]> git.proxmox.com Git - mirror_qemu.git/blob - hw/vfio/pci.c
memory: Replace io_mem_read/write with memory_region_dispatch_read/write
[mirror_qemu.git] / hw / vfio / pci.c
1 /*
2 * vfio based device assignment support
3 *
4 * Copyright Red Hat, Inc. 2012
5 *
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
19 */
20
21 #include <dirent.h>
22 #include <linux/vfio.h>
23 #include <sys/ioctl.h>
24 #include <sys/mman.h>
25 #include <sys/stat.h>
26 #include <sys/types.h>
27 #include <unistd.h>
28
29 #include "config.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci.h"
35 #include "qemu-common.h"
36 #include "qemu/error-report.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/queue.h"
39 #include "qemu/range.h"
40 #include "sysemu/kvm.h"
41 #include "sysemu/sysemu.h"
42 #include "trace.h"
43 #include "hw/vfio/vfio.h"
44 #include "hw/vfio/vfio-common.h"
45
46 struct VFIOPCIDevice;
47
48 typedef struct VFIOQuirk {
49 MemoryRegion mem;
50 struct VFIOPCIDevice *vdev;
51 QLIST_ENTRY(VFIOQuirk) next;
52 struct {
53 uint32_t base_offset:TARGET_PAGE_BITS;
54 uint32_t address_offset:TARGET_PAGE_BITS;
55 uint32_t address_size:3;
56 uint32_t bar:3;
57
58 uint32_t address_match;
59 uint32_t address_mask;
60
61 uint32_t address_val:TARGET_PAGE_BITS;
62 uint32_t data_offset:TARGET_PAGE_BITS;
63 uint32_t data_size:3;
64
65 uint8_t flags;
66 uint8_t read_flags;
67 uint8_t write_flags;
68 } data;
69 } VFIOQuirk;
70
71 typedef struct VFIOBAR {
72 VFIORegion region;
73 bool ioport;
74 bool mem64;
75 QLIST_HEAD(, VFIOQuirk) quirks;
76 } VFIOBAR;
77
78 typedef struct VFIOVGARegion {
79 MemoryRegion mem;
80 off_t offset;
81 int nr;
82 QLIST_HEAD(, VFIOQuirk) quirks;
83 } VFIOVGARegion;
84
85 typedef struct VFIOVGA {
86 off_t fd_offset;
87 int fd;
88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS];
89 } VFIOVGA;
90
91 typedef struct VFIOINTx {
92 bool pending; /* interrupt pending */
93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */
94 uint8_t pin; /* which pin to pull for qemu_set_irq */
95 EventNotifier interrupt; /* eventfd triggered on interrupt */
96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
97 PCIINTxRoute route; /* routing info for QEMU bypass */
98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
100 } VFIOINTx;
101
102 typedef struct VFIOMSIVector {
103 /*
104 * Two interrupt paths are configured per vector. The first, is only used
105 * for interrupts injected via QEMU. This is typically the non-accel path,
106 * but may also be used when we want QEMU to handle masking and pending
107 * bits. The KVM path bypasses QEMU and is therefore higher performance,
108 * but requires masking at the device. virq is used to track the MSI route
109 * through KVM, thus kvm_interrupt is only available when virq is set to a
110 * valid (>= 0) value.
111 */
112 EventNotifier interrupt;
113 EventNotifier kvm_interrupt;
114 struct VFIOPCIDevice *vdev; /* back pointer to device */
115 int virq;
116 bool use;
117 } VFIOMSIVector;
118
119 enum {
120 VFIO_INT_NONE = 0,
121 VFIO_INT_INTx = 1,
122 VFIO_INT_MSI = 2,
123 VFIO_INT_MSIX = 3,
124 };
125
126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
127 typedef struct VFIOMSIXInfo {
128 uint8_t table_bar;
129 uint8_t pba_bar;
130 uint16_t entries;
131 uint32_t table_offset;
132 uint32_t pba_offset;
133 MemoryRegion mmap_mem;
134 void *mmap;
135 } VFIOMSIXInfo;
136
137 typedef struct VFIOPCIDevice {
138 PCIDevice pdev;
139 VFIODevice vbasedev;
140 VFIOINTx intx;
141 unsigned int config_size;
142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */
143 off_t config_offset; /* Offset of config space region within device fd */
144 unsigned int rom_size;
145 off_t rom_offset; /* Offset of ROM region within device fd */
146 void *rom;
147 int msi_cap_size;
148 VFIOMSIVector *msi_vectors;
149 VFIOMSIXInfo *msix;
150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
151 int interrupt; /* Current interrupt type */
152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */
154 PCIHostDeviceAddress host;
155 EventNotifier err_notifier;
156 EventNotifier req_notifier;
157 uint32_t features;
158 #define VFIO_FEATURE_ENABLE_VGA_BIT 0
159 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT)
160 #define VFIO_FEATURE_ENABLE_REQ_BIT 1
161 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT)
162 int32_t bootindex;
163 uint8_t pm_cap;
164 bool has_vga;
165 bool pci_aer;
166 bool req_enabled;
167 bool has_flr;
168 bool has_pm_reset;
169 bool rom_read_failed;
170 } VFIOPCIDevice;
171
172 typedef struct VFIORomBlacklistEntry {
173 uint16_t vendor_id;
174 uint16_t device_id;
175 } VFIORomBlacklistEntry;
176
177 /*
178 * List of device ids/vendor ids for which to disable
179 * option rom loading. This avoids the guest hangs during rom
180 * execution as noticed with the BCM 57810 card for lack of a
181 * more better way to handle such issues.
182 * The user can still override by specifying a romfile or
183 * rombar=1.
184 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
185 * for an analysis of the 57810 card hang. When adding
186 * a new vendor id/device id combination below, please also add
187 * your card/environment details and information that could
188 * help in debugging to the bug tracking this issue
189 */
190 static const VFIORomBlacklistEntry romblacklist[] = {
191 /* Broadcom BCM 57810 */
192 { 0x14e4, 0x168e }
193 };
194
195 #define MSIX_CAP_LENGTH 12
196
197 static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
198 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
199 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
200 uint32_t val, int len);
201 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
202
203 /*
204 * Disabling BAR mmaping can be slow, but toggling it around INTx can
205 * also be a huge overhead. We try to get the best of both worlds by
206 * waiting until an interrupt to disable mmaps (subsequent transitions
207 * to the same state are effectively no overhead). If the interrupt has
208 * been serviced and the time gap is long enough, we re-enable mmaps for
209 * performance. This works well for things like graphics cards, which
210 * may not use their interrupt at all and are penalized to an unusable
211 * level by read/write BAR traps. Other devices, like NICs, have more
212 * regular interrupts and see much better latency by staying in non-mmap
213 * mode. We therefore set the default mmap_timeout such that a ping
214 * is just enough to keep the mmap disabled. Users can experiment with
215 * other options with the x-intx-mmap-timeout-ms parameter (a value of
216 * zero disables the timer).
217 */
218 static void vfio_intx_mmap_enable(void *opaque)
219 {
220 VFIOPCIDevice *vdev = opaque;
221
222 if (vdev->intx.pending) {
223 timer_mod(vdev->intx.mmap_timer,
224 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
225 return;
226 }
227
228 vfio_mmap_set_enabled(vdev, true);
229 }
230
231 static void vfio_intx_interrupt(void *opaque)
232 {
233 VFIOPCIDevice *vdev = opaque;
234
235 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
236 return;
237 }
238
239 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
240
241 vdev->intx.pending = true;
242 pci_irq_assert(&vdev->pdev);
243 vfio_mmap_set_enabled(vdev, false);
244 if (vdev->intx.mmap_timeout) {
245 timer_mod(vdev->intx.mmap_timer,
246 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
247 }
248 }
249
250 static void vfio_eoi(VFIODevice *vbasedev)
251 {
252 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
253
254 if (!vdev->intx.pending) {
255 return;
256 }
257
258 trace_vfio_eoi(vbasedev->name);
259
260 vdev->intx.pending = false;
261 pci_irq_deassert(&vdev->pdev);
262 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
263 }
264
265 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev)
266 {
267 #ifdef CONFIG_KVM
268 struct kvm_irqfd irqfd = {
269 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
270 .gsi = vdev->intx.route.irq,
271 .flags = KVM_IRQFD_FLAG_RESAMPLE,
272 };
273 struct vfio_irq_set *irq_set;
274 int ret, argsz;
275 int32_t *pfd;
276
277 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() ||
278 vdev->intx.route.mode != PCI_INTX_ENABLED ||
279 !kvm_resamplefds_enabled()) {
280 return;
281 }
282
283 /* Get to a known interrupt state */
284 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
285 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
286 vdev->intx.pending = false;
287 pci_irq_deassert(&vdev->pdev);
288
289 /* Get an eventfd for resample/unmask */
290 if (event_notifier_init(&vdev->intx.unmask, 0)) {
291 error_report("vfio: Error: event_notifier_init failed eoi");
292 goto fail;
293 }
294
295 /* KVM triggers it, VFIO listens for it */
296 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
297
298 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
299 error_report("vfio: Error: Failed to setup resample irqfd: %m");
300 goto fail_irqfd;
301 }
302
303 argsz = sizeof(*irq_set) + sizeof(*pfd);
304
305 irq_set = g_malloc0(argsz);
306 irq_set->argsz = argsz;
307 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
308 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
309 irq_set->start = 0;
310 irq_set->count = 1;
311 pfd = (int32_t *)&irq_set->data;
312
313 *pfd = irqfd.resamplefd;
314
315 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
316 g_free(irq_set);
317 if (ret) {
318 error_report("vfio: Error: Failed to setup INTx unmask fd: %m");
319 goto fail_vfio;
320 }
321
322 /* Let'em rip */
323 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
324
325 vdev->intx.kvm_accel = true;
326
327 trace_vfio_enable_intx_kvm(vdev->vbasedev.name);
328
329 return;
330
331 fail_vfio:
332 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
333 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
334 fail_irqfd:
335 event_notifier_cleanup(&vdev->intx.unmask);
336 fail:
337 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
338 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
339 #endif
340 }
341
342 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev)
343 {
344 #ifdef CONFIG_KVM
345 struct kvm_irqfd irqfd = {
346 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
347 .gsi = vdev->intx.route.irq,
348 .flags = KVM_IRQFD_FLAG_DEASSIGN,
349 };
350
351 if (!vdev->intx.kvm_accel) {
352 return;
353 }
354
355 /*
356 * Get to a known state, hardware masked, QEMU ready to accept new
357 * interrupts, QEMU IRQ de-asserted.
358 */
359 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
360 vdev->intx.pending = false;
361 pci_irq_deassert(&vdev->pdev);
362
363 /* Tell KVM to stop listening for an INTx irqfd */
364 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
365 error_report("vfio: Error: Failed to disable INTx irqfd: %m");
366 }
367
368 /* We only need to close the eventfd for VFIO to cleanup the kernel side */
369 event_notifier_cleanup(&vdev->intx.unmask);
370
371 /* QEMU starts listening for interrupt events. */
372 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
373
374 vdev->intx.kvm_accel = false;
375
376 /* If we've missed an event, let it re-fire through QEMU */
377 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
378
379 trace_vfio_disable_intx_kvm(vdev->vbasedev.name);
380 #endif
381 }
382
383 static void vfio_update_irq(PCIDevice *pdev)
384 {
385 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
386 PCIINTxRoute route;
387
388 if (vdev->interrupt != VFIO_INT_INTx) {
389 return;
390 }
391
392 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
393
394 if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
395 return; /* Nothing changed */
396 }
397
398 trace_vfio_update_irq(vdev->vbasedev.name,
399 vdev->intx.route.irq, route.irq);
400
401 vfio_disable_intx_kvm(vdev);
402
403 vdev->intx.route = route;
404
405 if (route.mode != PCI_INTX_ENABLED) {
406 return;
407 }
408
409 vfio_enable_intx_kvm(vdev);
410
411 /* Re-enable the interrupt in cased we missed an EOI */
412 vfio_eoi(&vdev->vbasedev);
413 }
414
415 static int vfio_enable_intx(VFIOPCIDevice *vdev)
416 {
417 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
418 int ret, argsz;
419 struct vfio_irq_set *irq_set;
420 int32_t *pfd;
421
422 if (!pin) {
423 return 0;
424 }
425
426 vfio_disable_interrupts(vdev);
427
428 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
429 pci_config_set_interrupt_pin(vdev->pdev.config, pin);
430
431 #ifdef CONFIG_KVM
432 /*
433 * Only conditional to avoid generating error messages on platforms
434 * where we won't actually use the result anyway.
435 */
436 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
437 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
438 vdev->intx.pin);
439 }
440 #endif
441
442 ret = event_notifier_init(&vdev->intx.interrupt, 0);
443 if (ret) {
444 error_report("vfio: Error: event_notifier_init failed");
445 return ret;
446 }
447
448 argsz = sizeof(*irq_set) + sizeof(*pfd);
449
450 irq_set = g_malloc0(argsz);
451 irq_set->argsz = argsz;
452 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
453 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
454 irq_set->start = 0;
455 irq_set->count = 1;
456 pfd = (int32_t *)&irq_set->data;
457
458 *pfd = event_notifier_get_fd(&vdev->intx.interrupt);
459 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
460
461 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
462 g_free(irq_set);
463 if (ret) {
464 error_report("vfio: Error: Failed to setup INTx fd: %m");
465 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
466 event_notifier_cleanup(&vdev->intx.interrupt);
467 return -errno;
468 }
469
470 vfio_enable_intx_kvm(vdev);
471
472 vdev->interrupt = VFIO_INT_INTx;
473
474 trace_vfio_enable_intx(vdev->vbasedev.name);
475
476 return 0;
477 }
478
479 static void vfio_disable_intx(VFIOPCIDevice *vdev)
480 {
481 int fd;
482
483 timer_del(vdev->intx.mmap_timer);
484 vfio_disable_intx_kvm(vdev);
485 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
486 vdev->intx.pending = false;
487 pci_irq_deassert(&vdev->pdev);
488 vfio_mmap_set_enabled(vdev, true);
489
490 fd = event_notifier_get_fd(&vdev->intx.interrupt);
491 qemu_set_fd_handler(fd, NULL, NULL, vdev);
492 event_notifier_cleanup(&vdev->intx.interrupt);
493
494 vdev->interrupt = VFIO_INT_NONE;
495
496 trace_vfio_disable_intx(vdev->vbasedev.name);
497 }
498
499 /*
500 * MSI/X
501 */
502 static void vfio_msi_interrupt(void *opaque)
503 {
504 VFIOMSIVector *vector = opaque;
505 VFIOPCIDevice *vdev = vector->vdev;
506 int nr = vector - vdev->msi_vectors;
507
508 if (!event_notifier_test_and_clear(&vector->interrupt)) {
509 return;
510 }
511
512 #ifdef DEBUG_VFIO
513 MSIMessage msg;
514
515 if (vdev->interrupt == VFIO_INT_MSIX) {
516 msg = msix_get_message(&vdev->pdev, nr);
517 } else if (vdev->interrupt == VFIO_INT_MSI) {
518 msg = msi_get_message(&vdev->pdev, nr);
519 } else {
520 abort();
521 }
522
523 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data);
524 #endif
525
526 if (vdev->interrupt == VFIO_INT_MSIX) {
527 msix_notify(&vdev->pdev, nr);
528 } else if (vdev->interrupt == VFIO_INT_MSI) {
529 msi_notify(&vdev->pdev, nr);
530 } else {
531 error_report("vfio: MSI interrupt receieved, but not enabled?");
532 }
533 }
534
535 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
536 {
537 struct vfio_irq_set *irq_set;
538 int ret = 0, i, argsz;
539 int32_t *fds;
540
541 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
542
543 irq_set = g_malloc0(argsz);
544 irq_set->argsz = argsz;
545 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
546 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
547 irq_set->start = 0;
548 irq_set->count = vdev->nr_vectors;
549 fds = (int32_t *)&irq_set->data;
550
551 for (i = 0; i < vdev->nr_vectors; i++) {
552 int fd = -1;
553
554 /*
555 * MSI vs MSI-X - The guest has direct access to MSI mask and pending
556 * bits, therefore we always use the KVM signaling path when setup.
557 * MSI-X mask and pending bits are emulated, so we want to use the
558 * KVM signaling path only when configured and unmasked.
559 */
560 if (vdev->msi_vectors[i].use) {
561 if (vdev->msi_vectors[i].virq < 0 ||
562 (msix && msix_is_masked(&vdev->pdev, i))) {
563 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
564 } else {
565 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
566 }
567 }
568
569 fds[i] = fd;
570 }
571
572 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
573
574 g_free(irq_set);
575
576 return ret;
577 }
578
579 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg,
580 bool msix)
581 {
582 int virq;
583
584 if ((msix && !VFIO_ALLOW_KVM_MSIX) ||
585 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) {
586 return;
587 }
588
589 if (event_notifier_init(&vector->kvm_interrupt, 0)) {
590 return;
591 }
592
593 virq = kvm_irqchip_add_msi_route(kvm_state, *msg);
594 if (virq < 0) {
595 event_notifier_cleanup(&vector->kvm_interrupt);
596 return;
597 }
598
599 if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
600 NULL, virq) < 0) {
601 kvm_irqchip_release_virq(kvm_state, virq);
602 event_notifier_cleanup(&vector->kvm_interrupt);
603 return;
604 }
605
606 vector->virq = virq;
607 }
608
609 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
610 {
611 kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
612 vector->virq);
613 kvm_irqchip_release_virq(kvm_state, vector->virq);
614 vector->virq = -1;
615 event_notifier_cleanup(&vector->kvm_interrupt);
616 }
617
618 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg)
619 {
620 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg);
621 }
622
623 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
624 MSIMessage *msg, IOHandler *handler)
625 {
626 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
627 VFIOMSIVector *vector;
628 int ret;
629
630 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
631
632 vector = &vdev->msi_vectors[nr];
633
634 if (!vector->use) {
635 vector->vdev = vdev;
636 vector->virq = -1;
637 if (event_notifier_init(&vector->interrupt, 0)) {
638 error_report("vfio: Error: event_notifier_init failed");
639 }
640 vector->use = true;
641 msix_vector_use(pdev, nr);
642 }
643
644 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
645 handler, NULL, vector);
646
647 /*
648 * Attempt to enable route through KVM irqchip,
649 * default to userspace handling if unavailable.
650 */
651 if (vector->virq >= 0) {
652 if (!msg) {
653 vfio_remove_kvm_msi_virq(vector);
654 } else {
655 vfio_update_kvm_msi_virq(vector, *msg);
656 }
657 } else {
658 vfio_add_kvm_msi_virq(vector, msg, true);
659 }
660
661 /*
662 * We don't want to have the host allocate all possible MSI vectors
663 * for a device if they're not in use, so we shutdown and incrementally
664 * increase them as needed.
665 */
666 if (vdev->nr_vectors < nr + 1) {
667 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
668 vdev->nr_vectors = nr + 1;
669 ret = vfio_enable_vectors(vdev, true);
670 if (ret) {
671 error_report("vfio: failed to enable vectors, %d", ret);
672 }
673 } else {
674 int argsz;
675 struct vfio_irq_set *irq_set;
676 int32_t *pfd;
677
678 argsz = sizeof(*irq_set) + sizeof(*pfd);
679
680 irq_set = g_malloc0(argsz);
681 irq_set->argsz = argsz;
682 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
683 VFIO_IRQ_SET_ACTION_TRIGGER;
684 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
685 irq_set->start = nr;
686 irq_set->count = 1;
687 pfd = (int32_t *)&irq_set->data;
688
689 if (vector->virq >= 0) {
690 *pfd = event_notifier_get_fd(&vector->kvm_interrupt);
691 } else {
692 *pfd = event_notifier_get_fd(&vector->interrupt);
693 }
694
695 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
696 g_free(irq_set);
697 if (ret) {
698 error_report("vfio: failed to modify vector, %d", ret);
699 }
700 }
701
702 return 0;
703 }
704
705 static int vfio_msix_vector_use(PCIDevice *pdev,
706 unsigned int nr, MSIMessage msg)
707 {
708 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
709 }
710
711 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
712 {
713 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
714 VFIOMSIVector *vector = &vdev->msi_vectors[nr];
715
716 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
717
718 /*
719 * There are still old guests that mask and unmask vectors on every
720 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
721 * the KVM setup in place, simply switch VFIO to use the non-bypass
722 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X
723 * core will mask the interrupt and set pending bits, allowing it to
724 * be re-asserted on unmask. Nothing to do if already using QEMU mode.
725 */
726 if (vector->virq >= 0) {
727 int argsz;
728 struct vfio_irq_set *irq_set;
729 int32_t *pfd;
730
731 argsz = sizeof(*irq_set) + sizeof(*pfd);
732
733 irq_set = g_malloc0(argsz);
734 irq_set->argsz = argsz;
735 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
736 VFIO_IRQ_SET_ACTION_TRIGGER;
737 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
738 irq_set->start = nr;
739 irq_set->count = 1;
740 pfd = (int32_t *)&irq_set->data;
741
742 *pfd = event_notifier_get_fd(&vector->interrupt);
743
744 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
745
746 g_free(irq_set);
747 }
748 }
749
750 static void vfio_enable_msix(VFIOPCIDevice *vdev)
751 {
752 vfio_disable_interrupts(vdev);
753
754 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
755
756 vdev->interrupt = VFIO_INT_MSIX;
757
758 /*
759 * Some communication channels between VF & PF or PF & fw rely on the
760 * physical state of the device and expect that enabling MSI-X from the
761 * guest enables the same on the host. When our guest is Linux, the
762 * guest driver call to pci_enable_msix() sets the enabling bit in the
763 * MSI-X capability, but leaves the vector table masked. We therefore
764 * can't rely on a vector_use callback (from request_irq() in the guest)
765 * to switch the physical device into MSI-X mode because that may come a
766 * long time after pci_enable_msix(). This code enables vector 0 with
767 * triggering to userspace, then immediately release the vector, leaving
768 * the physical device with no vectors enabled, but MSI-X enabled, just
769 * like the guest view.
770 */
771 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
772 vfio_msix_vector_release(&vdev->pdev, 0);
773
774 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
775 vfio_msix_vector_release, NULL)) {
776 error_report("vfio: msix_set_vector_notifiers failed");
777 }
778
779 trace_vfio_enable_msix(vdev->vbasedev.name);
780 }
781
782 static void vfio_enable_msi(VFIOPCIDevice *vdev)
783 {
784 int ret, i;
785
786 vfio_disable_interrupts(vdev);
787
788 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
789 retry:
790 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
791
792 for (i = 0; i < vdev->nr_vectors; i++) {
793 VFIOMSIVector *vector = &vdev->msi_vectors[i];
794 MSIMessage msg = msi_get_message(&vdev->pdev, i);
795
796 vector->vdev = vdev;
797 vector->virq = -1;
798 vector->use = true;
799
800 if (event_notifier_init(&vector->interrupt, 0)) {
801 error_report("vfio: Error: event_notifier_init failed");
802 }
803
804 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
805 vfio_msi_interrupt, NULL, vector);
806
807 /*
808 * Attempt to enable route through KVM irqchip,
809 * default to userspace handling if unavailable.
810 */
811 vfio_add_kvm_msi_virq(vector, &msg, false);
812 }
813
814 /* Set interrupt type prior to possible interrupts */
815 vdev->interrupt = VFIO_INT_MSI;
816
817 ret = vfio_enable_vectors(vdev, false);
818 if (ret) {
819 if (ret < 0) {
820 error_report("vfio: Error: Failed to setup MSI fds: %m");
821 } else if (ret != vdev->nr_vectors) {
822 error_report("vfio: Error: Failed to enable %d "
823 "MSI vectors, retry with %d", vdev->nr_vectors, ret);
824 }
825
826 for (i = 0; i < vdev->nr_vectors; i++) {
827 VFIOMSIVector *vector = &vdev->msi_vectors[i];
828 if (vector->virq >= 0) {
829 vfio_remove_kvm_msi_virq(vector);
830 }
831 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
832 NULL, NULL, NULL);
833 event_notifier_cleanup(&vector->interrupt);
834 }
835
836 g_free(vdev->msi_vectors);
837
838 if (ret > 0 && ret != vdev->nr_vectors) {
839 vdev->nr_vectors = ret;
840 goto retry;
841 }
842 vdev->nr_vectors = 0;
843
844 /*
845 * Failing to setup MSI doesn't really fall within any specification.
846 * Let's try leaving interrupts disabled and hope the guest figures
847 * out to fall back to INTx for this device.
848 */
849 error_report("vfio: Error: Failed to enable MSI");
850 vdev->interrupt = VFIO_INT_NONE;
851
852 return;
853 }
854
855 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors);
856 }
857
858 static void vfio_disable_msi_common(VFIOPCIDevice *vdev)
859 {
860 int i;
861
862 for (i = 0; i < vdev->nr_vectors; i++) {
863 VFIOMSIVector *vector = &vdev->msi_vectors[i];
864 if (vdev->msi_vectors[i].use) {
865 if (vector->virq >= 0) {
866 vfio_remove_kvm_msi_virq(vector);
867 }
868 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
869 NULL, NULL, NULL);
870 event_notifier_cleanup(&vector->interrupt);
871 }
872 }
873
874 g_free(vdev->msi_vectors);
875 vdev->msi_vectors = NULL;
876 vdev->nr_vectors = 0;
877 vdev->interrupt = VFIO_INT_NONE;
878
879 vfio_enable_intx(vdev);
880 }
881
882 static void vfio_disable_msix(VFIOPCIDevice *vdev)
883 {
884 int i;
885
886 msix_unset_vector_notifiers(&vdev->pdev);
887
888 /*
889 * MSI-X will only release vectors if MSI-X is still enabled on the
890 * device, check through the rest and release it ourselves if necessary.
891 */
892 for (i = 0; i < vdev->nr_vectors; i++) {
893 if (vdev->msi_vectors[i].use) {
894 vfio_msix_vector_release(&vdev->pdev, i);
895 msix_vector_unuse(&vdev->pdev, i);
896 }
897 }
898
899 if (vdev->nr_vectors) {
900 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
901 }
902
903 vfio_disable_msi_common(vdev);
904
905 trace_vfio_disable_msix(vdev->vbasedev.name);
906 }
907
908 static void vfio_disable_msi(VFIOPCIDevice *vdev)
909 {
910 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
911 vfio_disable_msi_common(vdev);
912
913 trace_vfio_disable_msi(vdev->vbasedev.name);
914 }
915
916 static void vfio_update_msi(VFIOPCIDevice *vdev)
917 {
918 int i;
919
920 for (i = 0; i < vdev->nr_vectors; i++) {
921 VFIOMSIVector *vector = &vdev->msi_vectors[i];
922 MSIMessage msg;
923
924 if (!vector->use || vector->virq < 0) {
925 continue;
926 }
927
928 msg = msi_get_message(&vdev->pdev, i);
929 vfio_update_kvm_msi_virq(vector, msg);
930 }
931 }
932
933 static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
934 {
935 struct vfio_region_info reg_info = {
936 .argsz = sizeof(reg_info),
937 .index = VFIO_PCI_ROM_REGION_INDEX
938 };
939 uint64_t size;
940 off_t off = 0;
941 size_t bytes;
942
943 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info)) {
944 error_report("vfio: Error getting ROM info: %m");
945 return;
946 }
947
948 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size,
949 (unsigned long)reg_info.offset,
950 (unsigned long)reg_info.flags);
951
952 vdev->rom_size = size = reg_info.size;
953 vdev->rom_offset = reg_info.offset;
954
955 if (!vdev->rom_size) {
956 vdev->rom_read_failed = true;
957 error_report("vfio-pci: Cannot read device rom at "
958 "%s", vdev->vbasedev.name);
959 error_printf("Device option ROM contents are probably invalid "
960 "(check dmesg).\nSkip option ROM probe with rombar=0, "
961 "or load from file with romfile=\n");
962 return;
963 }
964
965 vdev->rom = g_malloc(size);
966 memset(vdev->rom, 0xff, size);
967
968 while (size) {
969 bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
970 size, vdev->rom_offset + off);
971 if (bytes == 0) {
972 break;
973 } else if (bytes > 0) {
974 off += bytes;
975 size -= bytes;
976 } else {
977 if (errno == EINTR || errno == EAGAIN) {
978 continue;
979 }
980 error_report("vfio: Error reading device ROM: %m");
981 break;
982 }
983 }
984 }
985
986 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
987 {
988 VFIOPCIDevice *vdev = opaque;
989 union {
990 uint8_t byte;
991 uint16_t word;
992 uint32_t dword;
993 uint64_t qword;
994 } val;
995 uint64_t data = 0;
996
997 /* Load the ROM lazily when the guest tries to read it */
998 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
999 vfio_pci_load_rom(vdev);
1000 }
1001
1002 memcpy(&val, vdev->rom + addr,
1003 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
1004
1005 switch (size) {
1006 case 1:
1007 data = val.byte;
1008 break;
1009 case 2:
1010 data = le16_to_cpu(val.word);
1011 break;
1012 case 4:
1013 data = le32_to_cpu(val.dword);
1014 break;
1015 default:
1016 hw_error("vfio: unsupported read size, %d bytes\n", size);
1017 break;
1018 }
1019
1020 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
1021
1022 return data;
1023 }
1024
1025 static void vfio_rom_write(void *opaque, hwaddr addr,
1026 uint64_t data, unsigned size)
1027 {
1028 }
1029
1030 static const MemoryRegionOps vfio_rom_ops = {
1031 .read = vfio_rom_read,
1032 .write = vfio_rom_write,
1033 .endianness = DEVICE_LITTLE_ENDIAN,
1034 };
1035
1036 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
1037 {
1038 PCIDevice *pdev = &vdev->pdev;
1039 uint16_t vendor_id, device_id;
1040 int count = 0;
1041
1042 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
1043 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
1044
1045 while (count < ARRAY_SIZE(romblacklist)) {
1046 if (romblacklist[count].vendor_id == vendor_id &&
1047 romblacklist[count].device_id == device_id) {
1048 return true;
1049 }
1050 count++;
1051 }
1052
1053 return false;
1054 }
1055
1056 static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
1057 {
1058 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
1059 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
1060 DeviceState *dev = DEVICE(vdev);
1061 char name[32];
1062 int fd = vdev->vbasedev.fd;
1063
1064 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
1065 /* Since pci handles romfile, just print a message and return */
1066 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
1067 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1068 "is known to cause system instability issues during "
1069 "option rom execution. "
1070 "Proceeding anyway since user specified romfile\n",
1071 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1072 vdev->host.function);
1073 }
1074 return;
1075 }
1076
1077 /*
1078 * Use the same size ROM BAR as the physical device. The contents
1079 * will get filled in later when the guest tries to read it.
1080 */
1081 if (pread(fd, &orig, 4, offset) != 4 ||
1082 pwrite(fd, &size, 4, offset) != 4 ||
1083 pread(fd, &size, 4, offset) != 4 ||
1084 pwrite(fd, &orig, 4, offset) != 4) {
1085 error_report("%s(%04x:%02x:%02x.%x) failed: %m",
1086 __func__, vdev->host.domain, vdev->host.bus,
1087 vdev->host.slot, vdev->host.function);
1088 return;
1089 }
1090
1091 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
1092
1093 if (!size) {
1094 return;
1095 }
1096
1097 if (vfio_blacklist_opt_rom(vdev)) {
1098 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
1099 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1100 "is known to cause system instability issues during "
1101 "option rom execution. "
1102 "Proceeding anyway since user specified non zero value for "
1103 "rombar\n",
1104 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1105 vdev->host.function);
1106 } else {
1107 error_printf("Warning : Rom loading for device at "
1108 "%04x:%02x:%02x.%x has been disabled due to "
1109 "system instability issues. "
1110 "Specify rombar=1 or romfile to force\n",
1111 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1112 vdev->host.function);
1113 return;
1114 }
1115 }
1116
1117 trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
1118
1119 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
1120 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1121 vdev->host.function);
1122
1123 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
1124 &vfio_rom_ops, vdev, name, size);
1125
1126 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
1127 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
1128
1129 vdev->pdev.has_rom = true;
1130 vdev->rom_read_failed = false;
1131 }
1132
1133 static void vfio_vga_write(void *opaque, hwaddr addr,
1134 uint64_t data, unsigned size)
1135 {
1136 VFIOVGARegion *region = opaque;
1137 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1138 union {
1139 uint8_t byte;
1140 uint16_t word;
1141 uint32_t dword;
1142 uint64_t qword;
1143 } buf;
1144 off_t offset = vga->fd_offset + region->offset + addr;
1145
1146 switch (size) {
1147 case 1:
1148 buf.byte = data;
1149 break;
1150 case 2:
1151 buf.word = cpu_to_le16(data);
1152 break;
1153 case 4:
1154 buf.dword = cpu_to_le32(data);
1155 break;
1156 default:
1157 hw_error("vfio: unsupported write size, %d bytes", size);
1158 break;
1159 }
1160
1161 if (pwrite(vga->fd, &buf, size, offset) != size) {
1162 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
1163 __func__, region->offset + addr, data, size);
1164 }
1165
1166 trace_vfio_vga_write(region->offset + addr, data, size);
1167 }
1168
1169 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
1170 {
1171 VFIOVGARegion *region = opaque;
1172 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1173 union {
1174 uint8_t byte;
1175 uint16_t word;
1176 uint32_t dword;
1177 uint64_t qword;
1178 } buf;
1179 uint64_t data = 0;
1180 off_t offset = vga->fd_offset + region->offset + addr;
1181
1182 if (pread(vga->fd, &buf, size, offset) != size) {
1183 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
1184 __func__, region->offset + addr, size);
1185 return (uint64_t)-1;
1186 }
1187
1188 switch (size) {
1189 case 1:
1190 data = buf.byte;
1191 break;
1192 case 2:
1193 data = le16_to_cpu(buf.word);
1194 break;
1195 case 4:
1196 data = le32_to_cpu(buf.dword);
1197 break;
1198 default:
1199 hw_error("vfio: unsupported read size, %d bytes", size);
1200 break;
1201 }
1202
1203 trace_vfio_vga_read(region->offset + addr, size, data);
1204
1205 return data;
1206 }
1207
1208 static const MemoryRegionOps vfio_vga_ops = {
1209 .read = vfio_vga_read,
1210 .write = vfio_vga_write,
1211 .endianness = DEVICE_LITTLE_ENDIAN,
1212 };
1213
1214 /*
1215 * Device specific quirks
1216 */
1217
1218 /* Is range1 fully contained within range2? */
1219 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
1220 uint64_t first2, uint64_t len2) {
1221 return (first1 >= first2 && first1 + len1 <= first2 + len2);
1222 }
1223
1224 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
1225 {
1226 return (mask && (flags & mask) == mask);
1227 }
1228
1229 static uint64_t vfio_generic_window_quirk_read(void *opaque,
1230 hwaddr addr, unsigned size)
1231 {
1232 VFIOQuirk *quirk = opaque;
1233 VFIOPCIDevice *vdev = quirk->vdev;
1234 uint64_t data;
1235
1236 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1237 ranges_overlap(addr, size,
1238 quirk->data.data_offset, quirk->data.data_size)) {
1239 hwaddr offset = addr - quirk->data.data_offset;
1240
1241 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1242 quirk->data.data_size)) {
1243 hw_error("%s: window data read not fully contained: %s",
1244 __func__, memory_region_name(&quirk->mem));
1245 }
1246
1247 data = vfio_pci_read_config(&vdev->pdev,
1248 quirk->data.address_val + offset, size);
1249
1250 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem),
1251 vdev->vbasedev.name,
1252 quirk->data.bar,
1253 addr, size, data);
1254 } else {
1255 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1256 addr + quirk->data.base_offset, size);
1257 }
1258
1259 return data;
1260 }
1261
1262 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
1263 uint64_t data, unsigned size)
1264 {
1265 VFIOQuirk *quirk = opaque;
1266 VFIOPCIDevice *vdev = quirk->vdev;
1267
1268 if (ranges_overlap(addr, size,
1269 quirk->data.address_offset, quirk->data.address_size)) {
1270
1271 if (addr != quirk->data.address_offset) {
1272 hw_error("%s: offset write into address window: %s",
1273 __func__, memory_region_name(&quirk->mem));
1274 }
1275
1276 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
1277 quirk->data.flags |= quirk->data.write_flags |
1278 quirk->data.read_flags;
1279 quirk->data.address_val = data & quirk->data.address_mask;
1280 } else {
1281 quirk->data.flags &= ~(quirk->data.write_flags |
1282 quirk->data.read_flags);
1283 }
1284 }
1285
1286 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1287 ranges_overlap(addr, size,
1288 quirk->data.data_offset, quirk->data.data_size)) {
1289 hwaddr offset = addr - quirk->data.data_offset;
1290
1291 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1292 quirk->data.data_size)) {
1293 hw_error("%s: window data write not fully contained: %s",
1294 __func__, memory_region_name(&quirk->mem));
1295 }
1296
1297 vfio_pci_write_config(&vdev->pdev,
1298 quirk->data.address_val + offset, data, size);
1299 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem),
1300 vdev->vbasedev.name,
1301 quirk->data.bar,
1302 addr, data, size);
1303 return;
1304 }
1305
1306 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1307 addr + quirk->data.base_offset, data, size);
1308 }
1309
1310 static const MemoryRegionOps vfio_generic_window_quirk = {
1311 .read = vfio_generic_window_quirk_read,
1312 .write = vfio_generic_window_quirk_write,
1313 .endianness = DEVICE_LITTLE_ENDIAN,
1314 };
1315
1316 static uint64_t vfio_generic_quirk_read(void *opaque,
1317 hwaddr addr, unsigned size)
1318 {
1319 VFIOQuirk *quirk = opaque;
1320 VFIOPCIDevice *vdev = quirk->vdev;
1321 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1322 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1323 uint64_t data;
1324
1325 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1326 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1327 if (!vfio_range_contained(addr, size, offset,
1328 quirk->data.address_mask + 1)) {
1329 hw_error("%s: read not fully contained: %s",
1330 __func__, memory_region_name(&quirk->mem));
1331 }
1332
1333 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
1334
1335 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem),
1336 vdev->vbasedev.name, quirk->data.bar,
1337 addr + base, size, data);
1338 } else {
1339 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1340 addr + base, size);
1341 }
1342
1343 return data;
1344 }
1345
1346 static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
1347 uint64_t data, unsigned size)
1348 {
1349 VFIOQuirk *quirk = opaque;
1350 VFIOPCIDevice *vdev = quirk->vdev;
1351 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1352 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1353
1354 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1355 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1356 if (!vfio_range_contained(addr, size, offset,
1357 quirk->data.address_mask + 1)) {
1358 hw_error("%s: write not fully contained: %s",
1359 __func__, memory_region_name(&quirk->mem));
1360 }
1361
1362 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
1363
1364 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem),
1365 vdev->vbasedev.name, quirk->data.bar,
1366 addr + base, data, size);
1367 } else {
1368 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1369 addr + base, data, size);
1370 }
1371 }
1372
1373 static const MemoryRegionOps vfio_generic_quirk = {
1374 .read = vfio_generic_quirk_read,
1375 .write = vfio_generic_quirk_write,
1376 .endianness = DEVICE_LITTLE_ENDIAN,
1377 };
1378
1379 #define PCI_VENDOR_ID_ATI 0x1002
1380
1381 /*
1382 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
1383 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
1384 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
1385 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
1386 * I/O port BAR address. Originally this was coded to return the virtual BAR
1387 * address only if the physical register read returns the actual BAR address,
1388 * but users have reported greater success if we return the virtual address
1389 * unconditionally.
1390 */
1391 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
1392 hwaddr addr, unsigned size)
1393 {
1394 VFIOQuirk *quirk = opaque;
1395 VFIOPCIDevice *vdev = quirk->vdev;
1396 uint64_t data = vfio_pci_read_config(&vdev->pdev,
1397 PCI_BASE_ADDRESS_0 + (4 * 4) + 1,
1398 size);
1399 trace_vfio_ati_3c3_quirk_read(data);
1400
1401 return data;
1402 }
1403
1404 static const MemoryRegionOps vfio_ati_3c3_quirk = {
1405 .read = vfio_ati_3c3_quirk_read,
1406 .endianness = DEVICE_LITTLE_ENDIAN,
1407 };
1408
1409 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
1410 {
1411 PCIDevice *pdev = &vdev->pdev;
1412 VFIOQuirk *quirk;
1413
1414 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1415 return;
1416 }
1417
1418 /*
1419 * As long as the BAR is >= 256 bytes it will be aligned such that the
1420 * lower byte is always zero. Filter out anything else, if it exists.
1421 */
1422 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
1423 return;
1424 }
1425
1426 quirk = g_malloc0(sizeof(*quirk));
1427 quirk->vdev = vdev;
1428
1429 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk,
1430 "vfio-ati-3c3-quirk", 1);
1431 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1432 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem);
1433
1434 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1435 quirk, next);
1436
1437 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name);
1438 }
1439
1440 /*
1441 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
1442 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
1443 * the MMIO space directly, but a window to this space is provided through
1444 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
1445 * data register. When the address is programmed to a range of 0x4000-0x4fff
1446 * PCI configuration space is available. Experimentation seems to indicate
1447 * that only read-only access is provided, but we drop writes when the window
1448 * is enabled to config space nonetheless.
1449 */
1450 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
1451 {
1452 PCIDevice *pdev = &vdev->pdev;
1453 VFIOQuirk *quirk;
1454
1455 if (!vdev->has_vga || nr != 4 ||
1456 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1457 return;
1458 }
1459
1460 quirk = g_malloc0(sizeof(*quirk));
1461 quirk->vdev = vdev;
1462 quirk->data.address_size = 4;
1463 quirk->data.data_offset = 4;
1464 quirk->data.data_size = 4;
1465 quirk->data.address_match = 0x4000;
1466 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1467 quirk->data.bar = nr;
1468 quirk->data.read_flags = quirk->data.write_flags = 1;
1469
1470 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1471 &vfio_generic_window_quirk, quirk,
1472 "vfio-ati-bar4-window-quirk", 8);
1473 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1474 quirk->data.base_offset, &quirk->mem, 1);
1475
1476 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1477
1478 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
1479 }
1480
1481 #define PCI_VENDOR_ID_REALTEK 0x10ec
1482
1483 /*
1484 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1485 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1486 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1487 * when the "type" portion of the address register is set to 0x1. This appears
1488 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1489 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1490 * ignore because the MSI-X table should always be accessed as a dword (full
1491 * mask). Bits 0:11 is offset within the type.
1492 *
1493 * Example trace:
1494 *
1495 * Read from MSI-X table offset 0
1496 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1497 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1498 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1499 *
1500 * Write 0xfee00000 to MSI-X table offset 0
1501 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1502 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1503 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1504 */
1505
1506 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque,
1507 hwaddr addr, unsigned size)
1508 {
1509 VFIOQuirk *quirk = opaque;
1510 VFIOPCIDevice *vdev = quirk->vdev;
1511
1512 switch (addr) {
1513 case 4: /* address */
1514 if (quirk->data.flags) {
1515 trace_vfio_rtl8168_window_quirk_read_fake(
1516 memory_region_name(&quirk->mem),
1517 vdev->vbasedev.name);
1518
1519 return quirk->data.address_match ^ 0x10000000U;
1520 }
1521 break;
1522 case 0: /* data */
1523 if (quirk->data.flags) {
1524 uint64_t val;
1525
1526 trace_vfio_rtl8168_window_quirk_read_table(
1527 memory_region_name(&quirk->mem),
1528 vdev->vbasedev.name);
1529
1530 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1531 return 0;
1532 }
1533
1534 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio,
1535 (hwaddr)(quirk->data.address_match
1536 & 0xfff),
1537 &val,
1538 size,
1539 MEMTXATTRS_UNSPECIFIED);
1540 return val;
1541 }
1542 }
1543
1544 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem),
1545 vdev->vbasedev.name);
1546
1547 return vfio_region_read(&vdev->bars[quirk->data.bar].region,
1548 addr + 0x70, size);
1549 }
1550
1551 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr,
1552 uint64_t data, unsigned size)
1553 {
1554 VFIOQuirk *quirk = opaque;
1555 VFIOPCIDevice *vdev = quirk->vdev;
1556
1557 switch (addr) {
1558 case 4: /* address */
1559 if ((data & 0x7fff0000) == 0x10000) {
1560 if (data & 0x10000000U &&
1561 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1562
1563 trace_vfio_rtl8168_window_quirk_write_table(
1564 memory_region_name(&quirk->mem),
1565 vdev->vbasedev.name);
1566
1567 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1568 (hwaddr)(quirk->data.address_match
1569 & 0xfff),
1570 data,
1571 size,
1572 MEMTXATTRS_UNSPECIFIED);
1573 }
1574
1575 quirk->data.flags = 1;
1576 quirk->data.address_match = data;
1577
1578 return;
1579 }
1580 quirk->data.flags = 0;
1581 break;
1582 case 0: /* data */
1583 quirk->data.address_mask = data;
1584 break;
1585 }
1586
1587 trace_vfio_rtl8168_window_quirk_write_direct(
1588 memory_region_name(&quirk->mem),
1589 vdev->vbasedev.name);
1590
1591 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1592 addr + 0x70, data, size);
1593 }
1594
1595 static const MemoryRegionOps vfio_rtl8168_window_quirk = {
1596 .read = vfio_rtl8168_window_quirk_read,
1597 .write = vfio_rtl8168_window_quirk_write,
1598 .valid = {
1599 .min_access_size = 4,
1600 .max_access_size = 4,
1601 .unaligned = false,
1602 },
1603 .endianness = DEVICE_LITTLE_ENDIAN,
1604 };
1605
1606 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr)
1607 {
1608 PCIDevice *pdev = &vdev->pdev;
1609 VFIOQuirk *quirk;
1610
1611 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK ||
1612 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) {
1613 return;
1614 }
1615
1616 quirk = g_malloc0(sizeof(*quirk));
1617 quirk->vdev = vdev;
1618 quirk->data.bar = nr;
1619
1620 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk,
1621 quirk, "vfio-rtl8168-window-quirk", 8);
1622 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1623 0x70, &quirk->mem, 1);
1624
1625 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1626
1627 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name);
1628 }
1629 /*
1630 * Trap the BAR2 MMIO window to config space as well.
1631 */
1632 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
1633 {
1634 PCIDevice *pdev = &vdev->pdev;
1635 VFIOQuirk *quirk;
1636
1637 /* Only enable on newer devices where BAR2 is 64bit */
1638 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
1639 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1640 return;
1641 }
1642
1643 quirk = g_malloc0(sizeof(*quirk));
1644 quirk->vdev = vdev;
1645 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1646 quirk->data.address_match = 0x4000;
1647 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1648 quirk->data.bar = nr;
1649
1650 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1651 "vfio-ati-bar2-4000-quirk",
1652 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1653 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1654 quirk->data.address_match & TARGET_PAGE_MASK,
1655 &quirk->mem, 1);
1656
1657 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1658
1659 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
1660 }
1661
1662 /*
1663 * Older ATI/AMD cards like the X550 have a similar window to that above.
1664 * I/O port BAR1 provides a window to a mirror of PCI config space located
1665 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
1666 * note it for future reference.
1667 */
1668
1669 #define PCI_VENDOR_ID_NVIDIA 0x10de
1670
1671 /*
1672 * Nvidia has several different methods to get to config space, the
1673 * nouveu project has several of these documented here:
1674 * https://github.com/pathscale/envytools/tree/master/hwdocs
1675 *
1676 * The first quirk is actually not documented in envytools and is found
1677 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
1678 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
1679 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
1680 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
1681 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
1682 * is written for a write to 0x3d4. The BAR0 offset is then accessible
1683 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
1684 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
1685 */
1686 enum {
1687 NV_3D0_NONE = 0,
1688 NV_3D0_SELECT,
1689 NV_3D0_WINDOW,
1690 NV_3D0_READ,
1691 NV_3D0_WRITE,
1692 };
1693
1694 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
1695 hwaddr addr, unsigned size)
1696 {
1697 VFIOQuirk *quirk = opaque;
1698 VFIOPCIDevice *vdev = quirk->vdev;
1699 PCIDevice *pdev = &vdev->pdev;
1700 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1701 addr + quirk->data.base_offset, size);
1702
1703 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) {
1704 data = vfio_pci_read_config(pdev, quirk->data.address_val, size);
1705 trace_vfio_nvidia_3d0_quirk_read(size, data);
1706 }
1707
1708 quirk->data.flags = NV_3D0_NONE;
1709
1710 return data;
1711 }
1712
1713 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
1714 uint64_t data, unsigned size)
1715 {
1716 VFIOQuirk *quirk = opaque;
1717 VFIOPCIDevice *vdev = quirk->vdev;
1718 PCIDevice *pdev = &vdev->pdev;
1719
1720 switch (quirk->data.flags) {
1721 case NV_3D0_NONE:
1722 if (addr == quirk->data.address_offset && data == 0x338) {
1723 quirk->data.flags = NV_3D0_SELECT;
1724 }
1725 break;
1726 case NV_3D0_SELECT:
1727 quirk->data.flags = NV_3D0_NONE;
1728 if (addr == quirk->data.data_offset &&
1729 (data & ~quirk->data.address_mask) == quirk->data.address_match) {
1730 quirk->data.flags = NV_3D0_WINDOW;
1731 quirk->data.address_val = data & quirk->data.address_mask;
1732 }
1733 break;
1734 case NV_3D0_WINDOW:
1735 quirk->data.flags = NV_3D0_NONE;
1736 if (addr == quirk->data.address_offset) {
1737 if (data == 0x538) {
1738 quirk->data.flags = NV_3D0_READ;
1739 } else if (data == 0x738) {
1740 quirk->data.flags = NV_3D0_WRITE;
1741 }
1742 }
1743 break;
1744 case NV_3D0_WRITE:
1745 quirk->data.flags = NV_3D0_NONE;
1746 if (addr == quirk->data.data_offset) {
1747 vfio_pci_write_config(pdev, quirk->data.address_val, data, size);
1748 trace_vfio_nvidia_3d0_quirk_write(data, size);
1749 return;
1750 }
1751 break;
1752 }
1753
1754 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1755 addr + quirk->data.base_offset, data, size);
1756 }
1757
1758 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
1759 .read = vfio_nvidia_3d0_quirk_read,
1760 .write = vfio_nvidia_3d0_quirk_write,
1761 .endianness = DEVICE_LITTLE_ENDIAN,
1762 };
1763
1764 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
1765 {
1766 PCIDevice *pdev = &vdev->pdev;
1767 VFIOQuirk *quirk;
1768
1769 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA ||
1770 !vdev->bars[1].region.size) {
1771 return;
1772 }
1773
1774 quirk = g_malloc0(sizeof(*quirk));
1775 quirk->vdev = vdev;
1776 quirk->data.base_offset = 0x10;
1777 quirk->data.address_offset = 4;
1778 quirk->data.address_size = 2;
1779 quirk->data.address_match = 0x1800;
1780 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1781 quirk->data.data_offset = 0;
1782 quirk->data.data_size = 4;
1783
1784 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk,
1785 quirk, "vfio-nvidia-3d0-quirk", 6);
1786 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1787 quirk->data.base_offset, &quirk->mem);
1788
1789 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1790 quirk, next);
1791
1792 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name);
1793 }
1794
1795 /*
1796 * The second quirk is documented in envytools. The I/O port BAR5 is just
1797 * a set of address/data ports to the MMIO BARs. The BAR we care about is
1798 * again BAR0. This backdoor is apparently a bit newer than the one above
1799 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
1800 * space, including extended space is available at the 4k @0x88000.
1801 */
1802 enum {
1803 NV_BAR5_ADDRESS = 0x1,
1804 NV_BAR5_ENABLE = 0x2,
1805 NV_BAR5_MASTER = 0x4,
1806 NV_BAR5_VALID = 0x7,
1807 };
1808
1809 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
1810 uint64_t data, unsigned size)
1811 {
1812 VFIOQuirk *quirk = opaque;
1813
1814 switch (addr) {
1815 case 0x0:
1816 if (data & 0x1) {
1817 quirk->data.flags |= NV_BAR5_MASTER;
1818 } else {
1819 quirk->data.flags &= ~NV_BAR5_MASTER;
1820 }
1821 break;
1822 case 0x4:
1823 if (data & 0x1) {
1824 quirk->data.flags |= NV_BAR5_ENABLE;
1825 } else {
1826 quirk->data.flags &= ~NV_BAR5_ENABLE;
1827 }
1828 break;
1829 case 0x8:
1830 if (quirk->data.flags & NV_BAR5_MASTER) {
1831 if ((data & ~0xfff) == 0x88000) {
1832 quirk->data.flags |= NV_BAR5_ADDRESS;
1833 quirk->data.address_val = data & 0xfff;
1834 } else if ((data & ~0xff) == 0x1800) {
1835 quirk->data.flags |= NV_BAR5_ADDRESS;
1836 quirk->data.address_val = data & 0xff;
1837 } else {
1838 quirk->data.flags &= ~NV_BAR5_ADDRESS;
1839 }
1840 }
1841 break;
1842 }
1843
1844 vfio_generic_window_quirk_write(opaque, addr, data, size);
1845 }
1846
1847 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
1848 .read = vfio_generic_window_quirk_read,
1849 .write = vfio_nvidia_bar5_window_quirk_write,
1850 .valid.min_access_size = 4,
1851 .endianness = DEVICE_LITTLE_ENDIAN,
1852 };
1853
1854 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
1855 {
1856 PCIDevice *pdev = &vdev->pdev;
1857 VFIOQuirk *quirk;
1858
1859 if (!vdev->has_vga || nr != 5 ||
1860 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1861 return;
1862 }
1863
1864 quirk = g_malloc0(sizeof(*quirk));
1865 quirk->vdev = vdev;
1866 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID;
1867 quirk->data.address_offset = 0x8;
1868 quirk->data.address_size = 0; /* actually 4, but avoids generic code */
1869 quirk->data.data_offset = 0xc;
1870 quirk->data.data_size = 4;
1871 quirk->data.bar = nr;
1872
1873 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1874 &vfio_nvidia_bar5_window_quirk, quirk,
1875 "vfio-nvidia-bar5-window-quirk", 16);
1876 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1877 0, &quirk->mem, 1);
1878
1879 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1880
1881 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
1882 }
1883
1884 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
1885 uint64_t data, unsigned size)
1886 {
1887 VFIOQuirk *quirk = opaque;
1888 VFIOPCIDevice *vdev = quirk->vdev;
1889 PCIDevice *pdev = &vdev->pdev;
1890 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1891
1892 vfio_generic_quirk_write(opaque, addr, data, size);
1893
1894 /*
1895 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
1896 * MSI capability ID register. Both the ID and next register are
1897 * read-only, so we allow writes covering either of those to real hw.
1898 * NB - only fixed for the 0x88000 MMIO window.
1899 */
1900 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
1901 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
1902 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1903 addr + base, data, size);
1904 }
1905 }
1906
1907 static const MemoryRegionOps vfio_nvidia_88000_quirk = {
1908 .read = vfio_generic_quirk_read,
1909 .write = vfio_nvidia_88000_quirk_write,
1910 .endianness = DEVICE_LITTLE_ENDIAN,
1911 };
1912
1913 /*
1914 * Finally, BAR0 itself. We want to redirect any accesses to either
1915 * 0x1800 or 0x88000 through the PCI config space access functions.
1916 *
1917 * NB - quirk at a page granularity or else they don't seem to work when
1918 * BARs are mmap'd
1919 *
1920 * Here's offset 0x88000...
1921 */
1922 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
1923 {
1924 PCIDevice *pdev = &vdev->pdev;
1925 VFIOQuirk *quirk;
1926 uint16_t vendor, class;
1927
1928 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
1929 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
1930
1931 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
1932 class != PCI_CLASS_DISPLAY_VGA) {
1933 return;
1934 }
1935
1936 quirk = g_malloc0(sizeof(*quirk));
1937 quirk->vdev = vdev;
1938 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1939 quirk->data.address_match = 0x88000;
1940 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1941 quirk->data.bar = nr;
1942
1943 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
1944 quirk, "vfio-nvidia-bar0-88000-quirk",
1945 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1946 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1947 quirk->data.address_match & TARGET_PAGE_MASK,
1948 &quirk->mem, 1);
1949
1950 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1951
1952 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
1953 }
1954
1955 /*
1956 * And here's the same for BAR0 offset 0x1800...
1957 */
1958 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
1959 {
1960 PCIDevice *pdev = &vdev->pdev;
1961 VFIOQuirk *quirk;
1962
1963 if (!vdev->has_vga || nr != 0 ||
1964 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1965 return;
1966 }
1967
1968 /* Log the chipset ID */
1969 trace_vfio_probe_nvidia_bar0_1800_quirk_id(
1970 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
1971 & 0xff);
1972
1973 quirk = g_malloc0(sizeof(*quirk));
1974 quirk->vdev = vdev;
1975 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1976 quirk->data.address_match = 0x1800;
1977 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1978 quirk->data.bar = nr;
1979
1980 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1981 "vfio-nvidia-bar0-1800-quirk",
1982 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1983 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1984 quirk->data.address_match & TARGET_PAGE_MASK,
1985 &quirk->mem, 1);
1986
1987 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1988
1989 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
1990 }
1991
1992 /*
1993 * TODO - Some Nvidia devices provide config access to their companion HDA
1994 * device and even to their parent bridge via these config space mirrors.
1995 * Add quirks for those regions.
1996 */
1997
1998 /*
1999 * Common quirk probe entry points.
2000 */
2001 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
2002 {
2003 vfio_vga_probe_ati_3c3_quirk(vdev);
2004 vfio_vga_probe_nvidia_3d0_quirk(vdev);
2005 }
2006
2007 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
2008 {
2009 VFIOQuirk *quirk;
2010 int i;
2011
2012 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2013 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) {
2014 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem);
2015 }
2016 }
2017 }
2018
2019 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev)
2020 {
2021 int i;
2022
2023 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2024 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
2025 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
2026 object_unparent(OBJECT(&quirk->mem));
2027 QLIST_REMOVE(quirk, next);
2028 g_free(quirk);
2029 }
2030 }
2031 }
2032
2033 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
2034 {
2035 vfio_probe_ati_bar4_window_quirk(vdev, nr);
2036 vfio_probe_ati_bar2_4000_quirk(vdev, nr);
2037 vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
2038 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
2039 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
2040 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr);
2041 }
2042
2043 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
2044 {
2045 VFIOBAR *bar = &vdev->bars[nr];
2046 VFIOQuirk *quirk;
2047
2048 QLIST_FOREACH(quirk, &bar->quirks, next) {
2049 memory_region_del_subregion(&bar->region.mem, &quirk->mem);
2050 }
2051 }
2052
2053 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr)
2054 {
2055 VFIOBAR *bar = &vdev->bars[nr];
2056
2057 while (!QLIST_EMPTY(&bar->quirks)) {
2058 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
2059 object_unparent(OBJECT(&quirk->mem));
2060 QLIST_REMOVE(quirk, next);
2061 g_free(quirk);
2062 }
2063 }
2064
2065 /*
2066 * PCI config space
2067 */
2068 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
2069 {
2070 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2071 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
2072
2073 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
2074 emu_bits = le32_to_cpu(emu_bits);
2075
2076 if (emu_bits) {
2077 emu_val = pci_default_read_config(pdev, addr, len);
2078 }
2079
2080 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
2081 ssize_t ret;
2082
2083 ret = pread(vdev->vbasedev.fd, &phys_val, len,
2084 vdev->config_offset + addr);
2085 if (ret != len) {
2086 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m",
2087 __func__, vdev->host.domain, vdev->host.bus,
2088 vdev->host.slot, vdev->host.function, addr, len);
2089 return -errno;
2090 }
2091 phys_val = le32_to_cpu(phys_val);
2092 }
2093
2094 val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
2095
2096 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
2097
2098 return val;
2099 }
2100
2101 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
2102 uint32_t val, int len)
2103 {
2104 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2105 uint32_t val_le = cpu_to_le32(val);
2106
2107 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
2108
2109 /* Write everything to VFIO, let it filter out what we can't write */
2110 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
2111 != len) {
2112 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m",
2113 __func__, vdev->host.domain, vdev->host.bus,
2114 vdev->host.slot, vdev->host.function, addr, val, len);
2115 }
2116
2117 /* MSI/MSI-X Enabling/Disabling */
2118 if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
2119 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
2120 int is_enabled, was_enabled = msi_enabled(pdev);
2121
2122 pci_default_write_config(pdev, addr, val, len);
2123
2124 is_enabled = msi_enabled(pdev);
2125
2126 if (!was_enabled) {
2127 if (is_enabled) {
2128 vfio_enable_msi(vdev);
2129 }
2130 } else {
2131 if (!is_enabled) {
2132 vfio_disable_msi(vdev);
2133 } else {
2134 vfio_update_msi(vdev);
2135 }
2136 }
2137 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
2138 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
2139 int is_enabled, was_enabled = msix_enabled(pdev);
2140
2141 pci_default_write_config(pdev, addr, val, len);
2142
2143 is_enabled = msix_enabled(pdev);
2144
2145 if (!was_enabled && is_enabled) {
2146 vfio_enable_msix(vdev);
2147 } else if (was_enabled && !is_enabled) {
2148 vfio_disable_msix(vdev);
2149 }
2150 } else {
2151 /* Write everything to QEMU to keep emulated bits correct */
2152 pci_default_write_config(pdev, addr, val, len);
2153 }
2154 }
2155
2156 /*
2157 * Interrupt setup
2158 */
2159 static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
2160 {
2161 /*
2162 * More complicated than it looks. Disabling MSI/X transitions the
2163 * device to INTx mode (if supported). Therefore we need to first
2164 * disable MSI/X and then cleanup by disabling INTx.
2165 */
2166 if (vdev->interrupt == VFIO_INT_MSIX) {
2167 vfio_disable_msix(vdev);
2168 } else if (vdev->interrupt == VFIO_INT_MSI) {
2169 vfio_disable_msi(vdev);
2170 }
2171
2172 if (vdev->interrupt == VFIO_INT_INTx) {
2173 vfio_disable_intx(vdev);
2174 }
2175 }
2176
2177 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos)
2178 {
2179 uint16_t ctrl;
2180 bool msi_64bit, msi_maskbit;
2181 int ret, entries;
2182
2183 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
2184 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2185 return -errno;
2186 }
2187 ctrl = le16_to_cpu(ctrl);
2188
2189 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
2190 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
2191 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
2192
2193 trace_vfio_setup_msi(vdev->vbasedev.name, pos);
2194
2195 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
2196 if (ret < 0) {
2197 if (ret == -ENOTSUP) {
2198 return 0;
2199 }
2200 error_report("vfio: msi_init failed");
2201 return ret;
2202 }
2203 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
2204
2205 return 0;
2206 }
2207
2208 /*
2209 * We don't have any control over how pci_add_capability() inserts
2210 * capabilities into the chain. In order to setup MSI-X we need a
2211 * MemoryRegion for the BAR. In order to setup the BAR and not
2212 * attempt to mmap the MSI-X table area, which VFIO won't allow, we
2213 * need to first look for where the MSI-X table lives. So we
2214 * unfortunately split MSI-X setup across two functions.
2215 */
2216 static int vfio_early_setup_msix(VFIOPCIDevice *vdev)
2217 {
2218 uint8_t pos;
2219 uint16_t ctrl;
2220 uint32_t table, pba;
2221 int fd = vdev->vbasedev.fd;
2222
2223 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
2224 if (!pos) {
2225 return 0;
2226 }
2227
2228 if (pread(fd, &ctrl, sizeof(ctrl),
2229 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2230 return -errno;
2231 }
2232
2233 if (pread(fd, &table, sizeof(table),
2234 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
2235 return -errno;
2236 }
2237
2238 if (pread(fd, &pba, sizeof(pba),
2239 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
2240 return -errno;
2241 }
2242
2243 ctrl = le16_to_cpu(ctrl);
2244 table = le32_to_cpu(table);
2245 pba = le32_to_cpu(pba);
2246
2247 vdev->msix = g_malloc0(sizeof(*(vdev->msix)));
2248 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
2249 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
2250 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
2251 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
2252 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
2253
2254 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos,
2255 vdev->msix->table_bar,
2256 vdev->msix->table_offset,
2257 vdev->msix->entries);
2258
2259 return 0;
2260 }
2261
2262 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos)
2263 {
2264 int ret;
2265
2266 ret = msix_init(&vdev->pdev, vdev->msix->entries,
2267 &vdev->bars[vdev->msix->table_bar].region.mem,
2268 vdev->msix->table_bar, vdev->msix->table_offset,
2269 &vdev->bars[vdev->msix->pba_bar].region.mem,
2270 vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
2271 if (ret < 0) {
2272 if (ret == -ENOTSUP) {
2273 return 0;
2274 }
2275 error_report("vfio: msix_init failed");
2276 return ret;
2277 }
2278
2279 return 0;
2280 }
2281
2282 static void vfio_teardown_msi(VFIOPCIDevice *vdev)
2283 {
2284 msi_uninit(&vdev->pdev);
2285
2286 if (vdev->msix) {
2287 msix_uninit(&vdev->pdev,
2288 &vdev->bars[vdev->msix->table_bar].region.mem,
2289 &vdev->bars[vdev->msix->pba_bar].region.mem);
2290 }
2291 }
2292
2293 /*
2294 * Resource setup
2295 */
2296 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
2297 {
2298 int i;
2299
2300 for (i = 0; i < PCI_ROM_SLOT; i++) {
2301 VFIOBAR *bar = &vdev->bars[i];
2302
2303 if (!bar->region.size) {
2304 continue;
2305 }
2306
2307 memory_region_set_enabled(&bar->region.mmap_mem, enabled);
2308 if (vdev->msix && vdev->msix->table_bar == i) {
2309 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
2310 }
2311 }
2312 }
2313
2314 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr)
2315 {
2316 VFIOBAR *bar = &vdev->bars[nr];
2317
2318 if (!bar->region.size) {
2319 return;
2320 }
2321
2322 vfio_bar_quirk_teardown(vdev, nr);
2323
2324 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem);
2325
2326 if (vdev->msix && vdev->msix->table_bar == nr) {
2327 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem);
2328 }
2329 }
2330
2331 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr)
2332 {
2333 VFIOBAR *bar = &vdev->bars[nr];
2334
2335 if (!bar->region.size) {
2336 return;
2337 }
2338
2339 vfio_bar_quirk_free(vdev, nr);
2340
2341 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem));
2342
2343 if (vdev->msix && vdev->msix->table_bar == nr) {
2344 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
2345 }
2346 }
2347
2348 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr)
2349 {
2350 VFIOBAR *bar = &vdev->bars[nr];
2351 uint64_t size = bar->region.size;
2352 char name[64];
2353 uint32_t pci_bar;
2354 uint8_t type;
2355 int ret;
2356
2357 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */
2358 if (!size) {
2359 return;
2360 }
2361
2362 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
2363 vdev->host.domain, vdev->host.bus, vdev->host.slot,
2364 vdev->host.function, nr);
2365
2366 /* Determine what type of BAR this is for registration */
2367 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
2368 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
2369 if (ret != sizeof(pci_bar)) {
2370 error_report("vfio: Failed to read BAR %d (%m)", nr);
2371 return;
2372 }
2373
2374 pci_bar = le32_to_cpu(pci_bar);
2375 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
2376 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
2377 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
2378 ~PCI_BASE_ADDRESS_MEM_MASK);
2379
2380 /* A "slow" read/write mapping underlies all BARs */
2381 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops,
2382 bar, name, size);
2383 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem);
2384
2385 /*
2386 * We can't mmap areas overlapping the MSIX vector table, so we
2387 * potentially insert a direct-mapped subregion before and after it.
2388 */
2389 if (vdev->msix && vdev->msix->table_bar == nr) {
2390 size = vdev->msix->table_offset & qemu_host_page_mask;
2391 }
2392
2393 strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
2394 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2395 &bar->region.mmap_mem, &bar->region.mmap,
2396 size, 0, name)) {
2397 error_report("%s unsupported. Performance may be slow", name);
2398 }
2399
2400 if (vdev->msix && vdev->msix->table_bar == nr) {
2401 uint64_t start;
2402
2403 start = HOST_PAGE_ALIGN(vdev->msix->table_offset +
2404 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE));
2405
2406 size = start < bar->region.size ? bar->region.size - start : 0;
2407 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
2408 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */
2409 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2410 &vdev->msix->mmap_mem,
2411 &vdev->msix->mmap, size, start, name)) {
2412 error_report("%s unsupported. Performance may be slow", name);
2413 }
2414 }
2415
2416 vfio_bar_quirk_setup(vdev, nr);
2417 }
2418
2419 static void vfio_map_bars(VFIOPCIDevice *vdev)
2420 {
2421 int i;
2422
2423 for (i = 0; i < PCI_ROM_SLOT; i++) {
2424 vfio_map_bar(vdev, i);
2425 }
2426
2427 if (vdev->has_vga) {
2428 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2429 OBJECT(vdev), &vfio_vga_ops,
2430 &vdev->vga.region[QEMU_PCI_VGA_MEM],
2431 "vfio-vga-mmio@0xa0000",
2432 QEMU_PCI_VGA_MEM_SIZE);
2433 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2434 OBJECT(vdev), &vfio_vga_ops,
2435 &vdev->vga.region[QEMU_PCI_VGA_IO_LO],
2436 "vfio-vga-io@0x3b0",
2437 QEMU_PCI_VGA_IO_LO_SIZE);
2438 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
2439 OBJECT(vdev), &vfio_vga_ops,
2440 &vdev->vga.region[QEMU_PCI_VGA_IO_HI],
2441 "vfio-vga-io@0x3c0",
2442 QEMU_PCI_VGA_IO_HI_SIZE);
2443
2444 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2445 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2446 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem);
2447 vfio_vga_quirk_setup(vdev);
2448 }
2449 }
2450
2451 static void vfio_unregister_bars(VFIOPCIDevice *vdev)
2452 {
2453 int i;
2454
2455 for (i = 0; i < PCI_ROM_SLOT; i++) {
2456 vfio_unregister_bar(vdev, i);
2457 }
2458
2459 if (vdev->has_vga) {
2460 vfio_vga_quirk_teardown(vdev);
2461 pci_unregister_vga(&vdev->pdev);
2462 }
2463 }
2464
2465 static void vfio_unmap_bars(VFIOPCIDevice *vdev)
2466 {
2467 int i;
2468
2469 for (i = 0; i < PCI_ROM_SLOT; i++) {
2470 vfio_unmap_bar(vdev, i);
2471 }
2472
2473 if (vdev->has_vga) {
2474 vfio_vga_quirk_free(vdev);
2475 }
2476 }
2477
2478 /*
2479 * General setup
2480 */
2481 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
2482 {
2483 uint8_t tmp, next = 0xff;
2484
2485 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
2486 tmp = pdev->config[tmp + 1]) {
2487 if (tmp > pos && tmp < next) {
2488 next = tmp;
2489 }
2490 }
2491
2492 return next - pos;
2493 }
2494
2495 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
2496 {
2497 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
2498 }
2499
2500 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
2501 uint16_t val, uint16_t mask)
2502 {
2503 vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
2504 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
2505 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
2506 }
2507
2508 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
2509 {
2510 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
2511 }
2512
2513 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
2514 uint32_t val, uint32_t mask)
2515 {
2516 vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
2517 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
2518 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
2519 }
2520
2521 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size)
2522 {
2523 uint16_t flags;
2524 uint8_t type;
2525
2526 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
2527 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
2528
2529 if (type != PCI_EXP_TYPE_ENDPOINT &&
2530 type != PCI_EXP_TYPE_LEG_END &&
2531 type != PCI_EXP_TYPE_RC_END) {
2532
2533 error_report("vfio: Assignment of PCIe type 0x%x "
2534 "devices is not currently supported", type);
2535 return -EINVAL;
2536 }
2537
2538 if (!pci_bus_is_express(vdev->pdev.bus)) {
2539 /*
2540 * Use express capability as-is on PCI bus. It doesn't make much
2541 * sense to even expose, but some drivers (ex. tg3) depend on it
2542 * and guests don't seem to be particular about it. We'll need
2543 * to revist this or force express devices to express buses if we
2544 * ever expose an IOMMU to the guest.
2545 */
2546 } else if (pci_bus_is_root(vdev->pdev.bus)) {
2547 /*
2548 * On a Root Complex bus Endpoints become Root Complex Integrated
2549 * Endpoints, which changes the type and clears the LNK & LNK2 fields.
2550 */
2551 if (type == PCI_EXP_TYPE_ENDPOINT) {
2552 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2553 PCI_EXP_TYPE_RC_END << 4,
2554 PCI_EXP_FLAGS_TYPE);
2555
2556 /* Link Capabilities, Status, and Control goes away */
2557 if (size > PCI_EXP_LNKCTL) {
2558 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
2559 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2560 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
2561
2562 #ifndef PCI_EXP_LNKCAP2
2563 #define PCI_EXP_LNKCAP2 44
2564 #endif
2565 #ifndef PCI_EXP_LNKSTA2
2566 #define PCI_EXP_LNKSTA2 50
2567 #endif
2568 /* Link 2 Capabilities, Status, and Control goes away */
2569 if (size > PCI_EXP_LNKCAP2) {
2570 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
2571 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
2572 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
2573 }
2574 }
2575
2576 } else if (type == PCI_EXP_TYPE_LEG_END) {
2577 /*
2578 * Legacy endpoints don't belong on the root complex. Windows
2579 * seems to be happier with devices if we skip the capability.
2580 */
2581 return 0;
2582 }
2583
2584 } else {
2585 /*
2586 * Convert Root Complex Integrated Endpoints to regular endpoints.
2587 * These devices don't support LNK/LNK2 capabilities, so make them up.
2588 */
2589 if (type == PCI_EXP_TYPE_RC_END) {
2590 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2591 PCI_EXP_TYPE_ENDPOINT << 4,
2592 PCI_EXP_FLAGS_TYPE);
2593 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
2594 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
2595 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2596 }
2597
2598 /* Mark the Link Status bits as emulated to allow virtual negotiation */
2599 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
2600 pci_get_word(vdev->pdev.config + pos +
2601 PCI_EXP_LNKSTA),
2602 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
2603 }
2604
2605 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
2606 if (pos >= 0) {
2607 vdev->pdev.exp.exp_cap = pos;
2608 }
2609
2610 return pos;
2611 }
2612
2613 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
2614 {
2615 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
2616
2617 if (cap & PCI_EXP_DEVCAP_FLR) {
2618 trace_vfio_check_pcie_flr(vdev->vbasedev.name);
2619 vdev->has_flr = true;
2620 }
2621 }
2622
2623 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
2624 {
2625 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
2626
2627 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
2628 trace_vfio_check_pm_reset(vdev->vbasedev.name);
2629 vdev->has_pm_reset = true;
2630 }
2631 }
2632
2633 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
2634 {
2635 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
2636
2637 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
2638 trace_vfio_check_af_flr(vdev->vbasedev.name);
2639 vdev->has_flr = true;
2640 }
2641 }
2642
2643 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos)
2644 {
2645 PCIDevice *pdev = &vdev->pdev;
2646 uint8_t cap_id, next, size;
2647 int ret;
2648
2649 cap_id = pdev->config[pos];
2650 next = pdev->config[pos + 1];
2651
2652 /*
2653 * If it becomes important to configure capabilities to their actual
2654 * size, use this as the default when it's something we don't recognize.
2655 * Since QEMU doesn't actually handle many of the config accesses,
2656 * exact size doesn't seem worthwhile.
2657 */
2658 size = vfio_std_cap_max_size(pdev, pos);
2659
2660 /*
2661 * pci_add_capability always inserts the new capability at the head
2662 * of the chain. Therefore to end up with a chain that matches the
2663 * physical device, we insert from the end by making this recursive.
2664 * This is also why we pre-caclulate size above as cached config space
2665 * will be changed as we unwind the stack.
2666 */
2667 if (next) {
2668 ret = vfio_add_std_cap(vdev, next);
2669 if (ret) {
2670 return ret;
2671 }
2672 } else {
2673 /* Begin the rebuild, use QEMU emulated list bits */
2674 pdev->config[PCI_CAPABILITY_LIST] = 0;
2675 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
2676 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
2677 }
2678
2679 /* Use emulated next pointer to allow dropping caps */
2680 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff);
2681
2682 switch (cap_id) {
2683 case PCI_CAP_ID_MSI:
2684 ret = vfio_setup_msi(vdev, pos);
2685 break;
2686 case PCI_CAP_ID_EXP:
2687 vfio_check_pcie_flr(vdev, pos);
2688 ret = vfio_setup_pcie_cap(vdev, pos, size);
2689 break;
2690 case PCI_CAP_ID_MSIX:
2691 ret = vfio_setup_msix(vdev, pos);
2692 break;
2693 case PCI_CAP_ID_PM:
2694 vfio_check_pm_reset(vdev, pos);
2695 vdev->pm_cap = pos;
2696 ret = pci_add_capability(pdev, cap_id, pos, size);
2697 break;
2698 case PCI_CAP_ID_AF:
2699 vfio_check_af_flr(vdev, pos);
2700 ret = pci_add_capability(pdev, cap_id, pos, size);
2701 break;
2702 default:
2703 ret = pci_add_capability(pdev, cap_id, pos, size);
2704 break;
2705 }
2706
2707 if (ret < 0) {
2708 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
2709 "0x%x[0x%x]@0x%x: %d", vdev->host.domain,
2710 vdev->host.bus, vdev->host.slot, vdev->host.function,
2711 cap_id, size, pos, ret);
2712 return ret;
2713 }
2714
2715 return 0;
2716 }
2717
2718 static int vfio_add_capabilities(VFIOPCIDevice *vdev)
2719 {
2720 PCIDevice *pdev = &vdev->pdev;
2721
2722 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
2723 !pdev->config[PCI_CAPABILITY_LIST]) {
2724 return 0; /* Nothing to add */
2725 }
2726
2727 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
2728 }
2729
2730 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
2731 {
2732 PCIDevice *pdev = &vdev->pdev;
2733 uint16_t cmd;
2734
2735 vfio_disable_interrupts(vdev);
2736
2737 /* Make sure the device is in D0 */
2738 if (vdev->pm_cap) {
2739 uint16_t pmcsr;
2740 uint8_t state;
2741
2742 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2743 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2744 if (state) {
2745 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2746 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
2747 /* vfio handles the necessary delay here */
2748 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2749 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2750 if (state) {
2751 error_report("vfio: Unable to power on device, stuck in D%d",
2752 state);
2753 }
2754 }
2755 }
2756
2757 /*
2758 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
2759 * Also put INTx Disable in known state.
2760 */
2761 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
2762 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
2763 PCI_COMMAND_INTX_DISABLE);
2764 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
2765 }
2766
2767 static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
2768 {
2769 vfio_enable_intx(vdev);
2770 }
2771
2772 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1,
2773 PCIHostDeviceAddress *host2)
2774 {
2775 return (host1->domain == host2->domain && host1->bus == host2->bus &&
2776 host1->slot == host2->slot && host1->function == host2->function);
2777 }
2778
2779 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
2780 {
2781 VFIOGroup *group;
2782 struct vfio_pci_hot_reset_info *info;
2783 struct vfio_pci_dependent_device *devices;
2784 struct vfio_pci_hot_reset *reset;
2785 int32_t *fds;
2786 int ret, i, count;
2787 bool multi = false;
2788
2789 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
2790
2791 vfio_pci_pre_reset(vdev);
2792 vdev->vbasedev.needs_reset = false;
2793
2794 info = g_malloc0(sizeof(*info));
2795 info->argsz = sizeof(*info);
2796
2797 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2798 if (ret && errno != ENOSPC) {
2799 ret = -errno;
2800 if (!vdev->has_pm_reset) {
2801 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, "
2802 "no available reset mechanism.", vdev->host.domain,
2803 vdev->host.bus, vdev->host.slot, vdev->host.function);
2804 }
2805 goto out_single;
2806 }
2807
2808 count = info->count;
2809 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
2810 info->argsz = sizeof(*info) + (count * sizeof(*devices));
2811 devices = &info->devices[0];
2812
2813 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2814 if (ret) {
2815 ret = -errno;
2816 error_report("vfio: hot reset info failed: %m");
2817 goto out_single;
2818 }
2819
2820 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
2821
2822 /* Verify that we have all the groups required */
2823 for (i = 0; i < info->count; i++) {
2824 PCIHostDeviceAddress host;
2825 VFIOPCIDevice *tmp;
2826 VFIODevice *vbasedev_iter;
2827
2828 host.domain = devices[i].segment;
2829 host.bus = devices[i].bus;
2830 host.slot = PCI_SLOT(devices[i].devfn);
2831 host.function = PCI_FUNC(devices[i].devfn);
2832
2833 trace_vfio_pci_hot_reset_dep_devices(host.domain,
2834 host.bus, host.slot, host.function, devices[i].group_id);
2835
2836 if (vfio_pci_host_match(&host, &vdev->host)) {
2837 continue;
2838 }
2839
2840 QLIST_FOREACH(group, &vfio_group_list, next) {
2841 if (group->groupid == devices[i].group_id) {
2842 break;
2843 }
2844 }
2845
2846 if (!group) {
2847 if (!vdev->has_pm_reset) {
2848 error_report("vfio: Cannot reset device %s, "
2849 "depends on group %d which is not owned.",
2850 vdev->vbasedev.name, devices[i].group_id);
2851 }
2852 ret = -EPERM;
2853 goto out;
2854 }
2855
2856 /* Prep dependent devices for reset and clear our marker. */
2857 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2858 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2859 continue;
2860 }
2861 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2862 if (vfio_pci_host_match(&host, &tmp->host)) {
2863 if (single) {
2864 ret = -EINVAL;
2865 goto out_single;
2866 }
2867 vfio_pci_pre_reset(tmp);
2868 tmp->vbasedev.needs_reset = false;
2869 multi = true;
2870 break;
2871 }
2872 }
2873 }
2874
2875 if (!single && !multi) {
2876 ret = -EINVAL;
2877 goto out_single;
2878 }
2879
2880 /* Determine how many group fds need to be passed */
2881 count = 0;
2882 QLIST_FOREACH(group, &vfio_group_list, next) {
2883 for (i = 0; i < info->count; i++) {
2884 if (group->groupid == devices[i].group_id) {
2885 count++;
2886 break;
2887 }
2888 }
2889 }
2890
2891 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
2892 reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
2893 fds = &reset->group_fds[0];
2894
2895 /* Fill in group fds */
2896 QLIST_FOREACH(group, &vfio_group_list, next) {
2897 for (i = 0; i < info->count; i++) {
2898 if (group->groupid == devices[i].group_id) {
2899 fds[reset->count++] = group->fd;
2900 break;
2901 }
2902 }
2903 }
2904
2905 /* Bus reset! */
2906 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
2907 g_free(reset);
2908
2909 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
2910 ret ? "%m" : "Success");
2911
2912 out:
2913 /* Re-enable INTx on affected devices */
2914 for (i = 0; i < info->count; i++) {
2915 PCIHostDeviceAddress host;
2916 VFIOPCIDevice *tmp;
2917 VFIODevice *vbasedev_iter;
2918
2919 host.domain = devices[i].segment;
2920 host.bus = devices[i].bus;
2921 host.slot = PCI_SLOT(devices[i].devfn);
2922 host.function = PCI_FUNC(devices[i].devfn);
2923
2924 if (vfio_pci_host_match(&host, &vdev->host)) {
2925 continue;
2926 }
2927
2928 QLIST_FOREACH(group, &vfio_group_list, next) {
2929 if (group->groupid == devices[i].group_id) {
2930 break;
2931 }
2932 }
2933
2934 if (!group) {
2935 break;
2936 }
2937
2938 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2939 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2940 continue;
2941 }
2942 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2943 if (vfio_pci_host_match(&host, &tmp->host)) {
2944 vfio_pci_post_reset(tmp);
2945 break;
2946 }
2947 }
2948 }
2949 out_single:
2950 vfio_pci_post_reset(vdev);
2951 g_free(info);
2952
2953 return ret;
2954 }
2955
2956 /*
2957 * We want to differentiate hot reset of mulitple in-use devices vs hot reset
2958 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case
2959 * of doing hot resets when there is only a single device per bus. The in-use
2960 * here refers to how many VFIODevices are affected. A hot reset that affects
2961 * multiple devices, but only a single in-use device, means that we can call
2962 * it from our bus ->reset() callback since the extent is effectively a single
2963 * device. This allows us to make use of it in the hotplug path. When there
2964 * are multiple in-use devices, we can only trigger the hot reset during a
2965 * system reset and thus from our reset handler. We separate _one vs _multi
2966 * here so that we don't overlap and do a double reset on the system reset
2967 * path where both our reset handler and ->reset() callback are used. Calling
2968 * _one() will only do a hot reset for the one in-use devices case, calling
2969 * _multi() will do nothing if a _one() would have been sufficient.
2970 */
2971 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
2972 {
2973 return vfio_pci_hot_reset(vdev, true);
2974 }
2975
2976 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
2977 {
2978 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2979 return vfio_pci_hot_reset(vdev, false);
2980 }
2981
2982 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
2983 {
2984 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2985 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
2986 vbasedev->needs_reset = true;
2987 }
2988 }
2989
2990 static VFIODeviceOps vfio_pci_ops = {
2991 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
2992 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
2993 .vfio_eoi = vfio_eoi,
2994 };
2995
2996 static int vfio_populate_device(VFIOPCIDevice *vdev)
2997 {
2998 VFIODevice *vbasedev = &vdev->vbasedev;
2999 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
3000 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
3001 int i, ret = -1;
3002
3003 /* Sanity check device */
3004 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
3005 error_report("vfio: Um, this isn't a PCI device");
3006 goto error;
3007 }
3008
3009 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
3010 error_report("vfio: unexpected number of io regions %u",
3011 vbasedev->num_regions);
3012 goto error;
3013 }
3014
3015 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
3016 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs);
3017 goto error;
3018 }
3019
3020 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
3021 reg_info.index = i;
3022
3023 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3024 if (ret) {
3025 error_report("vfio: Error getting region %d info: %m", i);
3026 goto error;
3027 }
3028
3029 trace_vfio_populate_device_region(vbasedev->name, i,
3030 (unsigned long)reg_info.size,
3031 (unsigned long)reg_info.offset,
3032 (unsigned long)reg_info.flags);
3033
3034 vdev->bars[i].region.vbasedev = vbasedev;
3035 vdev->bars[i].region.flags = reg_info.flags;
3036 vdev->bars[i].region.size = reg_info.size;
3037 vdev->bars[i].region.fd_offset = reg_info.offset;
3038 vdev->bars[i].region.nr = i;
3039 QLIST_INIT(&vdev->bars[i].quirks);
3040 }
3041
3042 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
3043
3044 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3045 if (ret) {
3046 error_report("vfio: Error getting config info: %m");
3047 goto error;
3048 }
3049
3050 trace_vfio_populate_device_config(vdev->vbasedev.name,
3051 (unsigned long)reg_info.size,
3052 (unsigned long)reg_info.offset,
3053 (unsigned long)reg_info.flags);
3054
3055 vdev->config_size = reg_info.size;
3056 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
3057 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
3058 }
3059 vdev->config_offset = reg_info.offset;
3060
3061 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) &&
3062 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) {
3063 struct vfio_region_info vga_info = {
3064 .argsz = sizeof(vga_info),
3065 .index = VFIO_PCI_VGA_REGION_INDEX,
3066 };
3067
3068 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info);
3069 if (ret) {
3070 error_report(
3071 "vfio: Device does not support requested feature x-vga");
3072 goto error;
3073 }
3074
3075 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) ||
3076 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) ||
3077 vga_info.size < 0xbffff + 1) {
3078 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx",
3079 (unsigned long)vga_info.flags,
3080 (unsigned long)vga_info.size);
3081 goto error;
3082 }
3083
3084 vdev->vga.fd_offset = vga_info.offset;
3085 vdev->vga.fd = vdev->vbasedev.fd;
3086
3087 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
3088 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
3089 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks);
3090
3091 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
3092 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
3093 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks);
3094
3095 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
3096 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
3097 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks);
3098
3099 vdev->has_vga = true;
3100 }
3101
3102 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
3103
3104 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
3105 if (ret) {
3106 /* This can fail for an old kernel or legacy PCI dev */
3107 trace_vfio_populate_device_get_irq_info_failure();
3108 ret = 0;
3109 } else if (irq_info.count == 1) {
3110 vdev->pci_aer = true;
3111 } else {
3112 error_report("vfio: %s "
3113 "Could not enable error recovery for the device",
3114 vbasedev->name);
3115 }
3116
3117 error:
3118 return ret;
3119 }
3120
3121 static void vfio_put_device(VFIOPCIDevice *vdev)
3122 {
3123 g_free(vdev->vbasedev.name);
3124 if (vdev->msix) {
3125 object_unparent(OBJECT(&vdev->msix->mmap_mem));
3126 g_free(vdev->msix);
3127 vdev->msix = NULL;
3128 }
3129 vfio_put_base_device(&vdev->vbasedev);
3130 }
3131
3132 static void vfio_err_notifier_handler(void *opaque)
3133 {
3134 VFIOPCIDevice *vdev = opaque;
3135
3136 if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
3137 return;
3138 }
3139
3140 /*
3141 * TBD. Retrieve the error details and decide what action
3142 * needs to be taken. One of the actions could be to pass
3143 * the error to the guest and have the guest driver recover
3144 * from the error. This requires that PCIe capabilities be
3145 * exposed to the guest. For now, we just terminate the
3146 * guest to contain the error.
3147 */
3148
3149 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. "
3150 "Please collect any data possible and then kill the guest",
3151 __func__, vdev->host.domain, vdev->host.bus,
3152 vdev->host.slot, vdev->host.function);
3153
3154 vm_stop(RUN_STATE_INTERNAL_ERROR);
3155 }
3156
3157 /*
3158 * Registers error notifier for devices supporting error recovery.
3159 * If we encounter a failure in this function, we report an error
3160 * and continue after disabling error recovery support for the
3161 * device.
3162 */
3163 static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
3164 {
3165 int ret;
3166 int argsz;
3167 struct vfio_irq_set *irq_set;
3168 int32_t *pfd;
3169
3170 if (!vdev->pci_aer) {
3171 return;
3172 }
3173
3174 if (event_notifier_init(&vdev->err_notifier, 0)) {
3175 error_report("vfio: Unable to init event notifier for error detection");
3176 vdev->pci_aer = false;
3177 return;
3178 }
3179
3180 argsz = sizeof(*irq_set) + sizeof(*pfd);
3181
3182 irq_set = g_malloc0(argsz);
3183 irq_set->argsz = argsz;
3184 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3185 VFIO_IRQ_SET_ACTION_TRIGGER;
3186 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3187 irq_set->start = 0;
3188 irq_set->count = 1;
3189 pfd = (int32_t *)&irq_set->data;
3190
3191 *pfd = event_notifier_get_fd(&vdev->err_notifier);
3192 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
3193
3194 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3195 if (ret) {
3196 error_report("vfio: Failed to set up error notification");
3197 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3198 event_notifier_cleanup(&vdev->err_notifier);
3199 vdev->pci_aer = false;
3200 }
3201 g_free(irq_set);
3202 }
3203
3204 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
3205 {
3206 int argsz;
3207 struct vfio_irq_set *irq_set;
3208 int32_t *pfd;
3209 int ret;
3210
3211 if (!vdev->pci_aer) {
3212 return;
3213 }
3214
3215 argsz = sizeof(*irq_set) + sizeof(*pfd);
3216
3217 irq_set = g_malloc0(argsz);
3218 irq_set->argsz = argsz;
3219 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3220 VFIO_IRQ_SET_ACTION_TRIGGER;
3221 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3222 irq_set->start = 0;
3223 irq_set->count = 1;
3224 pfd = (int32_t *)&irq_set->data;
3225 *pfd = -1;
3226
3227 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3228 if (ret) {
3229 error_report("vfio: Failed to de-assign error fd: %m");
3230 }
3231 g_free(irq_set);
3232 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
3233 NULL, NULL, vdev);
3234 event_notifier_cleanup(&vdev->err_notifier);
3235 }
3236
3237 static void vfio_req_notifier_handler(void *opaque)
3238 {
3239 VFIOPCIDevice *vdev = opaque;
3240
3241 if (!event_notifier_test_and_clear(&vdev->req_notifier)) {
3242 return;
3243 }
3244
3245 qdev_unplug(&vdev->pdev.qdev, NULL);
3246 }
3247
3248 static void vfio_register_req_notifier(VFIOPCIDevice *vdev)
3249 {
3250 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info),
3251 .index = VFIO_PCI_REQ_IRQ_INDEX };
3252 int argsz;
3253 struct vfio_irq_set *irq_set;
3254 int32_t *pfd;
3255
3256 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) {
3257 return;
3258 }
3259
3260 if (ioctl(vdev->vbasedev.fd,
3261 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) {
3262 return;
3263 }
3264
3265 if (event_notifier_init(&vdev->req_notifier, 0)) {
3266 error_report("vfio: Unable to init event notifier for device request");
3267 return;
3268 }
3269
3270 argsz = sizeof(*irq_set) + sizeof(*pfd);
3271
3272 irq_set = g_malloc0(argsz);
3273 irq_set->argsz = argsz;
3274 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3275 VFIO_IRQ_SET_ACTION_TRIGGER;
3276 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3277 irq_set->start = 0;
3278 irq_set->count = 1;
3279 pfd = (int32_t *)&irq_set->data;
3280
3281 *pfd = event_notifier_get_fd(&vdev->req_notifier);
3282 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev);
3283
3284 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3285 error_report("vfio: Failed to set up device request notification");
3286 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3287 event_notifier_cleanup(&vdev->req_notifier);
3288 } else {
3289 vdev->req_enabled = true;
3290 }
3291
3292 g_free(irq_set);
3293 }
3294
3295 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev)
3296 {
3297 int argsz;
3298 struct vfio_irq_set *irq_set;
3299 int32_t *pfd;
3300
3301 if (!vdev->req_enabled) {
3302 return;
3303 }
3304
3305 argsz = sizeof(*irq_set) + sizeof(*pfd);
3306
3307 irq_set = g_malloc0(argsz);
3308 irq_set->argsz = argsz;
3309 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3310 VFIO_IRQ_SET_ACTION_TRIGGER;
3311 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3312 irq_set->start = 0;
3313 irq_set->count = 1;
3314 pfd = (int32_t *)&irq_set->data;
3315 *pfd = -1;
3316
3317 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3318 error_report("vfio: Failed to de-assign device request fd: %m");
3319 }
3320 g_free(irq_set);
3321 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier),
3322 NULL, NULL, vdev);
3323 event_notifier_cleanup(&vdev->req_notifier);
3324
3325 vdev->req_enabled = false;
3326 }
3327
3328 static int vfio_initfn(PCIDevice *pdev)
3329 {
3330 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3331 VFIODevice *vbasedev_iter;
3332 VFIOGroup *group;
3333 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
3334 ssize_t len;
3335 struct stat st;
3336 int groupid;
3337 int ret;
3338
3339 /* Check that the host device exists */
3340 snprintf(path, sizeof(path),
3341 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
3342 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3343 vdev->host.function);
3344 if (stat(path, &st) < 0) {
3345 error_report("vfio: error: no such host device: %s", path);
3346 return -errno;
3347 }
3348
3349 vdev->vbasedev.ops = &vfio_pci_ops;
3350
3351 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
3352 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x",
3353 vdev->host.domain, vdev->host.bus,
3354 vdev->host.slot, vdev->host.function);
3355
3356 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
3357
3358 len = readlink(path, iommu_group_path, sizeof(path));
3359 if (len <= 0 || len >= sizeof(path)) {
3360 error_report("vfio: error no iommu_group for device");
3361 return len < 0 ? -errno : ENAMETOOLONG;
3362 }
3363
3364 iommu_group_path[len] = 0;
3365 group_name = basename(iommu_group_path);
3366
3367 if (sscanf(group_name, "%d", &groupid) != 1) {
3368 error_report("vfio: error reading %s: %m", path);
3369 return -errno;
3370 }
3371
3372 trace_vfio_initfn(vdev->vbasedev.name, groupid);
3373
3374 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev));
3375 if (!group) {
3376 error_report("vfio: failed to get group %d", groupid);
3377 return -ENOENT;
3378 }
3379
3380 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
3381 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3382 vdev->host.function);
3383
3384 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
3385 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
3386 error_report("vfio: error: device %s is already attached", path);
3387 vfio_put_group(group);
3388 return -EBUSY;
3389 }
3390 }
3391
3392 ret = vfio_get_device(group, path, &vdev->vbasedev);
3393 if (ret) {
3394 error_report("vfio: failed to get device %s", path);
3395 vfio_put_group(group);
3396 return ret;
3397 }
3398
3399 ret = vfio_populate_device(vdev);
3400 if (ret) {
3401 return ret;
3402 }
3403
3404 /* Get a copy of config space */
3405 ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
3406 MIN(pci_config_size(&vdev->pdev), vdev->config_size),
3407 vdev->config_offset);
3408 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
3409 ret = ret < 0 ? -errno : -EFAULT;
3410 error_report("vfio: Failed to read device config space");
3411 return ret;
3412 }
3413
3414 /* vfio emulates a lot for us, but some bits need extra love */
3415 vdev->emulated_config_bits = g_malloc0(vdev->config_size);
3416
3417 /* QEMU can choose to expose the ROM or not */
3418 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
3419
3420 /* QEMU can change multi-function devices to single function, or reverse */
3421 vdev->emulated_config_bits[PCI_HEADER_TYPE] =
3422 PCI_HEADER_TYPE_MULTI_FUNCTION;
3423
3424 /* Restore or clear multifunction, this is always controlled by QEMU */
3425 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
3426 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
3427 } else {
3428 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
3429 }
3430
3431 /*
3432 * Clear host resource mapping info. If we choose not to register a
3433 * BAR, such as might be the case with the option ROM, we can get
3434 * confusing, unwritable, residual addresses from the host here.
3435 */
3436 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
3437 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
3438
3439 vfio_pci_size_rom(vdev);
3440
3441 ret = vfio_early_setup_msix(vdev);
3442 if (ret) {
3443 return ret;
3444 }
3445
3446 vfio_map_bars(vdev);
3447
3448 ret = vfio_add_capabilities(vdev);
3449 if (ret) {
3450 goto out_teardown;
3451 }
3452
3453 /* QEMU emulates all of MSI & MSIX */
3454 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
3455 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
3456 MSIX_CAP_LENGTH);
3457 }
3458
3459 if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
3460 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
3461 vdev->msi_cap_size);
3462 }
3463
3464 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
3465 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3466 vfio_intx_mmap_enable, vdev);
3467 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq);
3468 ret = vfio_enable_intx(vdev);
3469 if (ret) {
3470 goto out_teardown;
3471 }
3472 }
3473
3474 vfio_register_err_notifier(vdev);
3475 vfio_register_req_notifier(vdev);
3476
3477 return 0;
3478
3479 out_teardown:
3480 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3481 vfio_teardown_msi(vdev);
3482 vfio_unregister_bars(vdev);
3483 return ret;
3484 }
3485
3486 static void vfio_instance_finalize(Object *obj)
3487 {
3488 PCIDevice *pci_dev = PCI_DEVICE(obj);
3489 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev);
3490 VFIOGroup *group = vdev->vbasedev.group;
3491
3492 vfio_unmap_bars(vdev);
3493 g_free(vdev->emulated_config_bits);
3494 g_free(vdev->rom);
3495 vfio_put_device(vdev);
3496 vfio_put_group(group);
3497 }
3498
3499 static void vfio_exitfn(PCIDevice *pdev)
3500 {
3501 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3502
3503 vfio_unregister_req_notifier(vdev);
3504 vfio_unregister_err_notifier(vdev);
3505 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3506 vfio_disable_interrupts(vdev);
3507 if (vdev->intx.mmap_timer) {
3508 timer_free(vdev->intx.mmap_timer);
3509 }
3510 vfio_teardown_msi(vdev);
3511 vfio_unregister_bars(vdev);
3512 }
3513
3514 static void vfio_pci_reset(DeviceState *dev)
3515 {
3516 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
3517 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3518
3519 trace_vfio_pci_reset(vdev->vbasedev.name);
3520
3521 vfio_pci_pre_reset(vdev);
3522
3523 if (vdev->vbasedev.reset_works &&
3524 (vdev->has_flr || !vdev->has_pm_reset) &&
3525 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3526 trace_vfio_pci_reset_flr(vdev->vbasedev.name);
3527 goto post_reset;
3528 }
3529
3530 /* See if we can do our own bus reset */
3531 if (!vfio_pci_hot_reset_one(vdev)) {
3532 goto post_reset;
3533 }
3534
3535 /* If nothing else works and the device supports PM reset, use it */
3536 if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
3537 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3538 trace_vfio_pci_reset_pm(vdev->vbasedev.name);
3539 goto post_reset;
3540 }
3541
3542 post_reset:
3543 vfio_pci_post_reset(vdev);
3544 }
3545
3546 static void vfio_instance_init(Object *obj)
3547 {
3548 PCIDevice *pci_dev = PCI_DEVICE(obj);
3549 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
3550
3551 device_add_bootindex_property(obj, &vdev->bootindex,
3552 "bootindex", NULL,
3553 &pci_dev->qdev, NULL);
3554 }
3555
3556 static Property vfio_pci_dev_properties[] = {
3557 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
3558 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
3559 intx.mmap_timeout, 1100),
3560 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
3561 VFIO_FEATURE_ENABLE_VGA_BIT, false),
3562 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features,
3563 VFIO_FEATURE_ENABLE_REQ_BIT, true),
3564 DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1),
3565 DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true),
3566 /*
3567 * TODO - support passed fds... is this necessary?
3568 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
3569 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
3570 */
3571 DEFINE_PROP_END_OF_LIST(),
3572 };
3573
3574 static const VMStateDescription vfio_pci_vmstate = {
3575 .name = "vfio-pci",
3576 .unmigratable = 1,
3577 };
3578
3579 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
3580 {
3581 DeviceClass *dc = DEVICE_CLASS(klass);
3582 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
3583
3584 dc->reset = vfio_pci_reset;
3585 dc->props = vfio_pci_dev_properties;
3586 dc->vmsd = &vfio_pci_vmstate;
3587 dc->desc = "VFIO-based PCI device assignment";
3588 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3589 pdc->init = vfio_initfn;
3590 pdc->exit = vfio_exitfn;
3591 pdc->config_read = vfio_pci_read_config;
3592 pdc->config_write = vfio_pci_write_config;
3593 pdc->is_express = 1; /* We might be */
3594 }
3595
3596 static const TypeInfo vfio_pci_dev_info = {
3597 .name = "vfio-pci",
3598 .parent = TYPE_PCI_DEVICE,
3599 .instance_size = sizeof(VFIOPCIDevice),
3600 .class_init = vfio_pci_dev_class_init,
3601 .instance_init = vfio_instance_init,
3602 .instance_finalize = vfio_instance_finalize,
3603 };
3604
3605 static void register_vfio_pci_dev_type(void)
3606 {
3607 type_register_static(&vfio_pci_dev_info);
3608 }
3609
3610 type_init(register_vfio_pci_dev_type)