VFIOQuirk *quirk;
453 VFIOConfigWindowQuirk *window;
454
455 /* This windows doesn't seem to be used except by legacy VGA code */
456 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
457 !vdev->vga || nr != 4) {
458 return;
459 }
460
461 quirk = vfio_quirk_alloc(2);
462 window = quirk->data = g_malloc0(sizeof(*window) +
463 sizeof(VFIOConfigWindowMatch));
464 window->vdev = vdev;
465 window->address_offset = 0;
466 window->data_offset = 4;
467 window->nr_matches = 1;
468 window->matches[0].match = 0x4000;
469 window->matches[0].mask = vdev->config_size - 1;
470 window->bar = nr;
471 window->addr_mem = &quirk->mem[0];
472 window->data_mem = &quirk->mem[1];
473
474 memory_region_init_io(window->addr_mem, OBJECT(vdev),
475 &vfio_generic_window_address_quirk, window,
476 "vfio-ati-bar4-window-address-quirk", 4);
477 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
478 window->address_offset,
479 window->addr_mem, 1);
480
481 memory_region_init_io(window->data_mem, OBJECT(vdev),
482 &vfio_generic_window_data_quirk, window,
483 "vfio-ati-bar4-window-data-quirk", 4);
484 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
485 window->data_offset,
486 window->data_mem, 1);
487
488 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
489
490 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
491 }
492
493 /*
494 * Trap the BAR2 MMIO mirror to config space as well.
495 */
496 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
497 {
498 VFIOQuirk *quirk;
499 VFIOConfigMirrorQuirk *mirror;
500
501 /* Only enable on newer devices where BAR2 is 64bit */
502 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
503 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
504 return;
505 }
506
507 quirk = vfio_quirk_alloc(1);
508 mirror = quirk->data = g_malloc0(sizeof(*mirror));
509 mirror->mem = quirk->mem;
510 mirror->vdev = vdev;
511 mirror->offset = 0x4000;
512 mirror->bar = nr;
513
514 memory_region_init_io(mirror->mem, OBJECT(vdev),
515 &vfio_generic_mirror_quirk, mirror,
516 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
517 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
518 mirror->offset, mirror->mem, 1);
519
520 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
521
522 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
523 }
524
525 /*
526 * Older ATI/AMD cards like the X550 have a similar window to that above.
527 * I/O port BAR1 provides a window to a mirror of PCI config space located
528 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
529 * note it for future reference.
530 */
531
532 /*
533 * Nvidia has several different methods to get to config space, the
534 * nouveu project has several of these documented here:
535 * https://github.com/pathscale/envytools/tree/master/hwdocs
536 *
537 * The first quirk is actually not documented in envytools and is found
538 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
539 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
540 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
541 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
542 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
543 * is written for a write to 0x3d4. The BAR0 offset is then accessible
544 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
545 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
546 */
547 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
548 static const char *nv3d0_states[] = { "NONE", "SELECT",
549 "WINDOW", "READ", "WRITE" };
550
551 typedef struct VFIONvidia3d0Quirk {
552 VFIOPCIDevice *vdev;
553 VFIONvidia3d0State state;
554 uint32_t offset;
555 } VFIONvidia3d0Quirk;
556
557 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
558 hwaddr addr, unsigned size)
559 {
560 VFIONvidia3d0Quirk *quirk = opaque;
561 VFIOPCIDevice *vdev = quirk->vdev;
562
563 quirk->state = NONE;
564
565 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
566 addr + 0x14, size);
567 }
568
569 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
570 uint64_t data, unsigned size)
571 {
572 VFIONvidia3d0Quirk *quirk = opaque;
573 VFIOPCIDevice *vdev = quirk->vdev;
574 VFIONvidia3d0State old_state = quirk->state;
575
576 quirk->state = NONE;
577
578 switch (data) {
579 case 0x338:
580 if (old_state == NONE) {
581 quirk->state = SELECT;
582 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
583 nv3d0_states[quirk->state]);
584 }
585 break;
586 case 0x538:
587 if (old_state == WINDOW) {
588 quirk->state = READ;
589 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
590 nv3d0_states[quirk->state]);
591 }
592 break;
593 case 0x738:
594 if (old_state == WINDOW) {
595 quirk->state = WRITE;
596 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
597 nv3d0_states[quirk->state]);
598 }
599 break;
600 }
601
602 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
603 addr + 0x14, data, size);
604 }
605
606 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
607 .read = vfio_nvidia_3d4_quirk_read,
608 .write = vfio_nvidia_3d4_quirk_write,
609 .endianness = DEVICE_LITTLE_ENDIAN,
610 };
611
612 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
613 hwaddr addr, unsigned size)
614 {
615 VFIONvidia3d0Quirk *quirk = opaque;
616 VFIOPCIDevice *vdev = quirk->vdev;
617 VFIONvidia3d0State old_state = quirk->state;
618 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
619 addr + 0x10, size);
620
621 quirk->state = NONE;
622
623 if (old_state == READ &&
624 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
625 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
626
627 data = vfio_pci_read_config(&vdev->pdev, offset, size);
628 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
629 offset, size, data);
630 }
631
632 return data;
633 }
634
635 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
636 uint64_t data, unsigned size)
637 {
638 VFIONvidia3d0Quirk *quirk = opaque;
639 VFIOPCIDevice *vdev = quirk->vdev;
640 VFIONvidia3d0State old_state = quirk->state;
641
642 quirk->state = NONE;
643
644 if (old_state == SELECT) {
645 quirk->offset = (uint32_t)data;
646 quirk->state = WINDOW;
647 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
648 nv3d0_states[quirk->state]);
649 } else if (old_state == WRITE) {
650 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
651 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
652
653 vfio_pci_write_config(&vdev->pdev, offset, data, size);
654 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
655 offset, data, size);
656 return;
657 }
658 }
659
660 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
661 addr + 0x10, data, size);
662 }
663
664 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
665 .read = vfio_nvidia_3d0_quirk_read,
666 .write = vfio_nvidia_3d0_quirk_write,
667 .endianness = DEVICE_LITTLE_ENDIAN,
668 };
669
670 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
671 {
672 VFIOQuirk *quirk;
673 VFIONvidia3d0Quirk *data;
674
675 if (vdev->no_geforce_quirks ||
676 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
677 !vdev->bars[1].region.size) {
678 return;
679 }
680
681 quirk = vfio_quirk_alloc(2);
682 quirk->data = data = g_malloc0(sizeof(*data));
683 data->vdev = vdev;
684
685 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
686 data, "vfio-nvidia-3d4-quirk", 2);
687 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
688 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
689
690 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
691 data, "vfio-nvidia-3d0-quirk", 2);
692 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
693 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
694
695 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
696 quirk, next);
697
698 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
699 }
700
701 /*
702 * The second quirk is documented in envytools. The I/O port BAR5 is just
703 * a set of address/data ports to the MMIO BARs. The BAR we care about is
704 * again BAR0. This backdoor is apparently a bit newer than the one above
705 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
706 * space, including extended space is available at the 4k @0x88000.
707 */
708 typedef struct VFIONvidiaBAR5Quirk {
709 uint32_t master;
710 uint32_t enable;
711 MemoryRegion *addr_mem;
712 MemoryRegion *data_mem;
713 bool enabled;
714 VFIOConfigWindowQuirk window; /* last for match data */
715 } VFIONvidiaBAR5Quirk;
716
717 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
718 {
719 VFIOPCIDevice *vdev = bar5->window.vdev;
720
721 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
722 return;
723 }
724
725 bar5->enabled = !bar5->enabled;
726 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
727 bar5->enabled ? "Enable" : "Disable");
728 memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
729 memory_region_set_enabled(bar5->data_mem, bar5->enabled);
730 }
731
732 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
733 hwaddr addr, unsigned size)
734 {
735 VFIONvidiaBAR5Quirk *bar5 = opaque;
736 VFIOPCIDevice *vdev = bar5->window.vdev;
737
738 return vfio_region_read(&vdev->bars[5].region, addr, size);
739 }
740
741 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
742 uint64_t data, unsigned size)
743 {
744 VFIONvidiaBAR5Quirk *bar5 = opaque;
745 VFIOPCIDevice *vdev = bar5->window.vdev;
746
747 vfio_region_write(&vdev->bars[5].region, addr, data, size);
748
749 bar5->master = data;
750 vfio_nvidia_bar5_enable(bar5);
751 }
752
753 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
754 .read = vfio_nvidia_bar5_quirk_master_read,
755 .write = vfio_nvidia_bar5_quirk_master_write,
756 .endianness = DEVICE_LITTLE_ENDIAN,
757 };
758
759 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
760 hwaddr addr, unsigned size)
761 {
762 VFIONvidiaBAR5Quirk *bar5 = opaque;
763 VFIOPCIDevice *vdev = bar5->window.vdev;
764
765 return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
766 }
767
768 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
769 uint64_t data, unsigned size)
770 {
771 VFIONvidiaBAR5Quirk *bar5 = opaque;
772 VFIOPCIDevice *vdev = bar5->window.vdev;
773
774 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
775
776 bar5->enable = data;
777 vfio_nvidia_bar5_enable(bar5);
778 }
779
780 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
781 .read = vfio_nvidia_bar5_quirk_enable_read,
782 .write = vfio_nvidia_bar5_quirk_enable_write,
783 .endianness = DEVICE_LITTLE_ENDIAN,
784 };
785
786 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
787 {
788 VFIOQuirk *quirk;
789 VFIONvidiaBAR5Quirk *bar5;
790 VFIOConfigWindowQuirk *window;
791
792 if (vdev->no_geforce_quirks ||
793 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
794 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
795 return;
796 }
797
798 quirk = vfio_quirk_alloc(4);
799 bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
800 (sizeof(VFIOConfigWindowMatch) * 2));
801 window = &bar5->window;
802
803 window->vdev = vdev;
804 window->address_offset = 0x8;
805 window->data_offset = 0xc;
806 window->nr_matches = 2;
807 window->matches[0].match = 0x1800;
808 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
809 window->matches[1].match = 0x88000;
810 window->matches[1].mask = vdev->config_size - 1;
811 window->bar = nr;
812 window->addr_mem = bar5->addr_mem = &quirk->mem[0];
813 window->data_mem = bar5->data_mem = &quirk->mem[1];
814
815 memory_region_init_io(window->addr_mem, OBJECT(vdev),
816 &vfio_generic_window_address_quirk, window,
817 "vfio-nvidia-bar5-window-address-quirk", 4);
818 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
819 window->address_offset,
820 window->addr_mem, 1);
821 memory_region_set_enabled(window->addr_mem, false);
822
823 memory_region_init_io(window->data_mem, OBJECT(vdev),
824 &vfio_generic_window_data_quirk, window,
825 "vfio-nvidia-bar5-window-data-quirk", 4);
826 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
827 window->data_offset,
828 window->data_mem, 1);
829 memory_region_set_enabled(window->data_mem, false);
830
831 memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
832 &vfio_nvidia_bar5_quirk_master, bar5,
833 "vfio-nvidia-bar5-master-quirk", 4);
834 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
835 0, &quirk->mem[2], 1);
836
837 memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
838 &vfio_nvidia_bar5_quirk_enable, bar5,
839 "vfio-nvidia-bar5-enable-quirk", 4);
840 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
841 4, &quirk->mem[3], 1);
842
843 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
844
845 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
846 }
847
848 typedef struct LastDataSet {
849 VFIOQuirk *quirk;
850 hwaddr addr;
851 uint64_t data;
852 unsigned size;
853 int hits;
854 int added;
855 } LastDataSet;
856
857 #define MAX_DYN_IOEVENTFD 10
858 #define HITS_FOR_IOEVENTFD 10
859
860 /*
861 * Finally, BAR0 itself. We want to redirect any accesses to either
862 * 0x1800 or 0x88000 through the PCI config space access functions.
863 */
864 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
865 uint64_t data, unsigned size)
866 {
867 VFIOConfigMirrorQuirk *mirror = opaque;
868 VFIOPCIDevice *vdev = mirror->vdev;
869 PCIDevice *pdev = &vdev->pdev;
870 LastDataSet *last = (LastDataSet *)&mirror->data;
871
872 vfio_generic_quirk_mirror_write(opaque, addr, data, size);
873
874 /*
875 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
876 * MSI capability ID register. Both the ID and next register are
877 * read-only, so we allow writes covering either of those to real hw.
878 */
879 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
880 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
881 vfio_region_write(&vdev->bars[mirror->bar].region,
882 addr + mirror->offset, data, size);
883 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
884 }
885
886 /*
887 * Automatically add an ioeventfd to handle any repeated write with the
888 * same data and size above the standard PCI config space header. This is
889 * primarily expected to accelerate the MSI-ACK behavior, such as noted
890 * above. Current hardware/drivers should trigger an ioeventfd at config
891 * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
892 *
893 * The criteria of 10 successive hits is arbitrary but reliably adds the
894 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd,
895 * the remaining ones have a greater chance of being seen successively.
896 * To avoid the pathological case of burning up all of QEMU's open file
897 * handles, arbitrarily limit this algorithm from adding no more than 10
898 * ioeventfds, print an error if we would have added an 11th, and then
899 * stop counting.
900 */
901 if (!vdev->no_kvm_ioeventfd &&
902 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
903 if (addr != last->addr || data != last->data || size != last->size) {
904 last->addr = addr;
905 last->data = data;
906 last->size = size;
907 last->hits = 1;
908 } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
909 if (last->added < MAX_DYN_IOEVENTFD) {
910 VFIOIOEventFD *ioeventfd;
911 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
912 data, &vdev->bars[mirror->bar].region,
913 mirror->offset + addr, true);
914 if (ioeventfd) {
915 VFIOQuirk *quirk = last->quirk;
916
917 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
918 last->added++;
919 }
920 } else {
921 last->added++;
922 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
923 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
924 "size %u", vdev->vbasedev.name, addr, data, size);
925 }
926 }
927 }
928 }
929
930 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
931 .read = vfio_generic_quirk_mirror_read,
932 .write = vfio_nvidia_quirk_mirror_write,
933 .endianness = DEVICE_LITTLE_ENDIAN,
934 };
935
936 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
937 {
938 VFIOConfigMirrorQuirk *mirror = quirk->data;
939 LastDataSet *last = (LastDataSet *)&mirror->data;
940
941 last->addr = last->data = last->size = last->hits = last->added = 0;
942
943 vfio_drop_dynamic_eventfds(vdev, quirk);
944 }
945
946 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
947 {
948 VFIOQuirk *quirk;
949 VFIOConfigMirrorQuirk *mirror;
950 LastDataSet *last;
951
952 if (vdev->no_geforce_quirks ||
953 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
954 !vfio_is_vga(vdev) || nr != 0) {
955 return;
956 }
957
958 quirk = vfio_quirk_alloc(1);
959 quirk->reset = vfio_nvidia_bar0_quirk_reset;
960 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
961 mirror->mem = quirk->mem;
962 mirror->vdev = vdev;
963 mirror->offset = 0x88000;
964 mirror->bar = nr;
965 last = (LastDataSet *)&mirror->data;
966 last->quirk = quirk;
967
968 memory_region_init_io(mirror->mem, OBJECT(vdev),
969 &vfio_nvidia_mirror_quirk, mirror,
970 "vfio-nvidia-bar0-88000-mirror-quirk",
971 vdev->config_size);
972 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
973 mirror->offset, mirror->mem, 1);
974
975 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
976
977 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
978 if (vdev->vga) {
979 quirk = vfio_quirk_alloc(1);
980 quirk->reset = vfio_nvidia_bar0_quirk_reset;
981 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
982 mirror->mem = quirk->mem;
983 mirror->vdev = vdev;
984 mirror->offset = 0x1800;
985 mirror->bar = nr;
986 last = (LastDataSet *)&mirror->data;
987 last->quirk = quirk;
988
989 memory_region_init_io(mirror->mem, OBJECT(vdev),
990 &vfio_nvidia_mirror_quirk, mirror,
991 "vfio-nvidia-bar0-1800-mirror-quirk",
992 PCI_CONFIG_SPACE_SIZE);
993 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
994 mirror->offset, mirror->mem, 1);
995
996 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
997 }
998
999 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
1000 }
1001
1002 /*
1003 * TODO - Some Nvidia devices provide config access to their companion HDA
1004 * device and even to their parent bridge via these config space mirrors.
1005 * Add quirks for those regions.
1006 */
1007
1008 #define PCI_VENDOR_ID_REALTEK 0x10ec
1009
1010 /*
1011 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1012 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1013 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1014 * when the "type" portion of the address register is set to 0x1. This appears
1015 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1016 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1017 * ignore because the MSI-X table should always be accessed as a dword (full
1018 * mask). Bits 0:11 is offset within the type.
1019 *
1020 * Example trace:
1021 *
1022 * Read from MSI-X table offset 0
1023 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1025 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1026 *
1027 * Write 0xfee00000 to MSI-X table offset 0
1028 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1029 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1030 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1031 */
1032 typedef struct VFIOrtl8168Quirk {
1033 VFIOPCIDevice *vdev;
1034 uint32_t addr;
1035 uint32_t data;
1036 bool enabled;
1037 } VFIOrtl8168Quirk;
1038
1039 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1040 hwaddr addr, unsigned size)
1041 {
1042 VFIOrtl8168Quirk *rtl = opaque;
1043 VFIOPCIDevice *vdev = rtl->vdev;
1044 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1045
1046 if (rtl->enabled) {
1047 data = rtl->addr ^ 0x80000000U; /* latch/complete */
1048 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1049 }
1050
1051 return data;
1052 }
1053
1054 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1055 uint64_t data, unsigned size)
1056 {
1057 VFIOrtl8168Quirk *rtl = opaque;
1058 VFIOPCIDevice *vdev = rtl->vdev;
1059
1060 rtl->enabled = false;
1061
1062 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1063 rtl->enabled = true;
1064 rtl->addr = (uint32_t)data;
1065
1066 if (data & 0x80000000U) { /* Do write */
1067 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1068 hwaddr offset = data & 0xfff;
1069 uint64_t val = rtl->data;
1070
1071 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1072 (uint16_t)offset, val);
1073
1074 /* Write to the proper guest MSI-X table instead */
1075 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1076 offset, val, size,
1077 MEMTXATTRS_UNSPECIFIED);
1078 }
1079 return; /* Do not write guest MSI-X data to hardware */
1080 }
1081 }
1082
1083 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1084 }
1085
1086 static const MemoryRegionOps vfio_rtl_address_quirk = {
1087 .read = vfio_rtl8168_quirk_address_read,
1088 .write = vfio_rtl8168_quirk_address_write,
1089 .valid = {
1090 .min_access_size = 4,
1091 .max_access_size = 4,
1092 .unaligned = false,
1093 },
1094 .endianness = DEVICE_LITTLE_ENDIAN,
1095 };
1096
1097 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1098 hwaddr addr, unsigned size)
1099 {
1100 VFIOrtl8168Quirk *rtl = opaque;
1101 VFIOPCIDevice *vdev = rtl->vdev;
1102 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1103
1104 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1105 hwaddr offset = rtl->addr & 0xfff;
1106 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1107 &data, size, MEMTXATTRS_UNSPECIFIED);
1108 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1109 }
1110
1111 return data;
1112 }
1113
1114 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1115 uint64_t data, unsigned size)
1116 {
1117 VFIOrtl8168Quirk *rtl = opaque;
1118 VFIOPCIDevice *vdev = rtl->vdev;
1119
1120 rtl->data = (uint32_t)data;
1121
1122 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1123 }
1124
1125 static const MemoryRegionOps vfio_rtl_data_quirk = {
1126 .read = vfio_rtl8168_quirk_data_read,
1127 .write = vfio_rtl8168_quirk_data_write,
1128 .valid = {
1129 .min_access_size = 4,
1130 .max_access_size = 4,
1131 .unaligned = false,
1132 },
1133 .endianness = DEVICE_LITTLE_ENDIAN,
1134 };
1135
1136 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1137 {
1138 VFIOQuirk *quirk;
1139 VFIOrtl8168Quirk *rtl;
1140
1141 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1142 return;
1143 }
1144
1145 quirk = vfio_quirk_alloc(2);
1146 quirk->data = rtl = g_malloc0(sizeof(*rtl));
1147 rtl->vdev = vdev;
1148
1149 memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1150 &vfio_rtl_address_quirk, rtl,
1151 "vfio-rtl8168-window-address-quirk", 4);
1152 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1153 0x74, &quirk->mem[0], 1);
1154
1155 memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1156 &vfio_rtl_data_quirk, rtl,
1157 "vfio-rtl8168-window-data-quirk", 4);
1158 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1159 0x70, &quirk->mem[1], 1);
1160
1161 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1162
1163 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1164 }
1165
1166 /*
1167 * Intel IGD support
1168 *
1169 * Obviously IGD is not a discrete device, this is evidenced not only by it
1170 * being integrated into the CPU, but by the various chipset and BIOS
1171 * dependencies that it brings along with it. Intel is trying to move away
1172 * from this and Broadwell and newer devices can run in what Intel calls
1173 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
1174 * more is required beyond assigning the IGD device to a VM. There are
1175 * however support limitations to this mode. It only supports IGD as a
1176 * secondary graphics device in the VM and it doesn't officially support any
1177 * physical outputs.
1178 *
1179 * The code here attempts to enable what we'll call legacy mode assignment,
1180 * IGD retains most of the capabilities we expect for it to have on bare
1181 * metal. To enable this mode, the IGD device must be assigned to the VM
1182 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1183 * support, we must have VM BIOS support for reserving and populating some
1184 * of the required tables, and we need to tweak the chipset with revisions
1185 * and IDs and an LPC/ISA bridge device. The intention is to make all of
1186 * this happen automatically by installing the device at the correct VM PCI
1187 * bus address. If any of the conditions are not met, we cross our fingers
1188 * and hope the user knows better.
1189 *
1190 * NB - It is possible to enable physical outputs in UPT mode by supplying
1191 * an OpRegion table. We don't do this by default because the guest driver
1192 * behaves differently if an OpRegion is provided and no monitor is attached
1193 * vs no OpRegion and a monitor being attached or not. Effectively, if a
1194 * headless setup is desired, the OpRegion gets in the way of that.
1195 */
1196
1197 /*
1198 * This presumes the device is already known to be an Intel VGA device, so we
1199 * take liberties in which device ID bits match which generation. This should
1200 * not be taken as an indication that all the devices are supported, or even
1201 * supportable, some of them don't even support VT-d.
1202 * See linux:include/drm/i915_pciids.h for IDs.
1203 */
1204 static int igd_gen(VFIOPCIDevice *vdev)
1205 {
1206 if ((vdev->device_id & 0xfff) == 0xa84) {
1207 return 8; /* Broxton */
1208 }
1209
1210 switch (vdev->device_id & 0xff00) {
1211 /* Old, untested, unavailable, unknown */
1212 case 0x0000:
1213 case 0x2500:
1214 case 0x2700:
1215 case 0x2900:
1216 case 0x2a00:
1217 case 0x2e00:
1218 case 0x3500:
1219 case 0xa000:
1220 return -1;
1221 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1222 case 0x0100:
1223 case 0x0400:
1224 case 0x0a00:
1225 case 0x0c00:
1226 case 0x0d00:
1227 case 0x0f00:
1228 return 6;
1229 /* BroadWell, CherryView, SkyLake, KabyLake */
1230 case 0x1600:
1231 case 0x1900:
1232 case 0x2200:
1233 case 0x5900:
1234 return 8;
1235 }
1236
1237 return 8; /* Assume newer is compatible */
1238 }
1239
1240 typedef struct VFIOIGDQuirk {
1241 struct VFIOPCIDevice *vdev;
1242 uint32_t index;
1243 uint32_t bdsm;
1244 } VFIOIGDQuirk;
1245
1246 #define IGD_GMCH 0x50 /* Graphics Control Register */
1247 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1248 #define IGD_ASLS 0xfc /* ASL Storage Register */
1249
1250 /*
1251 * The OpRegion includes the Video BIOS Table, which seems important for
1252 * telling the driver what sort of outputs it has. Without this, the device
1253 * may work in the guest, but we may not get output. This also requires BIOS
1254 * support to reserve and populate a section of guest memory sufficient for
1255 * the table and to write the base address of that memory to the ASLS register
1256 * of the IGD device.
1257 */
1258 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1259 struct vfio_region_info *info, Error **errp)
1260 {
1261 int ret;
1262
1263 vdev->igd_opregion = g_malloc0(info->size);
1264 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1265 info->size, info->offset);
1266 if (ret != info->size) {
1267 error_setg(errp, "failed to read IGD OpRegion");
1268 g_free(vdev->igd_opregion);
1269 vdev->igd_opregion = NULL;
1270 return -EINVAL;
1271 }
1272
1273 /*
1274 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1275 * allocate 32bit reserved memory for, copy these contents into, and write
1276 * the reserved memory base address to the device ASLS register at 0xFC.
1277 * Alignment of this reserved region seems flexible, but using a 4k page
1278 * alignment seems to work well. This interface assumes a single IGD
1279 * device, which may be at VM address 00:02.0 in legacy mode or another
1280 * address in UPT mode.
1281 *
1282 * NB, there may be future use cases discovered where the VM should have
1283 * direct interaction with the host OpRegion, in which case the write to
1284 * the ASLS register would trigger MemoryRegion setup to enable that.
1285 */
1286 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1287 vdev->igd_opregion, info->size);
1288
1289 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1290
1291 pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1292 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1293 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * The rather short list of registers that we copy from the host devices.
1300 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1301 * host bridge values may or may not be needed depending on the guest OS.
1302 * Since we're only munging revision and subsystem values on the host bridge,
1303 * we don't require our own device. The LPC/ISA bridge needs to be our very
1304 * own though.
1305 */
1306 typedef struct {
1307 uint8_t offset;
1308 uint8_t len;
1309 } IGDHostInfo;
1310
1311 static const IGDHostInfo igd_host_bridge_infos[] = {
1312 {PCI_REVISION_ID, 2},
1313 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1314 {PCI_SUBSYSTEM_ID, 2},
1315 };
1316
1317 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1318 {PCI_VENDOR_ID, 2},
1319 {PCI_DEVICE_ID, 2},
1320 {PCI_REVISION_ID, 2},
1321 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1322 {PCI_SUBSYSTEM_ID, 2},
1323 };
1324
1325 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1326 struct vfio_region_info *info,
1327 const IGDHostInfo *list, int len)
1328 {
1329 int i, ret;
1330
1331 for (i = 0; i < len; i++) {
1332 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1333 list[i].len, info->offset + list[i].offset);
1334 if (ret != list[i].len) {
1335 error_report("IGD copy failed: %m");
1336 return -errno;
1337 }
1338 }
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Stuff a few values into the host bridge.
1345 */
1346 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1347 struct vfio_region_info *info)
1348 {
1349 PCIBus *bus;
1350 PCIDevice *host_bridge;
1351 int ret;
1352
1353 bus = pci_device_root_bus(&vdev->pdev);
1354 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1355
1356 if (!host_bridge) {
1357 error_report("Can't find host bridge");
1358 return -ENODEV;
1359 }
1360
1361 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1362 ARRAY_SIZE(igd_host_bridge_infos));
1363 if (!ret) {
1364 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1365 }
1366
1367 return ret;
1368 }
1369
1370 /*
1371 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1372 * arbitrary values into just any bridge, so we must create our own. We try
1373 * to handle if the user has created it for us, which they might want to do
1374 * to enable multifunction so we don't occupy the whole PCI slot.
1375 */
1376 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1377 {
1378 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1379 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1380 }
1381 }
1382
1383 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1384 {
1385 DeviceClass *dc = DEVICE_CLASS(klass);
1386 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1387
1388 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1389 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1390 dc->hotpluggable = false;
1391 k->realize = vfio_pci_igd_lpc_bridge_realize;
1392 k->class_id = PCI_CLASS_BRIDGE_ISA;
1393 }
1394
1395 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1396 .name = "vfio-pci-igd-lpc-bridge",
1397 .parent = TYPE_PCI_DEVICE,
1398 .class_init = vfio_pci_igd_lpc_bridge_class_init,
1399 .interfaces = (InterfaceInfo[]) {
1400 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1401 { },
1402 },
1403 };
1404
1405 static void vfio_pci_igd_register_types(void)
1406 {
1407 type_register_static(&vfio_pci_igd_lpc_bridge_info);
1408 }
1409
1410 type_init(vfio_pci_igd_register_types)
1411
1412 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1413 struct vfio_region_info *info)
1414 {
1415 PCIDevice *lpc_bridge;
1416 int ret;
1417
1418 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1419 0, PCI_DEVFN(0x1f, 0));
1420 if (!lpc_bridge) {
1421 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1422 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1423 }
1424
1425 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1426 ARRAY_SIZE(igd_lpc_bridge_infos));
1427 if (!ret) {
1428 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1429 }
1430
1431 return ret;
1432 }
1433
1434 /*
1435 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1436 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1437 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1438 * for programming the GTT.
1439 *
1440 * See linux:include/drm/i915_drm.h for shift and mask values.
1441 */
1442 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1443 {
1444 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1445 int ggms, gen = igd_gen(vdev);
1446
1447 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1448 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1449 if (gen > 6) {
1450 ggms = 1 << ggms;
1451 }
1452
1453 ggms *= MiB;
1454
1455 return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1456 }
1457
1458 /*
1459 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1460 * Somehow the host stolen memory range is used for this, but how the ROM gets
1461 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1462 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1463 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1464 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1465 * IOBAR address and data registers to detect a write sequence targeting the
1466 * GTTADR. This code is developed by observed behavior and doesn't have a
1467 * direct spec reference, unfortunately.
1468 */
1469 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1470 hwaddr addr, unsigned size)
1471 {
1472 VFIOIGDQuirk *igd = opaque;
1473 VFIOPCIDevice *vdev = igd->vdev;
1474
1475 igd->index = ~0;
1476
1477 return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1478 }
1479
1480 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1481 uint64_t data, unsigned size)
1482 {
1483 VFIOIGDQuirk *igd = opaque;
1484 VFIOPCIDevice *vdev = igd->vdev;
1485 uint64_t val = data;
1486 int gen = igd_gen(vdev);
1487
1488 /*
1489 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1490 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1491 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1492 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1493 * to a 4k page, which we translate to a page from the VM allocated region,
1494 * pointed to by the BDSM register. If this is not set, we fail.
1495 *
1496 * We trap writes to the full configured GTT size, but we typically only
1497 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1498 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1499 * write of that last entry does work, but is hopefully unnecessary since
1500 * we clear the previous GTT on initialization.
1501 */
1502 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1503 if (gen < 8 || (igd->index % 8 == 1)) {
1504 uint32_t base;
1505
1506 base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1507 if (!base) {
1508 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1509 "BIOS reserved stolen memory. Unsupported BIOS?");
1510 }
1511
1512 val = data - igd->bdsm + base;
1513 } else {
1514 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1515 }
1516
1517 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1518 igd->index, data, val);
1519 }
1520
1521 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1522
1523 igd->index = ~0;
1524 }
1525
1526 static const MemoryRegionOps vfio_igd_data_quirk = {
1527 .read = vfio_igd_quirk_data_read,
1528 .write = vfio_igd_quirk_data_write,
1529 .endianness = DEVICE_LITTLE_ENDIAN,
1530 };
1531
1532 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1533 hwaddr addr, unsigned size)
1534 {
1535 VFIOIGDQuirk *igd = opaque;
1536 VFIOPCIDevice *vdev = igd->vdev;
1537
1538 igd->index = ~0;
1539
1540 return vfio_region_read(&vdev->bars[4].region, addr, size);
1541 }
1542
1543 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1544 uint64_t data, unsigned size)
1545 {
1546 VFIOIGDQuirk *igd = opaque;
1547 VFIOPCIDevice *vdev = igd->vdev;
1548
1549 igd->index = data;
1550
1551 vfio_region_write(&vdev->bars[4].region, addr, data, size);
1552 }
1553
1554 static const MemoryRegionOps vfio_igd_index_quirk = {
1555 .read = vfio_igd_quirk_index_read,
1556 .write = vfio_igd_quirk_index_write,
1557 .endianness = DEVICE_LITTLE_ENDIAN,
1558 };
1559
1560 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1561 {
1562 struct vfio_region_info *rom = NULL, *opregion = NULL,
1563 *host = NULL, *lpc = NULL;
1564 VFIOQuirk *quirk;
1565 VFIOIGDQuirk *igd;
1566 PCIDevice *lpc_bridge;
1567 int i, ret, ggms_mb, gms_mb = 0, gen;
1568 uint64_t *bdsm_size;
1569 uint32_t gmch;
1570 uint16_t cmd_orig, cmd;
1571 Error *err = NULL;
1572
1573 /*
1574 * This must be an Intel VGA device at address 00:02.0 for us to even
1575 * consider enabling legacy mode. The vBIOS has dependencies on the
1576 * PCI bus address.
1577 */
1578 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1579 !vfio_is_vga(vdev) || nr != 4 ||
1580 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1581 0, PCI_DEVFN(0x2, 0))) {
1582 return;
1583 }
1584
1585 /*
1586 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1587 * can stuff host values into, so if there's already one there and it's not
1588 * one we can hack on, legacy mode is no-go. Sorry Q35.
1589 */
1590 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1591 0, PCI_DEVFN(0x1f, 0));
1592 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1593 "vfio-pci-igd-lpc-bridge")) {
1594 error_report("IGD device %s cannot support legacy mode due to existing "
1595 "devices at address 1f.0", vdev->vbasedev.name);
1596 return;
1597 }
1598
1599 /*
1600 * IGD is not a standard, they like to change their specs often. We
1601 * only attempt to support back to SandBridge and we hope that newer
1602 * devices maintain compatibility with generation 8.
1603 */
1604 gen = igd_gen(vdev);
1605 if (gen != 6 && gen != 8) {
1606 error_report("IGD device %s is unsupported in legacy mode, "
1607 "try SandyBridge or newer", vdev->vbasedev.name);
1608 return;
1609 }
1610
1611 /*
1612 * Most of what we're doing here is to enable the ROM to run, so if
1613 * there's no ROM, there's no point in setting up this quirk.
1614 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1615 */
1616 ret = vfio_get_region_info(&vdev->vbasedev,
1617 VFIO_PCI_ROM_REGION_INDEX, &rom);
1618 if ((ret || !rom->size) && !vdev->pdev.romfile) {
1619 error_report("IGD device %s has no ROM, legacy mode disabled",
1620 vdev->vbasedev.name);
1621 goto out;
1622 }
1623
1624 /*
1625 * Ignore the hotplug corner case, mark the ROM failed, we can't
1626 * create the devices we need for legacy mode in the hotplug scenario.
1627 */
1628 if (vdev->pdev.qdev.hotplugged) {
1629 error_report("IGD device %s hotplugged, ROM disabled, "
1630 "legacy mode disabled", vdev->vbasedev.name);
1631 vdev->rom_read_failed = true;
1632 goto out;
1633 }
1634
1635 /*
1636 * Check whether we have all the vfio device specific regions to
1637 * support legacy mode (added in Linux v4.6). If not, bail.
1638 */
1639 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1640 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1641 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1642 if (ret) {
1643 error_report("IGD device %s does not support OpRegion access,"
1644 "legacy mode disabled", vdev->vbasedev.name);
1645 goto out;
1646 }
1647
1648 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1649 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1650 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1651 if (ret) {
1652 error_report("IGD device %s does not support host bridge access,"
1653 "legacy mode disabled", vdev->vbasedev.name);
1654 goto out;
1655 }
1656
1657 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1658 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1659 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1660 if (ret) {
1661 error_report("IGD device %s does not support LPC bridge access,"
1662 "legacy mode disabled", vdev->vbasedev.name);
1663 goto out;
1664 }
1665
1666 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1667
1668 /*
1669 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1670 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1671 * but also no point in us enabling VGA if disabled in hardware.
1672 */
1673 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1674 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1675 error_report("IGD device %s failed to enable VGA access, "
1676 "legacy mode disabled", vdev->vbasedev.name);
1677 goto out;
1678 }
1679
1680 /* Create our LPC/ISA bridge */
1681 ret = vfio_pci_igd_lpc_init(vdev, lpc);
1682 if (ret) {
1683 error_report("IGD device %s failed to create LPC bridge, "
1684 "legacy mode disabled", vdev->vbasedev.name);
1685 goto out;
1686 }
1687
1688 /* Stuff some host values into the VM PCI host bridge */
1689 ret = vfio_pci_igd_host_init(vdev, host);
1690 if (ret) {
1691 error_report("IGD device %s failed to modify host bridge, "
1692 "legacy mode disabled", vdev->vbasedev.name);
1693 goto out;
1694 }
1695
1696 /* Setup OpRegion access */
1697 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1698 if (ret) {
1699 error_append_hint(&err, "IGD legacy mode disabled\n");
1700 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1701 goto out;
1702 }
1703
1704 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1705 quirk = vfio_quirk_alloc(2);
1706 igd = quirk->data = g_malloc0(sizeof(*igd));
1707 igd->vdev = vdev;
1708 igd->index = ~0;
1709 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1710 igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1711
1712 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1713 igd, "vfio-igd-index-quirk", 4);
1714 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1715 0, &quirk->mem[0], 1);
1716
1717 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1718 igd, "vfio-igd-data-quirk", 4);
1719 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1720 4, &quirk->mem[1], 1);
1721
1722 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1723
1724 /* Determine the size of stolen memory needed for GTT */
1725 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1726 if (gen > 6) {
1727 ggms_mb = 1 << ggms_mb;
1728 }
1729
1730 /*
1731 * Assume we have no GMS memory, but allow it to be overrided by device
1732 * option (experimental). The spec doesn't actually allow zero GMS when
1733 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1734 * so let's not waste VM memory for it.
1735 */
1736 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1737
1738 if (vdev->igd_gms) {
1739 if (vdev->igd_gms <= 0x10) {
1740 gms_mb = vdev->igd_gms * 32;
1741 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1742 } else {
1743 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1744 vdev->igd_gms = 0;
1745 }
1746 }
1747
1748 /*
1749 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1750 * must allocate a 1MB aligned reserved memory region below 4GB with
1751 * the requested size (in bytes) for use by the Intel PCI class VGA
1752 * device at VM address 00:02.0. The base address of this reserved
1753 * memory region must be written to the device BDSM regsiter at PCI
1754 * config offset 0x5C.
1755 */
1756 bdsm_size = g_malloc(sizeof(*bdsm_size));
1757 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1758 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1759 bdsm_size, sizeof(*bdsm_size));
1760
1761 /* GMCH is read-only, emulated */
1762 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1763 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1764 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1765
1766 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1767 pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1768 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1769 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1770
1771 /*
1772 * This IOBAR gives us access to GTTADR, which allows us to write to
1773 * the GTT itself. So let's go ahead and write zero to all the GTT
1774 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1775 * before talking to the device.
1776 */
1777 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1778 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1779 error_report("IGD device %s - failed to read PCI command register",
1780 vdev->vbasedev.name);
1781 }
1782
1783 cmd = cmd_orig | PCI_COMMAND_IO;
1784
1785 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1786 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1787 error_report("IGD device %s - failed to write PCI command register",
1788 vdev->vbasedev.name);
1789 }
1790
1791 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1792 vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1793 vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1794 }
1795
1796 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1797 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1798 error_report("IGD device %s - failed to restore PCI command register",
1799 vdev->vbasedev.name);
1800 }
1801
1802 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1803
1804 out:
1805 g_free(rom);
1806 g_free(opregion);
1807 g_free(host);
1808 g_free(lpc);
1809 }
1810
1811 /*
1812 * Common quirk probe entry points.
1813 */
1814 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1815 {
1816 vfio_vga_probe_ati_3c3_quirk(vdev);
1817 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1818 }
1819
1820 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1821 {
1822 VFIOQuirk *quirk;
1823 int i, j;
1824
1825 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1826 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1827 for (j = 0; j < quirk->nr_mem; j++) {
1828 memory_region_del_subregion(&vdev->vga->region[i].mem,
1829 &quirk->mem[j]);
1830 }
1831 }
1832 }
1833 }
1834
1835 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1836 {
1837 int i, j;
1838
1839 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1840 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1841 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1842 QLIST_REMOVE(quirk, next);
1843 for (j = 0; j < quirk->nr_mem; j++) {
1844 object_unparent(OBJECT(&quirk->mem[j]));
1845 }
1846 g_free(quirk->mem);
1847 g_free(quirk->data);
1848 g_free(quirk);
1849 }
1850 }
1851 }
1852
1853 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1854 {
1855 vfio_probe_ati_bar4_quirk(vdev, nr);
1856 vfio_probe_ati_bar2_quirk(vdev, nr);
1857 vfio_probe_nvidia_bar5_quirk(vdev, nr);
1858 vfio_probe_nvidia_bar0_quirk(vdev, nr);
1859 vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1860 vfio_probe_igd_bar4_quirk(vdev, nr);
1861 }
1862
1863 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1864 {
1865 VFIOBAR *bar = &vdev->bars[nr];
1866 VFIOQuirk *quirk;
1867 int i;
1868
1869 QLIST_FOREACH(quirk, &bar->quirks, next) {
1870 while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1871 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1872 }
1873
1874 for (i = 0; i < quirk->nr_mem; i++) {
1875 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1876 }
1877 }
1878 }
1879
1880 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1881 {
1882 VFIOBAR *bar = &vdev->bars[nr];
1883 int i;
1884
1885 while (!QLIST_EMPTY(&bar->quirks)) {
1886 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1887 QLIST_REMOVE(quirk, next);
1888 for (i = 0; i < quirk->nr_mem; i++) {
1889 object_unparent(OBJECT(&quirk->mem[i]));
1890 }
1891 g_free(quirk->mem);
1892 g_free(quirk->data);
1893 g_free(quirk);
1894 }
1895 }
1896
1897 /*
1898 * Reset quirks
1899 */
1900 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1901 {
1902 int i;
1903
1904 for (i = 0; i < PCI_ROM_SLOT; i++) {
1905 VFIOQuirk *quirk;
1906 VFIOBAR *bar = &vdev->bars[i];
1907
1908 QLIST_FOREACH(quirk, &bar->quirks, next) {
1909 if (quirk->reset) {
1910 quirk->reset(vdev, quirk);
1911 }
1912 }
1913 }
1914 }
1915
1916 /*
1917 * AMD Radeon PCI config reset, based on Linux:
1918 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1919 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1920 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1921 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1922 * IDs: include/drm/drm_pciids.h
1923 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1924 *
1925 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1926 * hardware that should be fixed on future ASICs. The symptom of this is that
1927 * once the accerlated driver loads, Windows guests will bsod on subsequent
1928 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1929 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1930 * reset. The PCI config reset only works if SMC firmware is running, so we
1931 * have a dependency on the state of the device as to whether this reset will
1932 * be effective. There are still cases where we won't be able to kick the
1933 * device into working, but this greatly improves the usability overall. The
1934 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1935 * poking is largely ASIC specific.
1936 */
1937 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1938 {
1939 uint32_t clk, pc_c;
1940
1941 /*
1942 * Registers 200h and 204h are index and data registers for accessing
1943 * indirect configuration registers within the device.
1944 */
1945 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1946 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1947 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1948 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1949
1950 return (!(clk & 1) && (0x20100 <= pc_c));
1951 }
1952
1953 /*
1954 * The scope of a config reset is controlled by a mode bit in the misc register
1955 * and a fuse, exposed as a bit in another register. The fuse is the default
1956 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1957 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1958 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1959 * to flip the value of the bit in the misc register.
1960 */
1961 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1962 {
1963 uint32_t misc, fuse;
1964 bool a, b;
1965
1966 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1967 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1968 b = fuse & 64;
1969
1970 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1971 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1972 a = misc & 2;
1973
1974 if (a == b) {
1975 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1976 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1977 }
1978 }
1979
1980 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1981 {
1982 PCIDevice *pdev = &vdev->pdev;
1983 int i, ret = 0;
1984 uint32_t data;
1985
1986 /* Defer to a kernel implemented reset */
1987 if (vdev->vbasedev.reset_works) {
1988 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1989 return -ENODEV;
1990 }
1991
1992 /* Enable only memory BAR access */
1993 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1994
1995 /* Reset only works if SMC firmware is loaded and running */
1996 if (!vfio_radeon_smc_is_running(vdev)) {
1997 ret = -EINVAL;
1998 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1999 goto out;
2000 }
2001
2002 /* Make sure only the GFX function is reset */
2003 vfio_radeon_set_gfx_only_reset(vdev);
2004
2005 /* AMD PCI config reset */
2006 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2007 usleep(100);
2008
2009 /* Read back the memory size to make sure we're out of reset */
2010 for (i = 0; i < 100000; i++) {
2011 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2012 goto reset_smc;
2013 }
2014 usleep(1);
2015 }
2016
2017 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2018
2019 reset_smc:
2020 /* Reset SMC */
2021 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2022 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2023 data |= 1;
2024 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2025
2026 /* Disable SMC clock */
2027 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2028 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2029 data |= 1;
2030 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2031
2032 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2033
2034 out:
2035 /* Restore PCI command register */
2036 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2037
2038 return ret;
2039 }
2040
2041 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2042 {
2043 switch (vdev->vendor_id) {
2044 case 0x1002:
2045 switch (vdev->device_id) {
2046 /* Bonaire */
2047 case 0x6649: /* Bonaire [FirePro W5100] */
2048 case 0x6650:
2049 case 0x6651:
2050 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2051 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2052 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2053 /* Hawaii */
2054 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2055 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2056 case 0x67A2:
2057 case 0x67A8:
2058 case 0x67A9:
2059 case 0x67AA:
2060 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2061 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2062 case 0x67B8:
2063 case 0x67B9:
2064 case 0x67BA:
2065 case 0x67BE:
2066 vdev->resetfn = vfio_radeon_reset;
2067 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2068 break;
2069 }
2070 break;
2071 }
2072 }
2073
2074 /*
2075 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2076 * devices as a member of a clique. Devices within the same clique ID
2077 * are capable of direct P2P. It's the user's responsibility that this
2078 * is correct. The spec says that this may reside at any unused config
2079 * offset, but reserves and recommends hypervisors place this at C8h.
2080 * The spec also states that the hypervisor should place this capability
2081 * at the end of the capability list, thus next is defined as 0h.
2082 *
2083 * +----------------+----------------+----------------+----------------+
2084 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
2085 * +----------------+----------------+----------------+----------------+
2086 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
2087 * +---------------------------------+---------------------------------+
2088 *
2089 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2090 */
2091 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2092 const char *name, void *opaque,
2093 Error **errp)
2094 {
2095 DeviceState *dev = DEVICE(obj);
2096 Property *prop = opaque;
2097 uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2098
2099 visit_type_uint8(v, name, ptr, errp);
2100 }
2101
2102 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2103 const char *name, void *opaque,
2104 Error **errp)
2105 {
2106 DeviceState *dev = DEVICE(obj);
2107 Property *prop = opaque;
2108 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2109 Error *local_err = NULL;
2110
2111 if (dev->realized) {
2112 qdev_prop_set_after_realize(dev, name, errp);
2113 return;
2114 }
2115
2116 visit_type_uint8(v, name, &value, &local_err);
2117 if (local_err) {
2118 error_propagate(errp, local_err);
2119 return;
2120 }
2121
2122 if (value & ~0xF) {
2123 error_setg(errp, "Property %s: valid range 0-15", name);
2124 return;
2125 }
2126
2127 *ptr = value;
2128 }
2129
2130 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2131 .name = "uint4",
2132 .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2133 .get = get_nv_gpudirect_clique_id,
2134 .set = set_nv_gpudirect_clique_id,
2135 };
2136
2137 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2138 {
2139 PCIDevice *pdev = &vdev->pdev;
2140 int ret, pos = 0xC8;
2141
2142 if (vdev->nv_gpudirect_clique == 0xFF) {
2143 return 0;
2144 }
2145
2146 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2147 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2148 return -EINVAL;
2149 }
2150
2151 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2152 PCI_BASE_CLASS_DISPLAY) {
2153 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2154 return -EINVAL;
2155 }
2156
2157 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2158 if (ret < 0) {
2159 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2160 return ret;
2161 }
2162
2163 memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2164 pos += PCI_CAP_FLAGS;
2165 pci_set_byte(pdev->config + pos++, 8);
2166 pci_set_byte(pdev->config + pos++, 'P');
2167 pci_set_byte(pdev->config + pos++, '2');
2168 pci_set_byte(pdev->config + pos++, 'P');
2169 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2170 pci_set_byte(pdev->config + pos, 0);
2171
2172 return 0;
2173 }
2174
2175 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2176 {
2177 int ret;
2178
2179 ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2180 if (ret) {
2181 return ret;
2182 }
2183
2184 return 0;
2185 }
2186
2187 static void vfio_pci_nvlink2_get_tgt(Object *obj, Visitor *v,
2188 const char *name,
2189 void *opaque, Error **errp)
2190 {
2191 uint64_t tgt = (uintptr_t) opaque;
2192 visit_type_uint64(v, name, &tgt, errp);
2193 }
2194
2195 static void vfio_pci_nvlink2_get_link_speed(Object *obj, Visitor *v,
2196 const char *name,
2197 void *opaque, Error **errp)
2198 {
2199 uint32_t link_speed = (uint32_t)(uintptr_t) opaque;
2200 visit_type_uint32(v, name, &link_speed, errp);
2201 }
2202
2203 int vfio_pci_nvidia_v100_ram_init(VFIOPCIDevice *vdev, Error **errp)
2204 {
2205 int ret;
2206 void *p;
2207 struct vfio_region_info *nv2reg = NULL;
2208 struct vfio_info_cap_header *hdr;
2209 struct vfio_region_info_cap_nvlink2_ssatgt *cap;
2210 VFIOQuirk *quirk;
2211
2212 ret = vfio_get_dev_region_info(&vdev->vbasedev,
2213 VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
2214 PCI_VENDOR_ID_NVIDIA,
2215 VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM,
2216 &nv2reg);
2217 if (ret) {
2218 return ret;
2219 }
2220
2221 hdr = vfio_get_region_info_cap(nv2reg, VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
2222 if (!hdr) {
2223 ret = -ENODEV;
2224 goto free_exit;
2225 }
2226 cap = (void *) hdr;
2227
2228 p = mmap(NULL, nv2reg->size, PROT_READ | PROT_WRITE | PROT_EXEC,
2229 MAP_SHARED, vdev->vbasedev.fd, nv2reg->offset);
2230 if (p == MAP_FAILED) {
2231 ret = -errno;
2232 goto free_exit;
2233 }
2234
2235 quirk = vfio_quirk_alloc(1);
2236 memory_region_init_ram_ptr(&quirk->mem[0], OBJECT(vdev), "nvlink2-mr",
2237 nv2reg->size, p);
2238 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
2239
2240 object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64",
2241 vfio_pci_nvlink2_get_tgt, NULL, NULL,
2242 (void *) (uintptr_t) cap->tgt, NULL);
2243 trace_vfio_pci_nvidia_gpu_setup_quirk(vdev->vbasedev.name, cap->tgt,
2244 nv2reg->size);
2245 free_exit:
2246 g_free(nv2reg);
2247
2248 return ret;
2249 }
2250
2251 int vfio_pci_nvlink2_init(VFIOPCIDevice *vdev, Error **errp)
2252 {
2253 int ret;
2254 void *p;
2255 struct vfio_region_info *atsdreg = NULL;
2256 struct vfio_info_cap_header *hdr;
2257 struct vfio_region_info_cap_nvlink2_ssatgt *captgt;
2258 struct vfio_region_info_cap_nvlink2_lnkspd *capspeed;
2259 VFIOQuirk *quirk;
2260
2261 ret = vfio_get_dev_region_info(&vdev->vbasedev,
2262 VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
2263 PCI_VENDOR_ID_IBM,
2264 VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD,
2265 &atsdreg);
2266 if (ret) {
2267 return ret;
2268 }
2269
2270 hdr = vfio_get_region_info_cap(atsdreg,
2271 VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
2272 if (!hdr) {
2273 ret = -ENODEV;
2274 goto free_exit;
2275 }
2276 captgt = (void *) hdr;
2277
2278 hdr = vfio_get_region_info_cap(atsdreg,
2279 VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD);
2280 if (!hdr) {
2281 ret = -ENODEV;
2282 goto free_exit;
2283 }
2284 capspeed = (void *) hdr;
2285
2286 /* Some NVLink bridges may not have assigned ATSD */
2287 if (atsdreg->size) {
2288 p = mmap(NULL, atsdreg->size, PROT_READ | PROT_WRITE | PROT_EXEC,
2289 MAP_SHARED, vdev->vbasedev.fd, atsdreg->offset);
2290 if (p == MAP_FAILED) {
2291 ret = -errno;
2292 goto free_exit;
2293 }
2294
2295 quirk = vfio_quirk_alloc(1);
2296 memory_region_init_ram_device_ptr(&quirk->mem[0], OBJECT(vdev),
2297 "nvlink2-atsd-mr", atsdreg->size, p);
2298 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
2299 }
2300
2301 object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64",
2302 vfio_pci_nvlink2_get_tgt, NULL, NULL,
2303 (void *) (uintptr_t) captgt->tgt, NULL);
2304 trace_vfio_pci_nvlink2_setup_quirk_ssatgt(vdev->vbasedev.name, captgt->tgt,
2305 atsdreg->size);
2306
2307 object_property_add(OBJECT(vdev), "nvlink2-link-speed", "uint32",
2308 vfio_pci_nvlink2_get_link_speed, NULL, NULL,
2309 (void *) (uintptr_t) capspeed->link_speed, NULL);
2310 trace_vfio_pci_nvlink2_setup_quirk_lnkspd(vdev->vbasedev.name,
2311 capspeed->link_speed);
2312 free_exit:
2313 g_free(atsdreg);
2314
2315 return ret;
2316 }