]> git.proxmox.com Git - mirror_qemu.git/blob - hw/vfio/pci.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / vfio / pci.c
1 /*
2 * vfio based device assignment support
3 *
4 * Copyright Red Hat, Inc. 2012
5 *
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
19 */
20
21 #include <dirent.h>
22 #include <linux/vfio.h>
23 #include <sys/ioctl.h>
24 #include <sys/mman.h>
25 #include <sys/stat.h>
26 #include <sys/types.h>
27 #include <unistd.h>
28
29 #include "config.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci.h"
35 #include "qemu-common.h"
36 #include "qemu/error-report.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/queue.h"
39 #include "qemu/range.h"
40 #include "sysemu/kvm.h"
41 #include "sysemu/sysemu.h"
42 #include "trace.h"
43 #include "hw/vfio/vfio.h"
44 #include "hw/vfio/vfio-common.h"
45
46 struct VFIOPCIDevice;
47
48 typedef struct VFIOQuirk {
49 MemoryRegion mem;
50 struct VFIOPCIDevice *vdev;
51 QLIST_ENTRY(VFIOQuirk) next;
52 struct {
53 uint32_t base_offset:TARGET_PAGE_BITS;
54 uint32_t address_offset:TARGET_PAGE_BITS;
55 uint32_t address_size:3;
56 uint32_t bar:3;
57
58 uint32_t address_match;
59 uint32_t address_mask;
60
61 uint32_t address_val:TARGET_PAGE_BITS;
62 uint32_t data_offset:TARGET_PAGE_BITS;
63 uint32_t data_size:3;
64
65 uint8_t flags;
66 uint8_t read_flags;
67 uint8_t write_flags;
68 } data;
69 } VFIOQuirk;
70
71 typedef struct VFIOBAR {
72 VFIORegion region;
73 bool ioport;
74 bool mem64;
75 QLIST_HEAD(, VFIOQuirk) quirks;
76 } VFIOBAR;
77
78 typedef struct VFIOVGARegion {
79 MemoryRegion mem;
80 off_t offset;
81 int nr;
82 QLIST_HEAD(, VFIOQuirk) quirks;
83 } VFIOVGARegion;
84
85 typedef struct VFIOVGA {
86 off_t fd_offset;
87 int fd;
88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS];
89 } VFIOVGA;
90
91 typedef struct VFIOINTx {
92 bool pending; /* interrupt pending */
93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */
94 uint8_t pin; /* which pin to pull for qemu_set_irq */
95 EventNotifier interrupt; /* eventfd triggered on interrupt */
96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
97 PCIINTxRoute route; /* routing info for QEMU bypass */
98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
100 } VFIOINTx;
101
102 typedef struct VFIOMSIVector {
103 /*
104 * Two interrupt paths are configured per vector. The first, is only used
105 * for interrupts injected via QEMU. This is typically the non-accel path,
106 * but may also be used when we want QEMU to handle masking and pending
107 * bits. The KVM path bypasses QEMU and is therefore higher performance,
108 * but requires masking at the device. virq is used to track the MSI route
109 * through KVM, thus kvm_interrupt is only available when virq is set to a
110 * valid (>= 0) value.
111 */
112 EventNotifier interrupt;
113 EventNotifier kvm_interrupt;
114 struct VFIOPCIDevice *vdev; /* back pointer to device */
115 int virq;
116 bool use;
117 } VFIOMSIVector;
118
119 enum {
120 VFIO_INT_NONE = 0,
121 VFIO_INT_INTx = 1,
122 VFIO_INT_MSI = 2,
123 VFIO_INT_MSIX = 3,
124 };
125
126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
127 typedef struct VFIOMSIXInfo {
128 uint8_t table_bar;
129 uint8_t pba_bar;
130 uint16_t entries;
131 uint32_t table_offset;
132 uint32_t pba_offset;
133 MemoryRegion mmap_mem;
134 void *mmap;
135 } VFIOMSIXInfo;
136
137 typedef struct VFIOPCIDevice {
138 PCIDevice pdev;
139 VFIODevice vbasedev;
140 VFIOINTx intx;
141 unsigned int config_size;
142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */
143 off_t config_offset; /* Offset of config space region within device fd */
144 unsigned int rom_size;
145 off_t rom_offset; /* Offset of ROM region within device fd */
146 void *rom;
147 int msi_cap_size;
148 VFIOMSIVector *msi_vectors;
149 VFIOMSIXInfo *msix;
150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
151 int interrupt; /* Current interrupt type */
152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */
154 PCIHostDeviceAddress host;
155 EventNotifier err_notifier;
156 EventNotifier req_notifier;
157 int (*resetfn)(struct VFIOPCIDevice *);
158 uint32_t features;
159 #define VFIO_FEATURE_ENABLE_VGA_BIT 0
160 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT)
161 #define VFIO_FEATURE_ENABLE_REQ_BIT 1
162 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT)
163 int32_t bootindex;
164 uint8_t pm_cap;
165 bool has_vga;
166 bool pci_aer;
167 bool req_enabled;
168 bool has_flr;
169 bool has_pm_reset;
170 bool rom_read_failed;
171 } VFIOPCIDevice;
172
173 typedef struct VFIORomBlacklistEntry {
174 uint16_t vendor_id;
175 uint16_t device_id;
176 } VFIORomBlacklistEntry;
177
178 /*
179 * List of device ids/vendor ids for which to disable
180 * option rom loading. This avoids the guest hangs during rom
181 * execution as noticed with the BCM 57810 card for lack of a
182 * more better way to handle such issues.
183 * The user can still override by specifying a romfile or
184 * rombar=1.
185 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
186 * for an analysis of the 57810 card hang. When adding
187 * a new vendor id/device id combination below, please also add
188 * your card/environment details and information that could
189 * help in debugging to the bug tracking this issue
190 */
191 static const VFIORomBlacklistEntry romblacklist[] = {
192 /* Broadcom BCM 57810 */
193 { 0x14e4, 0x168e }
194 };
195
196 #define MSIX_CAP_LENGTH 12
197
198 static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
199 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
200 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
201 uint32_t val, int len);
202 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
203
204 /*
205 * Disabling BAR mmaping can be slow, but toggling it around INTx can
206 * also be a huge overhead. We try to get the best of both worlds by
207 * waiting until an interrupt to disable mmaps (subsequent transitions
208 * to the same state are effectively no overhead). If the interrupt has
209 * been serviced and the time gap is long enough, we re-enable mmaps for
210 * performance. This works well for things like graphics cards, which
211 * may not use their interrupt at all and are penalized to an unusable
212 * level by read/write BAR traps. Other devices, like NICs, have more
213 * regular interrupts and see much better latency by staying in non-mmap
214 * mode. We therefore set the default mmap_timeout such that a ping
215 * is just enough to keep the mmap disabled. Users can experiment with
216 * other options with the x-intx-mmap-timeout-ms parameter (a value of
217 * zero disables the timer).
218 */
219 static void vfio_intx_mmap_enable(void *opaque)
220 {
221 VFIOPCIDevice *vdev = opaque;
222
223 if (vdev->intx.pending) {
224 timer_mod(vdev->intx.mmap_timer,
225 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
226 return;
227 }
228
229 vfio_mmap_set_enabled(vdev, true);
230 }
231
232 static void vfio_intx_interrupt(void *opaque)
233 {
234 VFIOPCIDevice *vdev = opaque;
235
236 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
237 return;
238 }
239
240 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
241
242 vdev->intx.pending = true;
243 pci_irq_assert(&vdev->pdev);
244 vfio_mmap_set_enabled(vdev, false);
245 if (vdev->intx.mmap_timeout) {
246 timer_mod(vdev->intx.mmap_timer,
247 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
248 }
249 }
250
251 static void vfio_eoi(VFIODevice *vbasedev)
252 {
253 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
254
255 if (!vdev->intx.pending) {
256 return;
257 }
258
259 trace_vfio_eoi(vbasedev->name);
260
261 vdev->intx.pending = false;
262 pci_irq_deassert(&vdev->pdev);
263 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
264 }
265
266 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev)
267 {
268 #ifdef CONFIG_KVM
269 struct kvm_irqfd irqfd = {
270 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
271 .gsi = vdev->intx.route.irq,
272 .flags = KVM_IRQFD_FLAG_RESAMPLE,
273 };
274 struct vfio_irq_set *irq_set;
275 int ret, argsz;
276 int32_t *pfd;
277
278 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() ||
279 vdev->intx.route.mode != PCI_INTX_ENABLED ||
280 !kvm_resamplefds_enabled()) {
281 return;
282 }
283
284 /* Get to a known interrupt state */
285 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
286 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
287 vdev->intx.pending = false;
288 pci_irq_deassert(&vdev->pdev);
289
290 /* Get an eventfd for resample/unmask */
291 if (event_notifier_init(&vdev->intx.unmask, 0)) {
292 error_report("vfio: Error: event_notifier_init failed eoi");
293 goto fail;
294 }
295
296 /* KVM triggers it, VFIO listens for it */
297 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
298
299 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
300 error_report("vfio: Error: Failed to setup resample irqfd: %m");
301 goto fail_irqfd;
302 }
303
304 argsz = sizeof(*irq_set) + sizeof(*pfd);
305
306 irq_set = g_malloc0(argsz);
307 irq_set->argsz = argsz;
308 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
309 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
310 irq_set->start = 0;
311 irq_set->count = 1;
312 pfd = (int32_t *)&irq_set->data;
313
314 *pfd = irqfd.resamplefd;
315
316 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
317 g_free(irq_set);
318 if (ret) {
319 error_report("vfio: Error: Failed to setup INTx unmask fd: %m");
320 goto fail_vfio;
321 }
322
323 /* Let'em rip */
324 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
325
326 vdev->intx.kvm_accel = true;
327
328 trace_vfio_enable_intx_kvm(vdev->vbasedev.name);
329
330 return;
331
332 fail_vfio:
333 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
334 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
335 fail_irqfd:
336 event_notifier_cleanup(&vdev->intx.unmask);
337 fail:
338 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
339 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
340 #endif
341 }
342
343 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev)
344 {
345 #ifdef CONFIG_KVM
346 struct kvm_irqfd irqfd = {
347 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
348 .gsi = vdev->intx.route.irq,
349 .flags = KVM_IRQFD_FLAG_DEASSIGN,
350 };
351
352 if (!vdev->intx.kvm_accel) {
353 return;
354 }
355
356 /*
357 * Get to a known state, hardware masked, QEMU ready to accept new
358 * interrupts, QEMU IRQ de-asserted.
359 */
360 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
361 vdev->intx.pending = false;
362 pci_irq_deassert(&vdev->pdev);
363
364 /* Tell KVM to stop listening for an INTx irqfd */
365 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
366 error_report("vfio: Error: Failed to disable INTx irqfd: %m");
367 }
368
369 /* We only need to close the eventfd for VFIO to cleanup the kernel side */
370 event_notifier_cleanup(&vdev->intx.unmask);
371
372 /* QEMU starts listening for interrupt events. */
373 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
374
375 vdev->intx.kvm_accel = false;
376
377 /* If we've missed an event, let it re-fire through QEMU */
378 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
379
380 trace_vfio_disable_intx_kvm(vdev->vbasedev.name);
381 #endif
382 }
383
384 static void vfio_update_irq(PCIDevice *pdev)
385 {
386 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
387 PCIINTxRoute route;
388
389 if (vdev->interrupt != VFIO_INT_INTx) {
390 return;
391 }
392
393 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
394
395 if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
396 return; /* Nothing changed */
397 }
398
399 trace_vfio_update_irq(vdev->vbasedev.name,
400 vdev->intx.route.irq, route.irq);
401
402 vfio_disable_intx_kvm(vdev);
403
404 vdev->intx.route = route;
405
406 if (route.mode != PCI_INTX_ENABLED) {
407 return;
408 }
409
410 vfio_enable_intx_kvm(vdev);
411
412 /* Re-enable the interrupt in cased we missed an EOI */
413 vfio_eoi(&vdev->vbasedev);
414 }
415
416 static int vfio_enable_intx(VFIOPCIDevice *vdev)
417 {
418 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
419 int ret, argsz;
420 struct vfio_irq_set *irq_set;
421 int32_t *pfd;
422
423 if (!pin) {
424 return 0;
425 }
426
427 vfio_disable_interrupts(vdev);
428
429 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
430 pci_config_set_interrupt_pin(vdev->pdev.config, pin);
431
432 #ifdef CONFIG_KVM
433 /*
434 * Only conditional to avoid generating error messages on platforms
435 * where we won't actually use the result anyway.
436 */
437 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
438 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
439 vdev->intx.pin);
440 }
441 #endif
442
443 ret = event_notifier_init(&vdev->intx.interrupt, 0);
444 if (ret) {
445 error_report("vfio: Error: event_notifier_init failed");
446 return ret;
447 }
448
449 argsz = sizeof(*irq_set) + sizeof(*pfd);
450
451 irq_set = g_malloc0(argsz);
452 irq_set->argsz = argsz;
453 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
454 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
455 irq_set->start = 0;
456 irq_set->count = 1;
457 pfd = (int32_t *)&irq_set->data;
458
459 *pfd = event_notifier_get_fd(&vdev->intx.interrupt);
460 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
461
462 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
463 g_free(irq_set);
464 if (ret) {
465 error_report("vfio: Error: Failed to setup INTx fd: %m");
466 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
467 event_notifier_cleanup(&vdev->intx.interrupt);
468 return -errno;
469 }
470
471 vfio_enable_intx_kvm(vdev);
472
473 vdev->interrupt = VFIO_INT_INTx;
474
475 trace_vfio_enable_intx(vdev->vbasedev.name);
476
477 return 0;
478 }
479
480 static void vfio_disable_intx(VFIOPCIDevice *vdev)
481 {
482 int fd;
483
484 timer_del(vdev->intx.mmap_timer);
485 vfio_disable_intx_kvm(vdev);
486 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
487 vdev->intx.pending = false;
488 pci_irq_deassert(&vdev->pdev);
489 vfio_mmap_set_enabled(vdev, true);
490
491 fd = event_notifier_get_fd(&vdev->intx.interrupt);
492 qemu_set_fd_handler(fd, NULL, NULL, vdev);
493 event_notifier_cleanup(&vdev->intx.interrupt);
494
495 vdev->interrupt = VFIO_INT_NONE;
496
497 trace_vfio_disable_intx(vdev->vbasedev.name);
498 }
499
500 /*
501 * MSI/X
502 */
503 static void vfio_msi_interrupt(void *opaque)
504 {
505 VFIOMSIVector *vector = opaque;
506 VFIOPCIDevice *vdev = vector->vdev;
507 int nr = vector - vdev->msi_vectors;
508
509 if (!event_notifier_test_and_clear(&vector->interrupt)) {
510 return;
511 }
512
513 #ifdef DEBUG_VFIO
514 MSIMessage msg;
515
516 if (vdev->interrupt == VFIO_INT_MSIX) {
517 msg = msix_get_message(&vdev->pdev, nr);
518 } else if (vdev->interrupt == VFIO_INT_MSI) {
519 msg = msi_get_message(&vdev->pdev, nr);
520 } else {
521 abort();
522 }
523
524 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data);
525 #endif
526
527 if (vdev->interrupt == VFIO_INT_MSIX) {
528 msix_notify(&vdev->pdev, nr);
529 } else if (vdev->interrupt == VFIO_INT_MSI) {
530 msi_notify(&vdev->pdev, nr);
531 } else {
532 error_report("vfio: MSI interrupt receieved, but not enabled?");
533 }
534 }
535
536 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
537 {
538 struct vfio_irq_set *irq_set;
539 int ret = 0, i, argsz;
540 int32_t *fds;
541
542 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
543
544 irq_set = g_malloc0(argsz);
545 irq_set->argsz = argsz;
546 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
547 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
548 irq_set->start = 0;
549 irq_set->count = vdev->nr_vectors;
550 fds = (int32_t *)&irq_set->data;
551
552 for (i = 0; i < vdev->nr_vectors; i++) {
553 int fd = -1;
554
555 /*
556 * MSI vs MSI-X - The guest has direct access to MSI mask and pending
557 * bits, therefore we always use the KVM signaling path when setup.
558 * MSI-X mask and pending bits are emulated, so we want to use the
559 * KVM signaling path only when configured and unmasked.
560 */
561 if (vdev->msi_vectors[i].use) {
562 if (vdev->msi_vectors[i].virq < 0 ||
563 (msix && msix_is_masked(&vdev->pdev, i))) {
564 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
565 } else {
566 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
567 }
568 }
569
570 fds[i] = fd;
571 }
572
573 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
574
575 g_free(irq_set);
576
577 return ret;
578 }
579
580 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg,
581 bool msix)
582 {
583 int virq;
584
585 if ((msix && !VFIO_ALLOW_KVM_MSIX) ||
586 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) {
587 return;
588 }
589
590 if (event_notifier_init(&vector->kvm_interrupt, 0)) {
591 return;
592 }
593
594 virq = kvm_irqchip_add_msi_route(kvm_state, *msg);
595 if (virq < 0) {
596 event_notifier_cleanup(&vector->kvm_interrupt);
597 return;
598 }
599
600 if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
601 NULL, virq) < 0) {
602 kvm_irqchip_release_virq(kvm_state, virq);
603 event_notifier_cleanup(&vector->kvm_interrupt);
604 return;
605 }
606
607 vector->virq = virq;
608 }
609
610 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
611 {
612 kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
613 vector->virq);
614 kvm_irqchip_release_virq(kvm_state, vector->virq);
615 vector->virq = -1;
616 event_notifier_cleanup(&vector->kvm_interrupt);
617 }
618
619 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg)
620 {
621 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg);
622 }
623
624 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
625 MSIMessage *msg, IOHandler *handler)
626 {
627 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
628 VFIOMSIVector *vector;
629 int ret;
630
631 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
632
633 vector = &vdev->msi_vectors[nr];
634
635 if (!vector->use) {
636 vector->vdev = vdev;
637 vector->virq = -1;
638 if (event_notifier_init(&vector->interrupt, 0)) {
639 error_report("vfio: Error: event_notifier_init failed");
640 }
641 vector->use = true;
642 msix_vector_use(pdev, nr);
643 }
644
645 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
646 handler, NULL, vector);
647
648 /*
649 * Attempt to enable route through KVM irqchip,
650 * default to userspace handling if unavailable.
651 */
652 if (vector->virq >= 0) {
653 if (!msg) {
654 vfio_remove_kvm_msi_virq(vector);
655 } else {
656 vfio_update_kvm_msi_virq(vector, *msg);
657 }
658 } else {
659 vfio_add_kvm_msi_virq(vector, msg, true);
660 }
661
662 /*
663 * We don't want to have the host allocate all possible MSI vectors
664 * for a device if they're not in use, so we shutdown and incrementally
665 * increase them as needed.
666 */
667 if (vdev->nr_vectors < nr + 1) {
668 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
669 vdev->nr_vectors = nr + 1;
670 ret = vfio_enable_vectors(vdev, true);
671 if (ret) {
672 error_report("vfio: failed to enable vectors, %d", ret);
673 }
674 } else {
675 int argsz;
676 struct vfio_irq_set *irq_set;
677 int32_t *pfd;
678
679 argsz = sizeof(*irq_set) + sizeof(*pfd);
680
681 irq_set = g_malloc0(argsz);
682 irq_set->argsz = argsz;
683 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
684 VFIO_IRQ_SET_ACTION_TRIGGER;
685 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
686 irq_set->start = nr;
687 irq_set->count = 1;
688 pfd = (int32_t *)&irq_set->data;
689
690 if (vector->virq >= 0) {
691 *pfd = event_notifier_get_fd(&vector->kvm_interrupt);
692 } else {
693 *pfd = event_notifier_get_fd(&vector->interrupt);
694 }
695
696 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
697 g_free(irq_set);
698 if (ret) {
699 error_report("vfio: failed to modify vector, %d", ret);
700 }
701 }
702
703 return 0;
704 }
705
706 static int vfio_msix_vector_use(PCIDevice *pdev,
707 unsigned int nr, MSIMessage msg)
708 {
709 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
710 }
711
712 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
713 {
714 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
715 VFIOMSIVector *vector = &vdev->msi_vectors[nr];
716
717 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
718
719 /*
720 * There are still old guests that mask and unmask vectors on every
721 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
722 * the KVM setup in place, simply switch VFIO to use the non-bypass
723 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X
724 * core will mask the interrupt and set pending bits, allowing it to
725 * be re-asserted on unmask. Nothing to do if already using QEMU mode.
726 */
727 if (vector->virq >= 0) {
728 int argsz;
729 struct vfio_irq_set *irq_set;
730 int32_t *pfd;
731
732 argsz = sizeof(*irq_set) + sizeof(*pfd);
733
734 irq_set = g_malloc0(argsz);
735 irq_set->argsz = argsz;
736 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
737 VFIO_IRQ_SET_ACTION_TRIGGER;
738 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
739 irq_set->start = nr;
740 irq_set->count = 1;
741 pfd = (int32_t *)&irq_set->data;
742
743 *pfd = event_notifier_get_fd(&vector->interrupt);
744
745 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
746
747 g_free(irq_set);
748 }
749 }
750
751 static void vfio_enable_msix(VFIOPCIDevice *vdev)
752 {
753 vfio_disable_interrupts(vdev);
754
755 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
756
757 vdev->interrupt = VFIO_INT_MSIX;
758
759 /*
760 * Some communication channels between VF & PF or PF & fw rely on the
761 * physical state of the device and expect that enabling MSI-X from the
762 * guest enables the same on the host. When our guest is Linux, the
763 * guest driver call to pci_enable_msix() sets the enabling bit in the
764 * MSI-X capability, but leaves the vector table masked. We therefore
765 * can't rely on a vector_use callback (from request_irq() in the guest)
766 * to switch the physical device into MSI-X mode because that may come a
767 * long time after pci_enable_msix(). This code enables vector 0 with
768 * triggering to userspace, then immediately release the vector, leaving
769 * the physical device with no vectors enabled, but MSI-X enabled, just
770 * like the guest view.
771 */
772 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
773 vfio_msix_vector_release(&vdev->pdev, 0);
774
775 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
776 vfio_msix_vector_release, NULL)) {
777 error_report("vfio: msix_set_vector_notifiers failed");
778 }
779
780 trace_vfio_enable_msix(vdev->vbasedev.name);
781 }
782
783 static void vfio_enable_msi(VFIOPCIDevice *vdev)
784 {
785 int ret, i;
786
787 vfio_disable_interrupts(vdev);
788
789 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
790 retry:
791 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
792
793 for (i = 0; i < vdev->nr_vectors; i++) {
794 VFIOMSIVector *vector = &vdev->msi_vectors[i];
795 MSIMessage msg = msi_get_message(&vdev->pdev, i);
796
797 vector->vdev = vdev;
798 vector->virq = -1;
799 vector->use = true;
800
801 if (event_notifier_init(&vector->interrupt, 0)) {
802 error_report("vfio: Error: event_notifier_init failed");
803 }
804
805 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
806 vfio_msi_interrupt, NULL, vector);
807
808 /*
809 * Attempt to enable route through KVM irqchip,
810 * default to userspace handling if unavailable.
811 */
812 vfio_add_kvm_msi_virq(vector, &msg, false);
813 }
814
815 /* Set interrupt type prior to possible interrupts */
816 vdev->interrupt = VFIO_INT_MSI;
817
818 ret = vfio_enable_vectors(vdev, false);
819 if (ret) {
820 if (ret < 0) {
821 error_report("vfio: Error: Failed to setup MSI fds: %m");
822 } else if (ret != vdev->nr_vectors) {
823 error_report("vfio: Error: Failed to enable %d "
824 "MSI vectors, retry with %d", vdev->nr_vectors, ret);
825 }
826
827 for (i = 0; i < vdev->nr_vectors; i++) {
828 VFIOMSIVector *vector = &vdev->msi_vectors[i];
829 if (vector->virq >= 0) {
830 vfio_remove_kvm_msi_virq(vector);
831 }
832 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
833 NULL, NULL, NULL);
834 event_notifier_cleanup(&vector->interrupt);
835 }
836
837 g_free(vdev->msi_vectors);
838
839 if (ret > 0 && ret != vdev->nr_vectors) {
840 vdev->nr_vectors = ret;
841 goto retry;
842 }
843 vdev->nr_vectors = 0;
844
845 /*
846 * Failing to setup MSI doesn't really fall within any specification.
847 * Let's try leaving interrupts disabled and hope the guest figures
848 * out to fall back to INTx for this device.
849 */
850 error_report("vfio: Error: Failed to enable MSI");
851 vdev->interrupt = VFIO_INT_NONE;
852
853 return;
854 }
855
856 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors);
857 }
858
859 static void vfio_disable_msi_common(VFIOPCIDevice *vdev)
860 {
861 int i;
862
863 for (i = 0; i < vdev->nr_vectors; i++) {
864 VFIOMSIVector *vector = &vdev->msi_vectors[i];
865 if (vdev->msi_vectors[i].use) {
866 if (vector->virq >= 0) {
867 vfio_remove_kvm_msi_virq(vector);
868 }
869 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
870 NULL, NULL, NULL);
871 event_notifier_cleanup(&vector->interrupt);
872 }
873 }
874
875 g_free(vdev->msi_vectors);
876 vdev->msi_vectors = NULL;
877 vdev->nr_vectors = 0;
878 vdev->interrupt = VFIO_INT_NONE;
879
880 vfio_enable_intx(vdev);
881 }
882
883 static void vfio_disable_msix(VFIOPCIDevice *vdev)
884 {
885 int i;
886
887 msix_unset_vector_notifiers(&vdev->pdev);
888
889 /*
890 * MSI-X will only release vectors if MSI-X is still enabled on the
891 * device, check through the rest and release it ourselves if necessary.
892 */
893 for (i = 0; i < vdev->nr_vectors; i++) {
894 if (vdev->msi_vectors[i].use) {
895 vfio_msix_vector_release(&vdev->pdev, i);
896 msix_vector_unuse(&vdev->pdev, i);
897 }
898 }
899
900 if (vdev->nr_vectors) {
901 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
902 }
903
904 vfio_disable_msi_common(vdev);
905
906 trace_vfio_disable_msix(vdev->vbasedev.name);
907 }
908
909 static void vfio_disable_msi(VFIOPCIDevice *vdev)
910 {
911 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
912 vfio_disable_msi_common(vdev);
913
914 trace_vfio_disable_msi(vdev->vbasedev.name);
915 }
916
917 static void vfio_update_msi(VFIOPCIDevice *vdev)
918 {
919 int i;
920
921 for (i = 0; i < vdev->nr_vectors; i++) {
922 VFIOMSIVector *vector = &vdev->msi_vectors[i];
923 MSIMessage msg;
924
925 if (!vector->use || vector->virq < 0) {
926 continue;
927 }
928
929 msg = msi_get_message(&vdev->pdev, i);
930 vfio_update_kvm_msi_virq(vector, msg);
931 }
932 }
933
934 static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
935 {
936 struct vfio_region_info reg_info = {
937 .argsz = sizeof(reg_info),
938 .index = VFIO_PCI_ROM_REGION_INDEX
939 };
940 uint64_t size;
941 off_t off = 0;
942 size_t bytes;
943
944 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info)) {
945 error_report("vfio: Error getting ROM info: %m");
946 return;
947 }
948
949 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size,
950 (unsigned long)reg_info.offset,
951 (unsigned long)reg_info.flags);
952
953 vdev->rom_size = size = reg_info.size;
954 vdev->rom_offset = reg_info.offset;
955
956 if (!vdev->rom_size) {
957 vdev->rom_read_failed = true;
958 error_report("vfio-pci: Cannot read device rom at "
959 "%s", vdev->vbasedev.name);
960 error_printf("Device option ROM contents are probably invalid "
961 "(check dmesg).\nSkip option ROM probe with rombar=0, "
962 "or load from file with romfile=\n");
963 return;
964 }
965
966 vdev->rom = g_malloc(size);
967 memset(vdev->rom, 0xff, size);
968
969 while (size) {
970 bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
971 size, vdev->rom_offset + off);
972 if (bytes == 0) {
973 break;
974 } else if (bytes > 0) {
975 off += bytes;
976 size -= bytes;
977 } else {
978 if (errno == EINTR || errno == EAGAIN) {
979 continue;
980 }
981 error_report("vfio: Error reading device ROM: %m");
982 break;
983 }
984 }
985 }
986
987 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
988 {
989 VFIOPCIDevice *vdev = opaque;
990 union {
991 uint8_t byte;
992 uint16_t word;
993 uint32_t dword;
994 uint64_t qword;
995 } val;
996 uint64_t data = 0;
997
998 /* Load the ROM lazily when the guest tries to read it */
999 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
1000 vfio_pci_load_rom(vdev);
1001 }
1002
1003 memcpy(&val, vdev->rom + addr,
1004 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
1005
1006 switch (size) {
1007 case 1:
1008 data = val.byte;
1009 break;
1010 case 2:
1011 data = le16_to_cpu(val.word);
1012 break;
1013 case 4:
1014 data = le32_to_cpu(val.dword);
1015 break;
1016 default:
1017 hw_error("vfio: unsupported read size, %d bytes\n", size);
1018 break;
1019 }
1020
1021 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
1022
1023 return data;
1024 }
1025
1026 static void vfio_rom_write(void *opaque, hwaddr addr,
1027 uint64_t data, unsigned size)
1028 {
1029 }
1030
1031 static const MemoryRegionOps vfio_rom_ops = {
1032 .read = vfio_rom_read,
1033 .write = vfio_rom_write,
1034 .endianness = DEVICE_LITTLE_ENDIAN,
1035 };
1036
1037 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
1038 {
1039 PCIDevice *pdev = &vdev->pdev;
1040 uint16_t vendor_id, device_id;
1041 int count = 0;
1042
1043 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
1044 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
1045
1046 while (count < ARRAY_SIZE(romblacklist)) {
1047 if (romblacklist[count].vendor_id == vendor_id &&
1048 romblacklist[count].device_id == device_id) {
1049 return true;
1050 }
1051 count++;
1052 }
1053
1054 return false;
1055 }
1056
1057 static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
1058 {
1059 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
1060 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
1061 DeviceState *dev = DEVICE(vdev);
1062 char name[32];
1063 int fd = vdev->vbasedev.fd;
1064
1065 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
1066 /* Since pci handles romfile, just print a message and return */
1067 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
1068 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1069 "is known to cause system instability issues during "
1070 "option rom execution. "
1071 "Proceeding anyway since user specified romfile\n",
1072 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1073 vdev->host.function);
1074 }
1075 return;
1076 }
1077
1078 /*
1079 * Use the same size ROM BAR as the physical device. The contents
1080 * will get filled in later when the guest tries to read it.
1081 */
1082 if (pread(fd, &orig, 4, offset) != 4 ||
1083 pwrite(fd, &size, 4, offset) != 4 ||
1084 pread(fd, &size, 4, offset) != 4 ||
1085 pwrite(fd, &orig, 4, offset) != 4) {
1086 error_report("%s(%04x:%02x:%02x.%x) failed: %m",
1087 __func__, vdev->host.domain, vdev->host.bus,
1088 vdev->host.slot, vdev->host.function);
1089 return;
1090 }
1091
1092 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
1093
1094 if (!size) {
1095 return;
1096 }
1097
1098 if (vfio_blacklist_opt_rom(vdev)) {
1099 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
1100 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1101 "is known to cause system instability issues during "
1102 "option rom execution. "
1103 "Proceeding anyway since user specified non zero value for "
1104 "rombar\n",
1105 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1106 vdev->host.function);
1107 } else {
1108 error_printf("Warning : Rom loading for device at "
1109 "%04x:%02x:%02x.%x has been disabled due to "
1110 "system instability issues. "
1111 "Specify rombar=1 or romfile to force\n",
1112 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1113 vdev->host.function);
1114 return;
1115 }
1116 }
1117
1118 trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
1119
1120 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
1121 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1122 vdev->host.function);
1123
1124 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
1125 &vfio_rom_ops, vdev, name, size);
1126
1127 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
1128 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
1129
1130 vdev->pdev.has_rom = true;
1131 vdev->rom_read_failed = false;
1132 }
1133
1134 static void vfio_vga_write(void *opaque, hwaddr addr,
1135 uint64_t data, unsigned size)
1136 {
1137 VFIOVGARegion *region = opaque;
1138 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1139 union {
1140 uint8_t byte;
1141 uint16_t word;
1142 uint32_t dword;
1143 uint64_t qword;
1144 } buf;
1145 off_t offset = vga->fd_offset + region->offset + addr;
1146
1147 switch (size) {
1148 case 1:
1149 buf.byte = data;
1150 break;
1151 case 2:
1152 buf.word = cpu_to_le16(data);
1153 break;
1154 case 4:
1155 buf.dword = cpu_to_le32(data);
1156 break;
1157 default:
1158 hw_error("vfio: unsupported write size, %d bytes", size);
1159 break;
1160 }
1161
1162 if (pwrite(vga->fd, &buf, size, offset) != size) {
1163 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
1164 __func__, region->offset + addr, data, size);
1165 }
1166
1167 trace_vfio_vga_write(region->offset + addr, data, size);
1168 }
1169
1170 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
1171 {
1172 VFIOVGARegion *region = opaque;
1173 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1174 union {
1175 uint8_t byte;
1176 uint16_t word;
1177 uint32_t dword;
1178 uint64_t qword;
1179 } buf;
1180 uint64_t data = 0;
1181 off_t offset = vga->fd_offset + region->offset + addr;
1182
1183 if (pread(vga->fd, &buf, size, offset) != size) {
1184 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
1185 __func__, region->offset + addr, size);
1186 return (uint64_t)-1;
1187 }
1188
1189 switch (size) {
1190 case 1:
1191 data = buf.byte;
1192 break;
1193 case 2:
1194 data = le16_to_cpu(buf.word);
1195 break;
1196 case 4:
1197 data = le32_to_cpu(buf.dword);
1198 break;
1199 default:
1200 hw_error("vfio: unsupported read size, %d bytes", size);
1201 break;
1202 }
1203
1204 trace_vfio_vga_read(region->offset + addr, size, data);
1205
1206 return data;
1207 }
1208
1209 static const MemoryRegionOps vfio_vga_ops = {
1210 .read = vfio_vga_read,
1211 .write = vfio_vga_write,
1212 .endianness = DEVICE_LITTLE_ENDIAN,
1213 };
1214
1215 /*
1216 * Device specific quirks
1217 */
1218
1219 /* Is range1 fully contained within range2? */
1220 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
1221 uint64_t first2, uint64_t len2) {
1222 return (first1 >= first2 && first1 + len1 <= first2 + len2);
1223 }
1224
1225 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
1226 {
1227 return (mask && (flags & mask) == mask);
1228 }
1229
1230 static uint64_t vfio_generic_window_quirk_read(void *opaque,
1231 hwaddr addr, unsigned size)
1232 {
1233 VFIOQuirk *quirk = opaque;
1234 VFIOPCIDevice *vdev = quirk->vdev;
1235 uint64_t data;
1236
1237 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1238 ranges_overlap(addr, size,
1239 quirk->data.data_offset, quirk->data.data_size)) {
1240 hwaddr offset = addr - quirk->data.data_offset;
1241
1242 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1243 quirk->data.data_size)) {
1244 hw_error("%s: window data read not fully contained: %s",
1245 __func__, memory_region_name(&quirk->mem));
1246 }
1247
1248 data = vfio_pci_read_config(&vdev->pdev,
1249 quirk->data.address_val + offset, size);
1250
1251 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem),
1252 vdev->vbasedev.name,
1253 quirk->data.bar,
1254 addr, size, data);
1255 } else {
1256 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1257 addr + quirk->data.base_offset, size);
1258 }
1259
1260 return data;
1261 }
1262
1263 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
1264 uint64_t data, unsigned size)
1265 {
1266 VFIOQuirk *quirk = opaque;
1267 VFIOPCIDevice *vdev = quirk->vdev;
1268
1269 if (ranges_overlap(addr, size,
1270 quirk->data.address_offset, quirk->data.address_size)) {
1271
1272 if (addr != quirk->data.address_offset) {
1273 hw_error("%s: offset write into address window: %s",
1274 __func__, memory_region_name(&quirk->mem));
1275 }
1276
1277 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
1278 quirk->data.flags |= quirk->data.write_flags |
1279 quirk->data.read_flags;
1280 quirk->data.address_val = data & quirk->data.address_mask;
1281 } else {
1282 quirk->data.flags &= ~(quirk->data.write_flags |
1283 quirk->data.read_flags);
1284 }
1285 }
1286
1287 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1288 ranges_overlap(addr, size,
1289 quirk->data.data_offset, quirk->data.data_size)) {
1290 hwaddr offset = addr - quirk->data.data_offset;
1291
1292 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1293 quirk->data.data_size)) {
1294 hw_error("%s: window data write not fully contained: %s",
1295 __func__, memory_region_name(&quirk->mem));
1296 }
1297
1298 vfio_pci_write_config(&vdev->pdev,
1299 quirk->data.address_val + offset, data, size);
1300 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem),
1301 vdev->vbasedev.name,
1302 quirk->data.bar,
1303 addr, data, size);
1304 return;
1305 }
1306
1307 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1308 addr + quirk->data.base_offset, data, size);
1309 }
1310
1311 static const MemoryRegionOps vfio_generic_window_quirk = {
1312 .read = vfio_generic_window_quirk_read,
1313 .write = vfio_generic_window_quirk_write,
1314 .endianness = DEVICE_LITTLE_ENDIAN,
1315 };
1316
1317 static uint64_t vfio_generic_quirk_read(void *opaque,
1318 hwaddr addr, unsigned size)
1319 {
1320 VFIOQuirk *quirk = opaque;
1321 VFIOPCIDevice *vdev = quirk->vdev;
1322 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1323 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1324 uint64_t data;
1325
1326 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1327 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1328 if (!vfio_range_contained(addr, size, offset,
1329 quirk->data.address_mask + 1)) {
1330 hw_error("%s: read not fully contained: %s",
1331 __func__, memory_region_name(&quirk->mem));
1332 }
1333
1334 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
1335
1336 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem),
1337 vdev->vbasedev.name, quirk->data.bar,
1338 addr + base, size, data);
1339 } else {
1340 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1341 addr + base, size);
1342 }
1343
1344 return data;
1345 }
1346
1347 static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
1348 uint64_t data, unsigned size)
1349 {
1350 VFIOQuirk *quirk = opaque;
1351 VFIOPCIDevice *vdev = quirk->vdev;
1352 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1353 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1354
1355 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1356 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1357 if (!vfio_range_contained(addr, size, offset,
1358 quirk->data.address_mask + 1)) {
1359 hw_error("%s: write not fully contained: %s",
1360 __func__, memory_region_name(&quirk->mem));
1361 }
1362
1363 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
1364
1365 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem),
1366 vdev->vbasedev.name, quirk->data.bar,
1367 addr + base, data, size);
1368 } else {
1369 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1370 addr + base, data, size);
1371 }
1372 }
1373
1374 static const MemoryRegionOps vfio_generic_quirk = {
1375 .read = vfio_generic_quirk_read,
1376 .write = vfio_generic_quirk_write,
1377 .endianness = DEVICE_LITTLE_ENDIAN,
1378 };
1379
1380 #define PCI_VENDOR_ID_ATI 0x1002
1381
1382 /*
1383 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
1384 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
1385 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
1386 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
1387 * I/O port BAR address. Originally this was coded to return the virtual BAR
1388 * address only if the physical register read returns the actual BAR address,
1389 * but users have reported greater success if we return the virtual address
1390 * unconditionally.
1391 */
1392 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
1393 hwaddr addr, unsigned size)
1394 {
1395 VFIOQuirk *quirk = opaque;
1396 VFIOPCIDevice *vdev = quirk->vdev;
1397 uint64_t data = vfio_pci_read_config(&vdev->pdev,
1398 PCI_BASE_ADDRESS_0 + (4 * 4) + 1,
1399 size);
1400 trace_vfio_ati_3c3_quirk_read(data);
1401
1402 return data;
1403 }
1404
1405 static const MemoryRegionOps vfio_ati_3c3_quirk = {
1406 .read = vfio_ati_3c3_quirk_read,
1407 .endianness = DEVICE_LITTLE_ENDIAN,
1408 };
1409
1410 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
1411 {
1412 PCIDevice *pdev = &vdev->pdev;
1413 VFIOQuirk *quirk;
1414
1415 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1416 return;
1417 }
1418
1419 /*
1420 * As long as the BAR is >= 256 bytes it will be aligned such that the
1421 * lower byte is always zero. Filter out anything else, if it exists.
1422 */
1423 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
1424 return;
1425 }
1426
1427 quirk = g_malloc0(sizeof(*quirk));
1428 quirk->vdev = vdev;
1429
1430 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk,
1431 "vfio-ati-3c3-quirk", 1);
1432 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1433 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem);
1434
1435 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1436 quirk, next);
1437
1438 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name);
1439 }
1440
1441 /*
1442 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
1443 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
1444 * the MMIO space directly, but a window to this space is provided through
1445 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
1446 * data register. When the address is programmed to a range of 0x4000-0x4fff
1447 * PCI configuration space is available. Experimentation seems to indicate
1448 * that only read-only access is provided, but we drop writes when the window
1449 * is enabled to config space nonetheless.
1450 */
1451 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
1452 {
1453 PCIDevice *pdev = &vdev->pdev;
1454 VFIOQuirk *quirk;
1455
1456 if (!vdev->has_vga || nr != 4 ||
1457 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1458 return;
1459 }
1460
1461 quirk = g_malloc0(sizeof(*quirk));
1462 quirk->vdev = vdev;
1463 quirk->data.address_size = 4;
1464 quirk->data.data_offset = 4;
1465 quirk->data.data_size = 4;
1466 quirk->data.address_match = 0x4000;
1467 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1468 quirk->data.bar = nr;
1469 quirk->data.read_flags = quirk->data.write_flags = 1;
1470
1471 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1472 &vfio_generic_window_quirk, quirk,
1473 "vfio-ati-bar4-window-quirk", 8);
1474 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1475 quirk->data.base_offset, &quirk->mem, 1);
1476
1477 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1478
1479 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
1480 }
1481
1482 #define PCI_VENDOR_ID_REALTEK 0x10ec
1483
1484 /*
1485 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1486 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1487 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1488 * when the "type" portion of the address register is set to 0x1. This appears
1489 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1490 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1491 * ignore because the MSI-X table should always be accessed as a dword (full
1492 * mask). Bits 0:11 is offset within the type.
1493 *
1494 * Example trace:
1495 *
1496 * Read from MSI-X table offset 0
1497 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1498 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1499 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1500 *
1501 * Write 0xfee00000 to MSI-X table offset 0
1502 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1503 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1504 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1505 */
1506
1507 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque,
1508 hwaddr addr, unsigned size)
1509 {
1510 VFIOQuirk *quirk = opaque;
1511 VFIOPCIDevice *vdev = quirk->vdev;
1512
1513 switch (addr) {
1514 case 4: /* address */
1515 if (quirk->data.flags) {
1516 trace_vfio_rtl8168_window_quirk_read_fake(
1517 memory_region_name(&quirk->mem),
1518 vdev->vbasedev.name);
1519
1520 return quirk->data.address_match ^ 0x10000000U;
1521 }
1522 break;
1523 case 0: /* data */
1524 if (quirk->data.flags) {
1525 uint64_t val;
1526
1527 trace_vfio_rtl8168_window_quirk_read_table(
1528 memory_region_name(&quirk->mem),
1529 vdev->vbasedev.name);
1530
1531 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1532 return 0;
1533 }
1534
1535 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio,
1536 (hwaddr)(quirk->data.address_match
1537 & 0xfff),
1538 &val,
1539 size,
1540 MEMTXATTRS_UNSPECIFIED);
1541 return val;
1542 }
1543 }
1544
1545 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem),
1546 vdev->vbasedev.name);
1547
1548 return vfio_region_read(&vdev->bars[quirk->data.bar].region,
1549 addr + 0x70, size);
1550 }
1551
1552 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr,
1553 uint64_t data, unsigned size)
1554 {
1555 VFIOQuirk *quirk = opaque;
1556 VFIOPCIDevice *vdev = quirk->vdev;
1557
1558 switch (addr) {
1559 case 4: /* address */
1560 if ((data & 0x7fff0000) == 0x10000) {
1561 if (data & 0x10000000U &&
1562 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1563
1564 trace_vfio_rtl8168_window_quirk_write_table(
1565 memory_region_name(&quirk->mem),
1566 vdev->vbasedev.name);
1567
1568 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1569 (hwaddr)(quirk->data.address_match
1570 & 0xfff),
1571 data,
1572 size,
1573 MEMTXATTRS_UNSPECIFIED);
1574 }
1575
1576 quirk->data.flags = 1;
1577 quirk->data.address_match = data;
1578
1579 return;
1580 }
1581 quirk->data.flags = 0;
1582 break;
1583 case 0: /* data */
1584 quirk->data.address_mask = data;
1585 break;
1586 }
1587
1588 trace_vfio_rtl8168_window_quirk_write_direct(
1589 memory_region_name(&quirk->mem),
1590 vdev->vbasedev.name);
1591
1592 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1593 addr + 0x70, data, size);
1594 }
1595
1596 static const MemoryRegionOps vfio_rtl8168_window_quirk = {
1597 .read = vfio_rtl8168_window_quirk_read,
1598 .write = vfio_rtl8168_window_quirk_write,
1599 .valid = {
1600 .min_access_size = 4,
1601 .max_access_size = 4,
1602 .unaligned = false,
1603 },
1604 .endianness = DEVICE_LITTLE_ENDIAN,
1605 };
1606
1607 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr)
1608 {
1609 PCIDevice *pdev = &vdev->pdev;
1610 VFIOQuirk *quirk;
1611
1612 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK ||
1613 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) {
1614 return;
1615 }
1616
1617 quirk = g_malloc0(sizeof(*quirk));
1618 quirk->vdev = vdev;
1619 quirk->data.bar = nr;
1620
1621 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk,
1622 quirk, "vfio-rtl8168-window-quirk", 8);
1623 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1624 0x70, &quirk->mem, 1);
1625
1626 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1627
1628 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name);
1629 }
1630 /*
1631 * Trap the BAR2 MMIO window to config space as well.
1632 */
1633 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
1634 {
1635 PCIDevice *pdev = &vdev->pdev;
1636 VFIOQuirk *quirk;
1637
1638 /* Only enable on newer devices where BAR2 is 64bit */
1639 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
1640 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1641 return;
1642 }
1643
1644 quirk = g_malloc0(sizeof(*quirk));
1645 quirk->vdev = vdev;
1646 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1647 quirk->data.address_match = 0x4000;
1648 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1649 quirk->data.bar = nr;
1650
1651 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1652 "vfio-ati-bar2-4000-quirk",
1653 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1654 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1655 quirk->data.address_match & TARGET_PAGE_MASK,
1656 &quirk->mem, 1);
1657
1658 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1659
1660 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
1661 }
1662
1663 /*
1664 * Older ATI/AMD cards like the X550 have a similar window to that above.
1665 * I/O port BAR1 provides a window to a mirror of PCI config space located
1666 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
1667 * note it for future reference.
1668 */
1669
1670 #define PCI_VENDOR_ID_NVIDIA 0x10de
1671
1672 /*
1673 * Nvidia has several different methods to get to config space, the
1674 * nouveu project has several of these documented here:
1675 * https://github.com/pathscale/envytools/tree/master/hwdocs
1676 *
1677 * The first quirk is actually not documented in envytools and is found
1678 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
1679 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
1680 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
1681 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
1682 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
1683 * is written for a write to 0x3d4. The BAR0 offset is then accessible
1684 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
1685 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
1686 */
1687 enum {
1688 NV_3D0_NONE = 0,
1689 NV_3D0_SELECT,
1690 NV_3D0_WINDOW,
1691 NV_3D0_READ,
1692 NV_3D0_WRITE,
1693 };
1694
1695 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
1696 hwaddr addr, unsigned size)
1697 {
1698 VFIOQuirk *quirk = opaque;
1699 VFIOPCIDevice *vdev = quirk->vdev;
1700 PCIDevice *pdev = &vdev->pdev;
1701 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1702 addr + quirk->data.base_offset, size);
1703
1704 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) {
1705 data = vfio_pci_read_config(pdev, quirk->data.address_val, size);
1706 trace_vfio_nvidia_3d0_quirk_read(size, data);
1707 }
1708
1709 quirk->data.flags = NV_3D0_NONE;
1710
1711 return data;
1712 }
1713
1714 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
1715 uint64_t data, unsigned size)
1716 {
1717 VFIOQuirk *quirk = opaque;
1718 VFIOPCIDevice *vdev = quirk->vdev;
1719 PCIDevice *pdev = &vdev->pdev;
1720
1721 switch (quirk->data.flags) {
1722 case NV_3D0_NONE:
1723 if (addr == quirk->data.address_offset && data == 0x338) {
1724 quirk->data.flags = NV_3D0_SELECT;
1725 }
1726 break;
1727 case NV_3D0_SELECT:
1728 quirk->data.flags = NV_3D0_NONE;
1729 if (addr == quirk->data.data_offset &&
1730 (data & ~quirk->data.address_mask) == quirk->data.address_match) {
1731 quirk->data.flags = NV_3D0_WINDOW;
1732 quirk->data.address_val = data & quirk->data.address_mask;
1733 }
1734 break;
1735 case NV_3D0_WINDOW:
1736 quirk->data.flags = NV_3D0_NONE;
1737 if (addr == quirk->data.address_offset) {
1738 if (data == 0x538) {
1739 quirk->data.flags = NV_3D0_READ;
1740 } else if (data == 0x738) {
1741 quirk->data.flags = NV_3D0_WRITE;
1742 }
1743 }
1744 break;
1745 case NV_3D0_WRITE:
1746 quirk->data.flags = NV_3D0_NONE;
1747 if (addr == quirk->data.data_offset) {
1748 vfio_pci_write_config(pdev, quirk->data.address_val, data, size);
1749 trace_vfio_nvidia_3d0_quirk_write(data, size);
1750 return;
1751 }
1752 break;
1753 }
1754
1755 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1756 addr + quirk->data.base_offset, data, size);
1757 }
1758
1759 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
1760 .read = vfio_nvidia_3d0_quirk_read,
1761 .write = vfio_nvidia_3d0_quirk_write,
1762 .endianness = DEVICE_LITTLE_ENDIAN,
1763 };
1764
1765 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
1766 {
1767 PCIDevice *pdev = &vdev->pdev;
1768 VFIOQuirk *quirk;
1769
1770 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA ||
1771 !vdev->bars[1].region.size) {
1772 return;
1773 }
1774
1775 quirk = g_malloc0(sizeof(*quirk));
1776 quirk->vdev = vdev;
1777 quirk->data.base_offset = 0x10;
1778 quirk->data.address_offset = 4;
1779 quirk->data.address_size = 2;
1780 quirk->data.address_match = 0x1800;
1781 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1782 quirk->data.data_offset = 0;
1783 quirk->data.data_size = 4;
1784
1785 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk,
1786 quirk, "vfio-nvidia-3d0-quirk", 6);
1787 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1788 quirk->data.base_offset, &quirk->mem);
1789
1790 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1791 quirk, next);
1792
1793 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name);
1794 }
1795
1796 /*
1797 * The second quirk is documented in envytools. The I/O port BAR5 is just
1798 * a set of address/data ports to the MMIO BARs. The BAR we care about is
1799 * again BAR0. This backdoor is apparently a bit newer than the one above
1800 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
1801 * space, including extended space is available at the 4k @0x88000.
1802 */
1803 enum {
1804 NV_BAR5_ADDRESS = 0x1,
1805 NV_BAR5_ENABLE = 0x2,
1806 NV_BAR5_MASTER = 0x4,
1807 NV_BAR5_VALID = 0x7,
1808 };
1809
1810 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
1811 uint64_t data, unsigned size)
1812 {
1813 VFIOQuirk *quirk = opaque;
1814
1815 switch (addr) {
1816 case 0x0:
1817 if (data & 0x1) {
1818 quirk->data.flags |= NV_BAR5_MASTER;
1819 } else {
1820 quirk->data.flags &= ~NV_BAR5_MASTER;
1821 }
1822 break;
1823 case 0x4:
1824 if (data & 0x1) {
1825 quirk->data.flags |= NV_BAR5_ENABLE;
1826 } else {
1827 quirk->data.flags &= ~NV_BAR5_ENABLE;
1828 }
1829 break;
1830 case 0x8:
1831 if (quirk->data.flags & NV_BAR5_MASTER) {
1832 if ((data & ~0xfff) == 0x88000) {
1833 quirk->data.flags |= NV_BAR5_ADDRESS;
1834 quirk->data.address_val = data & 0xfff;
1835 } else if ((data & ~0xff) == 0x1800) {
1836 quirk->data.flags |= NV_BAR5_ADDRESS;
1837 quirk->data.address_val = data & 0xff;
1838 } else {
1839 quirk->data.flags &= ~NV_BAR5_ADDRESS;
1840 }
1841 }
1842 break;
1843 }
1844
1845 vfio_generic_window_quirk_write(opaque, addr, data, size);
1846 }
1847
1848 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
1849 .read = vfio_generic_window_quirk_read,
1850 .write = vfio_nvidia_bar5_window_quirk_write,
1851 .valid.min_access_size = 4,
1852 .endianness = DEVICE_LITTLE_ENDIAN,
1853 };
1854
1855 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
1856 {
1857 PCIDevice *pdev = &vdev->pdev;
1858 VFIOQuirk *quirk;
1859
1860 if (!vdev->has_vga || nr != 5 ||
1861 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1862 return;
1863 }
1864
1865 quirk = g_malloc0(sizeof(*quirk));
1866 quirk->vdev = vdev;
1867 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID;
1868 quirk->data.address_offset = 0x8;
1869 quirk->data.address_size = 0; /* actually 4, but avoids generic code */
1870 quirk->data.data_offset = 0xc;
1871 quirk->data.data_size = 4;
1872 quirk->data.bar = nr;
1873
1874 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1875 &vfio_nvidia_bar5_window_quirk, quirk,
1876 "vfio-nvidia-bar5-window-quirk", 16);
1877 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1878 0, &quirk->mem, 1);
1879
1880 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1881
1882 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
1883 }
1884
1885 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
1886 uint64_t data, unsigned size)
1887 {
1888 VFIOQuirk *quirk = opaque;
1889 VFIOPCIDevice *vdev = quirk->vdev;
1890 PCIDevice *pdev = &vdev->pdev;
1891 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1892
1893 vfio_generic_quirk_write(opaque, addr, data, size);
1894
1895 /*
1896 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
1897 * MSI capability ID register. Both the ID and next register are
1898 * read-only, so we allow writes covering either of those to real hw.
1899 * NB - only fixed for the 0x88000 MMIO window.
1900 */
1901 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
1902 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
1903 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1904 addr + base, data, size);
1905 }
1906 }
1907
1908 static const MemoryRegionOps vfio_nvidia_88000_quirk = {
1909 .read = vfio_generic_quirk_read,
1910 .write = vfio_nvidia_88000_quirk_write,
1911 .endianness = DEVICE_LITTLE_ENDIAN,
1912 };
1913
1914 /*
1915 * Finally, BAR0 itself. We want to redirect any accesses to either
1916 * 0x1800 or 0x88000 through the PCI config space access functions.
1917 *
1918 * NB - quirk at a page granularity or else they don't seem to work when
1919 * BARs are mmap'd
1920 *
1921 * Here's offset 0x88000...
1922 */
1923 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
1924 {
1925 PCIDevice *pdev = &vdev->pdev;
1926 VFIOQuirk *quirk;
1927 uint16_t vendor, class;
1928
1929 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
1930 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
1931
1932 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
1933 class != PCI_CLASS_DISPLAY_VGA) {
1934 return;
1935 }
1936
1937 quirk = g_malloc0(sizeof(*quirk));
1938 quirk->vdev = vdev;
1939 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1940 quirk->data.address_match = 0x88000;
1941 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1942 quirk->data.bar = nr;
1943
1944 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
1945 quirk, "vfio-nvidia-bar0-88000-quirk",
1946 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1947 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1948 quirk->data.address_match & TARGET_PAGE_MASK,
1949 &quirk->mem, 1);
1950
1951 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1952
1953 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
1954 }
1955
1956 /*
1957 * And here's the same for BAR0 offset 0x1800...
1958 */
1959 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
1960 {
1961 PCIDevice *pdev = &vdev->pdev;
1962 VFIOQuirk *quirk;
1963
1964 if (!vdev->has_vga || nr != 0 ||
1965 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1966 return;
1967 }
1968
1969 /* Log the chipset ID */
1970 trace_vfio_probe_nvidia_bar0_1800_quirk_id(
1971 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
1972 & 0xff);
1973
1974 quirk = g_malloc0(sizeof(*quirk));
1975 quirk->vdev = vdev;
1976 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1977 quirk->data.address_match = 0x1800;
1978 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1979 quirk->data.bar = nr;
1980
1981 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1982 "vfio-nvidia-bar0-1800-quirk",
1983 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1984 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1985 quirk->data.address_match & TARGET_PAGE_MASK,
1986 &quirk->mem, 1);
1987
1988 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1989
1990 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
1991 }
1992
1993 /*
1994 * TODO - Some Nvidia devices provide config access to their companion HDA
1995 * device and even to their parent bridge via these config space mirrors.
1996 * Add quirks for those regions.
1997 */
1998
1999 /*
2000 * Common quirk probe entry points.
2001 */
2002 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
2003 {
2004 vfio_vga_probe_ati_3c3_quirk(vdev);
2005 vfio_vga_probe_nvidia_3d0_quirk(vdev);
2006 }
2007
2008 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
2009 {
2010 VFIOQuirk *quirk;
2011 int i;
2012
2013 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2014 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) {
2015 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem);
2016 }
2017 }
2018 }
2019
2020 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev)
2021 {
2022 int i;
2023
2024 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2025 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
2026 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
2027 object_unparent(OBJECT(&quirk->mem));
2028 QLIST_REMOVE(quirk, next);
2029 g_free(quirk);
2030 }
2031 }
2032 }
2033
2034 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
2035 {
2036 vfio_probe_ati_bar4_window_quirk(vdev, nr);
2037 vfio_probe_ati_bar2_4000_quirk(vdev, nr);
2038 vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
2039 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
2040 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
2041 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr);
2042 }
2043
2044 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
2045 {
2046 VFIOBAR *bar = &vdev->bars[nr];
2047 VFIOQuirk *quirk;
2048
2049 QLIST_FOREACH(quirk, &bar->quirks, next) {
2050 memory_region_del_subregion(&bar->region.mem, &quirk->mem);
2051 }
2052 }
2053
2054 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr)
2055 {
2056 VFIOBAR *bar = &vdev->bars[nr];
2057
2058 while (!QLIST_EMPTY(&bar->quirks)) {
2059 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
2060 object_unparent(OBJECT(&quirk->mem));
2061 QLIST_REMOVE(quirk, next);
2062 g_free(quirk);
2063 }
2064 }
2065
2066 /*
2067 * PCI config space
2068 */
2069 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
2070 {
2071 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2072 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
2073
2074 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
2075 emu_bits = le32_to_cpu(emu_bits);
2076
2077 if (emu_bits) {
2078 emu_val = pci_default_read_config(pdev, addr, len);
2079 }
2080
2081 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
2082 ssize_t ret;
2083
2084 ret = pread(vdev->vbasedev.fd, &phys_val, len,
2085 vdev->config_offset + addr);
2086 if (ret != len) {
2087 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m",
2088 __func__, vdev->host.domain, vdev->host.bus,
2089 vdev->host.slot, vdev->host.function, addr, len);
2090 return -errno;
2091 }
2092 phys_val = le32_to_cpu(phys_val);
2093 }
2094
2095 val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
2096
2097 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
2098
2099 return val;
2100 }
2101
2102 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
2103 uint32_t val, int len)
2104 {
2105 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2106 uint32_t val_le = cpu_to_le32(val);
2107
2108 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
2109
2110 /* Write everything to VFIO, let it filter out what we can't write */
2111 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
2112 != len) {
2113 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m",
2114 __func__, vdev->host.domain, vdev->host.bus,
2115 vdev->host.slot, vdev->host.function, addr, val, len);
2116 }
2117
2118 /* MSI/MSI-X Enabling/Disabling */
2119 if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
2120 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
2121 int is_enabled, was_enabled = msi_enabled(pdev);
2122
2123 pci_default_write_config(pdev, addr, val, len);
2124
2125 is_enabled = msi_enabled(pdev);
2126
2127 if (!was_enabled) {
2128 if (is_enabled) {
2129 vfio_enable_msi(vdev);
2130 }
2131 } else {
2132 if (!is_enabled) {
2133 vfio_disable_msi(vdev);
2134 } else {
2135 vfio_update_msi(vdev);
2136 }
2137 }
2138 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
2139 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
2140 int is_enabled, was_enabled = msix_enabled(pdev);
2141
2142 pci_default_write_config(pdev, addr, val, len);
2143
2144 is_enabled = msix_enabled(pdev);
2145
2146 if (!was_enabled && is_enabled) {
2147 vfio_enable_msix(vdev);
2148 } else if (was_enabled && !is_enabled) {
2149 vfio_disable_msix(vdev);
2150 }
2151 } else {
2152 /* Write everything to QEMU to keep emulated bits correct */
2153 pci_default_write_config(pdev, addr, val, len);
2154 }
2155 }
2156
2157 /*
2158 * Interrupt setup
2159 */
2160 static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
2161 {
2162 /*
2163 * More complicated than it looks. Disabling MSI/X transitions the
2164 * device to INTx mode (if supported). Therefore we need to first
2165 * disable MSI/X and then cleanup by disabling INTx.
2166 */
2167 if (vdev->interrupt == VFIO_INT_MSIX) {
2168 vfio_disable_msix(vdev);
2169 } else if (vdev->interrupt == VFIO_INT_MSI) {
2170 vfio_disable_msi(vdev);
2171 }
2172
2173 if (vdev->interrupt == VFIO_INT_INTx) {
2174 vfio_disable_intx(vdev);
2175 }
2176 }
2177
2178 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos)
2179 {
2180 uint16_t ctrl;
2181 bool msi_64bit, msi_maskbit;
2182 int ret, entries;
2183
2184 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
2185 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2186 return -errno;
2187 }
2188 ctrl = le16_to_cpu(ctrl);
2189
2190 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
2191 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
2192 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
2193
2194 trace_vfio_setup_msi(vdev->vbasedev.name, pos);
2195
2196 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
2197 if (ret < 0) {
2198 if (ret == -ENOTSUP) {
2199 return 0;
2200 }
2201 error_report("vfio: msi_init failed");
2202 return ret;
2203 }
2204 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
2205
2206 return 0;
2207 }
2208
2209 /*
2210 * We don't have any control over how pci_add_capability() inserts
2211 * capabilities into the chain. In order to setup MSI-X we need a
2212 * MemoryRegion for the BAR. In order to setup the BAR and not
2213 * attempt to mmap the MSI-X table area, which VFIO won't allow, we
2214 * need to first look for where the MSI-X table lives. So we
2215 * unfortunately split MSI-X setup across two functions.
2216 */
2217 static int vfio_early_setup_msix(VFIOPCIDevice *vdev)
2218 {
2219 uint8_t pos;
2220 uint16_t ctrl;
2221 uint32_t table, pba;
2222 int fd = vdev->vbasedev.fd;
2223
2224 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
2225 if (!pos) {
2226 return 0;
2227 }
2228
2229 if (pread(fd, &ctrl, sizeof(ctrl),
2230 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2231 return -errno;
2232 }
2233
2234 if (pread(fd, &table, sizeof(table),
2235 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
2236 return -errno;
2237 }
2238
2239 if (pread(fd, &pba, sizeof(pba),
2240 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
2241 return -errno;
2242 }
2243
2244 ctrl = le16_to_cpu(ctrl);
2245 table = le32_to_cpu(table);
2246 pba = le32_to_cpu(pba);
2247
2248 vdev->msix = g_malloc0(sizeof(*(vdev->msix)));
2249 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
2250 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
2251 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
2252 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
2253 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
2254
2255 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos,
2256 vdev->msix->table_bar,
2257 vdev->msix->table_offset,
2258 vdev->msix->entries);
2259
2260 return 0;
2261 }
2262
2263 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos)
2264 {
2265 int ret;
2266
2267 ret = msix_init(&vdev->pdev, vdev->msix->entries,
2268 &vdev->bars[vdev->msix->table_bar].region.mem,
2269 vdev->msix->table_bar, vdev->msix->table_offset,
2270 &vdev->bars[vdev->msix->pba_bar].region.mem,
2271 vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
2272 if (ret < 0) {
2273 if (ret == -ENOTSUP) {
2274 return 0;
2275 }
2276 error_report("vfio: msix_init failed");
2277 return ret;
2278 }
2279
2280 return 0;
2281 }
2282
2283 static void vfio_teardown_msi(VFIOPCIDevice *vdev)
2284 {
2285 msi_uninit(&vdev->pdev);
2286
2287 if (vdev->msix) {
2288 msix_uninit(&vdev->pdev,
2289 &vdev->bars[vdev->msix->table_bar].region.mem,
2290 &vdev->bars[vdev->msix->pba_bar].region.mem);
2291 }
2292 }
2293
2294 /*
2295 * Resource setup
2296 */
2297 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
2298 {
2299 int i;
2300
2301 for (i = 0; i < PCI_ROM_SLOT; i++) {
2302 VFIOBAR *bar = &vdev->bars[i];
2303
2304 if (!bar->region.size) {
2305 continue;
2306 }
2307
2308 memory_region_set_enabled(&bar->region.mmap_mem, enabled);
2309 if (vdev->msix && vdev->msix->table_bar == i) {
2310 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
2311 }
2312 }
2313 }
2314
2315 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr)
2316 {
2317 VFIOBAR *bar = &vdev->bars[nr];
2318
2319 if (!bar->region.size) {
2320 return;
2321 }
2322
2323 vfio_bar_quirk_teardown(vdev, nr);
2324
2325 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem);
2326
2327 if (vdev->msix && vdev->msix->table_bar == nr) {
2328 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem);
2329 }
2330 }
2331
2332 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr)
2333 {
2334 VFIOBAR *bar = &vdev->bars[nr];
2335
2336 if (!bar->region.size) {
2337 return;
2338 }
2339
2340 vfio_bar_quirk_free(vdev, nr);
2341
2342 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem));
2343
2344 if (vdev->msix && vdev->msix->table_bar == nr) {
2345 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
2346 }
2347 }
2348
2349 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr)
2350 {
2351 VFIOBAR *bar = &vdev->bars[nr];
2352 uint64_t size = bar->region.size;
2353 char name[64];
2354 uint32_t pci_bar;
2355 uint8_t type;
2356 int ret;
2357
2358 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */
2359 if (!size) {
2360 return;
2361 }
2362
2363 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
2364 vdev->host.domain, vdev->host.bus, vdev->host.slot,
2365 vdev->host.function, nr);
2366
2367 /* Determine what type of BAR this is for registration */
2368 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
2369 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
2370 if (ret != sizeof(pci_bar)) {
2371 error_report("vfio: Failed to read BAR %d (%m)", nr);
2372 return;
2373 }
2374
2375 pci_bar = le32_to_cpu(pci_bar);
2376 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
2377 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
2378 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
2379 ~PCI_BASE_ADDRESS_MEM_MASK);
2380
2381 /* A "slow" read/write mapping underlies all BARs */
2382 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops,
2383 bar, name, size);
2384 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem);
2385
2386 /*
2387 * We can't mmap areas overlapping the MSIX vector table, so we
2388 * potentially insert a direct-mapped subregion before and after it.
2389 */
2390 if (vdev->msix && vdev->msix->table_bar == nr) {
2391 size = vdev->msix->table_offset & qemu_host_page_mask;
2392 }
2393
2394 strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
2395 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2396 &bar->region.mmap_mem, &bar->region.mmap,
2397 size, 0, name)) {
2398 error_report("%s unsupported. Performance may be slow", name);
2399 }
2400
2401 if (vdev->msix && vdev->msix->table_bar == nr) {
2402 uint64_t start;
2403
2404 start = HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset +
2405 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE));
2406
2407 size = start < bar->region.size ? bar->region.size - start : 0;
2408 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
2409 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */
2410 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2411 &vdev->msix->mmap_mem,
2412 &vdev->msix->mmap, size, start, name)) {
2413 error_report("%s unsupported. Performance may be slow", name);
2414 }
2415 }
2416
2417 vfio_bar_quirk_setup(vdev, nr);
2418 }
2419
2420 static void vfio_map_bars(VFIOPCIDevice *vdev)
2421 {
2422 int i;
2423
2424 for (i = 0; i < PCI_ROM_SLOT; i++) {
2425 vfio_map_bar(vdev, i);
2426 }
2427
2428 if (vdev->has_vga) {
2429 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2430 OBJECT(vdev), &vfio_vga_ops,
2431 &vdev->vga.region[QEMU_PCI_VGA_MEM],
2432 "vfio-vga-mmio@0xa0000",
2433 QEMU_PCI_VGA_MEM_SIZE);
2434 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2435 OBJECT(vdev), &vfio_vga_ops,
2436 &vdev->vga.region[QEMU_PCI_VGA_IO_LO],
2437 "vfio-vga-io@0x3b0",
2438 QEMU_PCI_VGA_IO_LO_SIZE);
2439 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
2440 OBJECT(vdev), &vfio_vga_ops,
2441 &vdev->vga.region[QEMU_PCI_VGA_IO_HI],
2442 "vfio-vga-io@0x3c0",
2443 QEMU_PCI_VGA_IO_HI_SIZE);
2444
2445 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2446 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2447 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem);
2448 vfio_vga_quirk_setup(vdev);
2449 }
2450 }
2451
2452 static void vfio_unregister_bars(VFIOPCIDevice *vdev)
2453 {
2454 int i;
2455
2456 for (i = 0; i < PCI_ROM_SLOT; i++) {
2457 vfio_unregister_bar(vdev, i);
2458 }
2459
2460 if (vdev->has_vga) {
2461 vfio_vga_quirk_teardown(vdev);
2462 pci_unregister_vga(&vdev->pdev);
2463 }
2464 }
2465
2466 static void vfio_unmap_bars(VFIOPCIDevice *vdev)
2467 {
2468 int i;
2469
2470 for (i = 0; i < PCI_ROM_SLOT; i++) {
2471 vfio_unmap_bar(vdev, i);
2472 }
2473
2474 if (vdev->has_vga) {
2475 vfio_vga_quirk_free(vdev);
2476 }
2477 }
2478
2479 /*
2480 * General setup
2481 */
2482 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
2483 {
2484 uint8_t tmp, next = 0xff;
2485
2486 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
2487 tmp = pdev->config[tmp + 1]) {
2488 if (tmp > pos && tmp < next) {
2489 next = tmp;
2490 }
2491 }
2492
2493 return next - pos;
2494 }
2495
2496 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
2497 {
2498 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
2499 }
2500
2501 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
2502 uint16_t val, uint16_t mask)
2503 {
2504 vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
2505 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
2506 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
2507 }
2508
2509 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
2510 {
2511 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
2512 }
2513
2514 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
2515 uint32_t val, uint32_t mask)
2516 {
2517 vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
2518 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
2519 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
2520 }
2521
2522 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size)
2523 {
2524 uint16_t flags;
2525 uint8_t type;
2526
2527 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
2528 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
2529
2530 if (type != PCI_EXP_TYPE_ENDPOINT &&
2531 type != PCI_EXP_TYPE_LEG_END &&
2532 type != PCI_EXP_TYPE_RC_END) {
2533
2534 error_report("vfio: Assignment of PCIe type 0x%x "
2535 "devices is not currently supported", type);
2536 return -EINVAL;
2537 }
2538
2539 if (!pci_bus_is_express(vdev->pdev.bus)) {
2540 /*
2541 * Use express capability as-is on PCI bus. It doesn't make much
2542 * sense to even expose, but some drivers (ex. tg3) depend on it
2543 * and guests don't seem to be particular about it. We'll need
2544 * to revist this or force express devices to express buses if we
2545 * ever expose an IOMMU to the guest.
2546 */
2547 } else if (pci_bus_is_root(vdev->pdev.bus)) {
2548 /*
2549 * On a Root Complex bus Endpoints become Root Complex Integrated
2550 * Endpoints, which changes the type and clears the LNK & LNK2 fields.
2551 */
2552 if (type == PCI_EXP_TYPE_ENDPOINT) {
2553 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2554 PCI_EXP_TYPE_RC_END << 4,
2555 PCI_EXP_FLAGS_TYPE);
2556
2557 /* Link Capabilities, Status, and Control goes away */
2558 if (size > PCI_EXP_LNKCTL) {
2559 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
2560 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2561 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
2562
2563 #ifndef PCI_EXP_LNKCAP2
2564 #define PCI_EXP_LNKCAP2 44
2565 #endif
2566 #ifndef PCI_EXP_LNKSTA2
2567 #define PCI_EXP_LNKSTA2 50
2568 #endif
2569 /* Link 2 Capabilities, Status, and Control goes away */
2570 if (size > PCI_EXP_LNKCAP2) {
2571 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
2572 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
2573 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
2574 }
2575 }
2576
2577 } else if (type == PCI_EXP_TYPE_LEG_END) {
2578 /*
2579 * Legacy endpoints don't belong on the root complex. Windows
2580 * seems to be happier with devices if we skip the capability.
2581 */
2582 return 0;
2583 }
2584
2585 } else {
2586 /*
2587 * Convert Root Complex Integrated Endpoints to regular endpoints.
2588 * These devices don't support LNK/LNK2 capabilities, so make them up.
2589 */
2590 if (type == PCI_EXP_TYPE_RC_END) {
2591 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2592 PCI_EXP_TYPE_ENDPOINT << 4,
2593 PCI_EXP_FLAGS_TYPE);
2594 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
2595 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
2596 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2597 }
2598
2599 /* Mark the Link Status bits as emulated to allow virtual negotiation */
2600 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
2601 pci_get_word(vdev->pdev.config + pos +
2602 PCI_EXP_LNKSTA),
2603 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
2604 }
2605
2606 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
2607 if (pos >= 0) {
2608 vdev->pdev.exp.exp_cap = pos;
2609 }
2610
2611 return pos;
2612 }
2613
2614 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
2615 {
2616 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
2617
2618 if (cap & PCI_EXP_DEVCAP_FLR) {
2619 trace_vfio_check_pcie_flr(vdev->vbasedev.name);
2620 vdev->has_flr = true;
2621 }
2622 }
2623
2624 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
2625 {
2626 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
2627
2628 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
2629 trace_vfio_check_pm_reset(vdev->vbasedev.name);
2630 vdev->has_pm_reset = true;
2631 }
2632 }
2633
2634 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
2635 {
2636 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
2637
2638 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
2639 trace_vfio_check_af_flr(vdev->vbasedev.name);
2640 vdev->has_flr = true;
2641 }
2642 }
2643
2644 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos)
2645 {
2646 PCIDevice *pdev = &vdev->pdev;
2647 uint8_t cap_id, next, size;
2648 int ret;
2649
2650 cap_id = pdev->config[pos];
2651 next = pdev->config[pos + 1];
2652
2653 /*
2654 * If it becomes important to configure capabilities to their actual
2655 * size, use this as the default when it's something we don't recognize.
2656 * Since QEMU doesn't actually handle many of the config accesses,
2657 * exact size doesn't seem worthwhile.
2658 */
2659 size = vfio_std_cap_max_size(pdev, pos);
2660
2661 /*
2662 * pci_add_capability always inserts the new capability at the head
2663 * of the chain. Therefore to end up with a chain that matches the
2664 * physical device, we insert from the end by making this recursive.
2665 * This is also why we pre-caclulate size above as cached config space
2666 * will be changed as we unwind the stack.
2667 */
2668 if (next) {
2669 ret = vfio_add_std_cap(vdev, next);
2670 if (ret) {
2671 return ret;
2672 }
2673 } else {
2674 /* Begin the rebuild, use QEMU emulated list bits */
2675 pdev->config[PCI_CAPABILITY_LIST] = 0;
2676 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
2677 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
2678 }
2679
2680 /* Use emulated next pointer to allow dropping caps */
2681 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff);
2682
2683 switch (cap_id) {
2684 case PCI_CAP_ID_MSI:
2685 ret = vfio_setup_msi(vdev, pos);
2686 break;
2687 case PCI_CAP_ID_EXP:
2688 vfio_check_pcie_flr(vdev, pos);
2689 ret = vfio_setup_pcie_cap(vdev, pos, size);
2690 break;
2691 case PCI_CAP_ID_MSIX:
2692 ret = vfio_setup_msix(vdev, pos);
2693 break;
2694 case PCI_CAP_ID_PM:
2695 vfio_check_pm_reset(vdev, pos);
2696 vdev->pm_cap = pos;
2697 ret = pci_add_capability(pdev, cap_id, pos, size);
2698 break;
2699 case PCI_CAP_ID_AF:
2700 vfio_check_af_flr(vdev, pos);
2701 ret = pci_add_capability(pdev, cap_id, pos, size);
2702 break;
2703 default:
2704 ret = pci_add_capability(pdev, cap_id, pos, size);
2705 break;
2706 }
2707
2708 if (ret < 0) {
2709 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
2710 "0x%x[0x%x]@0x%x: %d", vdev->host.domain,
2711 vdev->host.bus, vdev->host.slot, vdev->host.function,
2712 cap_id, size, pos, ret);
2713 return ret;
2714 }
2715
2716 return 0;
2717 }
2718
2719 static int vfio_add_capabilities(VFIOPCIDevice *vdev)
2720 {
2721 PCIDevice *pdev = &vdev->pdev;
2722
2723 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
2724 !pdev->config[PCI_CAPABILITY_LIST]) {
2725 return 0; /* Nothing to add */
2726 }
2727
2728 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
2729 }
2730
2731 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
2732 {
2733 PCIDevice *pdev = &vdev->pdev;
2734 uint16_t cmd;
2735
2736 vfio_disable_interrupts(vdev);
2737
2738 /* Make sure the device is in D0 */
2739 if (vdev->pm_cap) {
2740 uint16_t pmcsr;
2741 uint8_t state;
2742
2743 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2744 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2745 if (state) {
2746 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2747 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
2748 /* vfio handles the necessary delay here */
2749 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2750 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2751 if (state) {
2752 error_report("vfio: Unable to power on device, stuck in D%d",
2753 state);
2754 }
2755 }
2756 }
2757
2758 /*
2759 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
2760 * Also put INTx Disable in known state.
2761 */
2762 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
2763 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
2764 PCI_COMMAND_INTX_DISABLE);
2765 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
2766 }
2767
2768 static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
2769 {
2770 vfio_enable_intx(vdev);
2771 }
2772
2773 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1,
2774 PCIHostDeviceAddress *host2)
2775 {
2776 return (host1->domain == host2->domain && host1->bus == host2->bus &&
2777 host1->slot == host2->slot && host1->function == host2->function);
2778 }
2779
2780 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
2781 {
2782 VFIOGroup *group;
2783 struct vfio_pci_hot_reset_info *info;
2784 struct vfio_pci_dependent_device *devices;
2785 struct vfio_pci_hot_reset *reset;
2786 int32_t *fds;
2787 int ret, i, count;
2788 bool multi = false;
2789
2790 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
2791
2792 vfio_pci_pre_reset(vdev);
2793 vdev->vbasedev.needs_reset = false;
2794
2795 info = g_malloc0(sizeof(*info));
2796 info->argsz = sizeof(*info);
2797
2798 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2799 if (ret && errno != ENOSPC) {
2800 ret = -errno;
2801 if (!vdev->has_pm_reset) {
2802 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, "
2803 "no available reset mechanism.", vdev->host.domain,
2804 vdev->host.bus, vdev->host.slot, vdev->host.function);
2805 }
2806 goto out_single;
2807 }
2808
2809 count = info->count;
2810 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
2811 info->argsz = sizeof(*info) + (count * sizeof(*devices));
2812 devices = &info->devices[0];
2813
2814 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2815 if (ret) {
2816 ret = -errno;
2817 error_report("vfio: hot reset info failed: %m");
2818 goto out_single;
2819 }
2820
2821 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
2822
2823 /* Verify that we have all the groups required */
2824 for (i = 0; i < info->count; i++) {
2825 PCIHostDeviceAddress host;
2826 VFIOPCIDevice *tmp;
2827 VFIODevice *vbasedev_iter;
2828
2829 host.domain = devices[i].segment;
2830 host.bus = devices[i].bus;
2831 host.slot = PCI_SLOT(devices[i].devfn);
2832 host.function = PCI_FUNC(devices[i].devfn);
2833
2834 trace_vfio_pci_hot_reset_dep_devices(host.domain,
2835 host.bus, host.slot, host.function, devices[i].group_id);
2836
2837 if (vfio_pci_host_match(&host, &vdev->host)) {
2838 continue;
2839 }
2840
2841 QLIST_FOREACH(group, &vfio_group_list, next) {
2842 if (group->groupid == devices[i].group_id) {
2843 break;
2844 }
2845 }
2846
2847 if (!group) {
2848 if (!vdev->has_pm_reset) {
2849 error_report("vfio: Cannot reset device %s, "
2850 "depends on group %d which is not owned.",
2851 vdev->vbasedev.name, devices[i].group_id);
2852 }
2853 ret = -EPERM;
2854 goto out;
2855 }
2856
2857 /* Prep dependent devices for reset and clear our marker. */
2858 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2859 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2860 continue;
2861 }
2862 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2863 if (vfio_pci_host_match(&host, &tmp->host)) {
2864 if (single) {
2865 ret = -EINVAL;
2866 goto out_single;
2867 }
2868 vfio_pci_pre_reset(tmp);
2869 tmp->vbasedev.needs_reset = false;
2870 multi = true;
2871 break;
2872 }
2873 }
2874 }
2875
2876 if (!single && !multi) {
2877 ret = -EINVAL;
2878 goto out_single;
2879 }
2880
2881 /* Determine how many group fds need to be passed */
2882 count = 0;
2883 QLIST_FOREACH(group, &vfio_group_list, next) {
2884 for (i = 0; i < info->count; i++) {
2885 if (group->groupid == devices[i].group_id) {
2886 count++;
2887 break;
2888 }
2889 }
2890 }
2891
2892 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
2893 reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
2894 fds = &reset->group_fds[0];
2895
2896 /* Fill in group fds */
2897 QLIST_FOREACH(group, &vfio_group_list, next) {
2898 for (i = 0; i < info->count; i++) {
2899 if (group->groupid == devices[i].group_id) {
2900 fds[reset->count++] = group->fd;
2901 break;
2902 }
2903 }
2904 }
2905
2906 /* Bus reset! */
2907 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
2908 g_free(reset);
2909
2910 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
2911 ret ? "%m" : "Success");
2912
2913 out:
2914 /* Re-enable INTx on affected devices */
2915 for (i = 0; i < info->count; i++) {
2916 PCIHostDeviceAddress host;
2917 VFIOPCIDevice *tmp;
2918 VFIODevice *vbasedev_iter;
2919
2920 host.domain = devices[i].segment;
2921 host.bus = devices[i].bus;
2922 host.slot = PCI_SLOT(devices[i].devfn);
2923 host.function = PCI_FUNC(devices[i].devfn);
2924
2925 if (vfio_pci_host_match(&host, &vdev->host)) {
2926 continue;
2927 }
2928
2929 QLIST_FOREACH(group, &vfio_group_list, next) {
2930 if (group->groupid == devices[i].group_id) {
2931 break;
2932 }
2933 }
2934
2935 if (!group) {
2936 break;
2937 }
2938
2939 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2940 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2941 continue;
2942 }
2943 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2944 if (vfio_pci_host_match(&host, &tmp->host)) {
2945 vfio_pci_post_reset(tmp);
2946 break;
2947 }
2948 }
2949 }
2950 out_single:
2951 vfio_pci_post_reset(vdev);
2952 g_free(info);
2953
2954 return ret;
2955 }
2956
2957 /*
2958 * We want to differentiate hot reset of mulitple in-use devices vs hot reset
2959 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case
2960 * of doing hot resets when there is only a single device per bus. The in-use
2961 * here refers to how many VFIODevices are affected. A hot reset that affects
2962 * multiple devices, but only a single in-use device, means that we can call
2963 * it from our bus ->reset() callback since the extent is effectively a single
2964 * device. This allows us to make use of it in the hotplug path. When there
2965 * are multiple in-use devices, we can only trigger the hot reset during a
2966 * system reset and thus from our reset handler. We separate _one vs _multi
2967 * here so that we don't overlap and do a double reset on the system reset
2968 * path where both our reset handler and ->reset() callback are used. Calling
2969 * _one() will only do a hot reset for the one in-use devices case, calling
2970 * _multi() will do nothing if a _one() would have been sufficient.
2971 */
2972 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
2973 {
2974 return vfio_pci_hot_reset(vdev, true);
2975 }
2976
2977 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
2978 {
2979 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2980 return vfio_pci_hot_reset(vdev, false);
2981 }
2982
2983 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
2984 {
2985 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2986 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
2987 vbasedev->needs_reset = true;
2988 }
2989 }
2990
2991 static VFIODeviceOps vfio_pci_ops = {
2992 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
2993 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
2994 .vfio_eoi = vfio_eoi,
2995 };
2996
2997 static int vfio_populate_device(VFIOPCIDevice *vdev)
2998 {
2999 VFIODevice *vbasedev = &vdev->vbasedev;
3000 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
3001 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
3002 int i, ret = -1;
3003
3004 /* Sanity check device */
3005 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
3006 error_report("vfio: Um, this isn't a PCI device");
3007 goto error;
3008 }
3009
3010 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
3011 error_report("vfio: unexpected number of io regions %u",
3012 vbasedev->num_regions);
3013 goto error;
3014 }
3015
3016 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
3017 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs);
3018 goto error;
3019 }
3020
3021 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
3022 reg_info.index = i;
3023
3024 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3025 if (ret) {
3026 error_report("vfio: Error getting region %d info: %m", i);
3027 goto error;
3028 }
3029
3030 trace_vfio_populate_device_region(vbasedev->name, i,
3031 (unsigned long)reg_info.size,
3032 (unsigned long)reg_info.offset,
3033 (unsigned long)reg_info.flags);
3034
3035 vdev->bars[i].region.vbasedev = vbasedev;
3036 vdev->bars[i].region.flags = reg_info.flags;
3037 vdev->bars[i].region.size = reg_info.size;
3038 vdev->bars[i].region.fd_offset = reg_info.offset;
3039 vdev->bars[i].region.nr = i;
3040 QLIST_INIT(&vdev->bars[i].quirks);
3041 }
3042
3043 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
3044
3045 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3046 if (ret) {
3047 error_report("vfio: Error getting config info: %m");
3048 goto error;
3049 }
3050
3051 trace_vfio_populate_device_config(vdev->vbasedev.name,
3052 (unsigned long)reg_info.size,
3053 (unsigned long)reg_info.offset,
3054 (unsigned long)reg_info.flags);
3055
3056 vdev->config_size = reg_info.size;
3057 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
3058 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
3059 }
3060 vdev->config_offset = reg_info.offset;
3061
3062 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) &&
3063 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) {
3064 struct vfio_region_info vga_info = {
3065 .argsz = sizeof(vga_info),
3066 .index = VFIO_PCI_VGA_REGION_INDEX,
3067 };
3068
3069 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info);
3070 if (ret) {
3071 error_report(
3072 "vfio: Device does not support requested feature x-vga");
3073 goto error;
3074 }
3075
3076 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) ||
3077 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) ||
3078 vga_info.size < 0xbffff + 1) {
3079 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx",
3080 (unsigned long)vga_info.flags,
3081 (unsigned long)vga_info.size);
3082 goto error;
3083 }
3084
3085 vdev->vga.fd_offset = vga_info.offset;
3086 vdev->vga.fd = vdev->vbasedev.fd;
3087
3088 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
3089 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
3090 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks);
3091
3092 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
3093 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
3094 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks);
3095
3096 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
3097 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
3098 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks);
3099
3100 vdev->has_vga = true;
3101 }
3102
3103 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
3104
3105 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
3106 if (ret) {
3107 /* This can fail for an old kernel or legacy PCI dev */
3108 trace_vfio_populate_device_get_irq_info_failure();
3109 ret = 0;
3110 } else if (irq_info.count == 1) {
3111 vdev->pci_aer = true;
3112 } else {
3113 error_report("vfio: %s "
3114 "Could not enable error recovery for the device",
3115 vbasedev->name);
3116 }
3117
3118 error:
3119 return ret;
3120 }
3121
3122 static void vfio_put_device(VFIOPCIDevice *vdev)
3123 {
3124 g_free(vdev->vbasedev.name);
3125 if (vdev->msix) {
3126 object_unparent(OBJECT(&vdev->msix->mmap_mem));
3127 g_free(vdev->msix);
3128 vdev->msix = NULL;
3129 }
3130 vfio_put_base_device(&vdev->vbasedev);
3131 }
3132
3133 static void vfio_err_notifier_handler(void *opaque)
3134 {
3135 VFIOPCIDevice *vdev = opaque;
3136
3137 if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
3138 return;
3139 }
3140
3141 /*
3142 * TBD. Retrieve the error details and decide what action
3143 * needs to be taken. One of the actions could be to pass
3144 * the error to the guest and have the guest driver recover
3145 * from the error. This requires that PCIe capabilities be
3146 * exposed to the guest. For now, we just terminate the
3147 * guest to contain the error.
3148 */
3149
3150 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. "
3151 "Please collect any data possible and then kill the guest",
3152 __func__, vdev->host.domain, vdev->host.bus,
3153 vdev->host.slot, vdev->host.function);
3154
3155 vm_stop(RUN_STATE_INTERNAL_ERROR);
3156 }
3157
3158 /*
3159 * Registers error notifier for devices supporting error recovery.
3160 * If we encounter a failure in this function, we report an error
3161 * and continue after disabling error recovery support for the
3162 * device.
3163 */
3164 static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
3165 {
3166 int ret;
3167 int argsz;
3168 struct vfio_irq_set *irq_set;
3169 int32_t *pfd;
3170
3171 if (!vdev->pci_aer) {
3172 return;
3173 }
3174
3175 if (event_notifier_init(&vdev->err_notifier, 0)) {
3176 error_report("vfio: Unable to init event notifier for error detection");
3177 vdev->pci_aer = false;
3178 return;
3179 }
3180
3181 argsz = sizeof(*irq_set) + sizeof(*pfd);
3182
3183 irq_set = g_malloc0(argsz);
3184 irq_set->argsz = argsz;
3185 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3186 VFIO_IRQ_SET_ACTION_TRIGGER;
3187 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3188 irq_set->start = 0;
3189 irq_set->count = 1;
3190 pfd = (int32_t *)&irq_set->data;
3191
3192 *pfd = event_notifier_get_fd(&vdev->err_notifier);
3193 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
3194
3195 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3196 if (ret) {
3197 error_report("vfio: Failed to set up error notification");
3198 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3199 event_notifier_cleanup(&vdev->err_notifier);
3200 vdev->pci_aer = false;
3201 }
3202 g_free(irq_set);
3203 }
3204
3205 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
3206 {
3207 int argsz;
3208 struct vfio_irq_set *irq_set;
3209 int32_t *pfd;
3210 int ret;
3211
3212 if (!vdev->pci_aer) {
3213 return;
3214 }
3215
3216 argsz = sizeof(*irq_set) + sizeof(*pfd);
3217
3218 irq_set = g_malloc0(argsz);
3219 irq_set->argsz = argsz;
3220 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3221 VFIO_IRQ_SET_ACTION_TRIGGER;
3222 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3223 irq_set->start = 0;
3224 irq_set->count = 1;
3225 pfd = (int32_t *)&irq_set->data;
3226 *pfd = -1;
3227
3228 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3229 if (ret) {
3230 error_report("vfio: Failed to de-assign error fd: %m");
3231 }
3232 g_free(irq_set);
3233 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
3234 NULL, NULL, vdev);
3235 event_notifier_cleanup(&vdev->err_notifier);
3236 }
3237
3238 static void vfio_req_notifier_handler(void *opaque)
3239 {
3240 VFIOPCIDevice *vdev = opaque;
3241
3242 if (!event_notifier_test_and_clear(&vdev->req_notifier)) {
3243 return;
3244 }
3245
3246 qdev_unplug(&vdev->pdev.qdev, NULL);
3247 }
3248
3249 static void vfio_register_req_notifier(VFIOPCIDevice *vdev)
3250 {
3251 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info),
3252 .index = VFIO_PCI_REQ_IRQ_INDEX };
3253 int argsz;
3254 struct vfio_irq_set *irq_set;
3255 int32_t *pfd;
3256
3257 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) {
3258 return;
3259 }
3260
3261 if (ioctl(vdev->vbasedev.fd,
3262 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) {
3263 return;
3264 }
3265
3266 if (event_notifier_init(&vdev->req_notifier, 0)) {
3267 error_report("vfio: Unable to init event notifier for device request");
3268 return;
3269 }
3270
3271 argsz = sizeof(*irq_set) + sizeof(*pfd);
3272
3273 irq_set = g_malloc0(argsz);
3274 irq_set->argsz = argsz;
3275 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3276 VFIO_IRQ_SET_ACTION_TRIGGER;
3277 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3278 irq_set->start = 0;
3279 irq_set->count = 1;
3280 pfd = (int32_t *)&irq_set->data;
3281
3282 *pfd = event_notifier_get_fd(&vdev->req_notifier);
3283 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev);
3284
3285 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3286 error_report("vfio: Failed to set up device request notification");
3287 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3288 event_notifier_cleanup(&vdev->req_notifier);
3289 } else {
3290 vdev->req_enabled = true;
3291 }
3292
3293 g_free(irq_set);
3294 }
3295
3296 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev)
3297 {
3298 int argsz;
3299 struct vfio_irq_set *irq_set;
3300 int32_t *pfd;
3301
3302 if (!vdev->req_enabled) {
3303 return;
3304 }
3305
3306 argsz = sizeof(*irq_set) + sizeof(*pfd);
3307
3308 irq_set = g_malloc0(argsz);
3309 irq_set->argsz = argsz;
3310 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3311 VFIO_IRQ_SET_ACTION_TRIGGER;
3312 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3313 irq_set->start = 0;
3314 irq_set->count = 1;
3315 pfd = (int32_t *)&irq_set->data;
3316 *pfd = -1;
3317
3318 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3319 error_report("vfio: Failed to de-assign device request fd: %m");
3320 }
3321 g_free(irq_set);
3322 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier),
3323 NULL, NULL, vdev);
3324 event_notifier_cleanup(&vdev->req_notifier);
3325
3326 vdev->req_enabled = false;
3327 }
3328
3329 /*
3330 * AMD Radeon PCI config reset, based on Linux:
3331 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
3332 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
3333 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
3334 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
3335 * IDs: include/drm/drm_pciids.h
3336 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
3337 *
3338 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
3339 * hardware that should be fixed on future ASICs. The symptom of this is that
3340 * once the accerlated driver loads, Windows guests will bsod on subsequent
3341 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
3342 * work around this, we do an AMD specific PCI config reset, followed by an SMC
3343 * reset. The PCI config reset only works if SMC firmware is running, so we
3344 * have a dependency on the state of the device as to whether this reset will
3345 * be effective. There are still cases where we won't be able to kick the
3346 * device into working, but this greatly improves the usability overall. The
3347 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
3348 * poking is largely ASIC specific.
3349 */
3350 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
3351 {
3352 uint32_t clk, pc_c;
3353
3354 /*
3355 * Registers 200h and 204h are index and data registers for acessing
3356 * indirect configuration registers within the device.
3357 */
3358 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
3359 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3360 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
3361 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3362
3363 return (!(clk & 1) && (0x20100 <= pc_c));
3364 }
3365
3366 /*
3367 * The scope of a config reset is controlled by a mode bit in the misc register
3368 * and a fuse, exposed as a bit in another register. The fuse is the default
3369 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
3370 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
3371 * the fuse. A truth table therefore tells us that if misc == fuse, we need
3372 * to flip the value of the bit in the misc register.
3373 */
3374 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
3375 {
3376 uint32_t misc, fuse;
3377 bool a, b;
3378
3379 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
3380 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3381 b = fuse & 64;
3382
3383 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
3384 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3385 a = misc & 2;
3386
3387 if (a == b) {
3388 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
3389 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
3390 }
3391 }
3392
3393 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
3394 {
3395 PCIDevice *pdev = &vdev->pdev;
3396 int i, ret = 0;
3397 uint32_t data;
3398
3399 /* Defer to a kernel implemented reset */
3400 if (vdev->vbasedev.reset_works) {
3401 return -ENODEV;
3402 }
3403
3404 /* Enable only memory BAR access */
3405 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
3406
3407 /* Reset only works if SMC firmware is loaded and running */
3408 if (!vfio_radeon_smc_is_running(vdev)) {
3409 ret = -EINVAL;
3410 goto out;
3411 }
3412
3413 /* Make sure only the GFX function is reset */
3414 vfio_radeon_set_gfx_only_reset(vdev);
3415
3416 /* AMD PCI config reset */
3417 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
3418 usleep(100);
3419
3420 /* Read back the memory size to make sure we're out of reset */
3421 for (i = 0; i < 100000; i++) {
3422 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
3423 break;
3424 }
3425 usleep(1);
3426 }
3427
3428 /* Reset SMC */
3429 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
3430 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3431 data |= 1;
3432 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
3433
3434 /* Disable SMC clock */
3435 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
3436 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3437 data |= 1;
3438 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
3439
3440 out:
3441 /* Restore PCI command register */
3442 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
3443
3444 return ret;
3445 }
3446
3447 static void vfio_setup_resetfn(VFIOPCIDevice *vdev)
3448 {
3449 PCIDevice *pdev = &vdev->pdev;
3450 uint16_t vendor, device;
3451
3452 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
3453 device = pci_get_word(pdev->config + PCI_DEVICE_ID);
3454
3455 switch (vendor) {
3456 case 0x1002:
3457 switch (device) {
3458 /* Bonaire */
3459 case 0x6649: /* Bonaire [FirePro W5100] */
3460 case 0x6650:
3461 case 0x6651:
3462 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
3463 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
3464 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
3465 /* Hawaii */
3466 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
3467 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
3468 case 0x67A2:
3469 case 0x67A8:
3470 case 0x67A9:
3471 case 0x67AA:
3472 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
3473 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
3474 case 0x67B8:
3475 case 0x67B9:
3476 case 0x67BA:
3477 case 0x67BE:
3478 vdev->resetfn = vfio_radeon_reset;
3479 break;
3480 }
3481 break;
3482 }
3483 }
3484
3485 static int vfio_initfn(PCIDevice *pdev)
3486 {
3487 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3488 VFIODevice *vbasedev_iter;
3489 VFIOGroup *group;
3490 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
3491 ssize_t len;
3492 struct stat st;
3493 int groupid;
3494 int ret;
3495
3496 /* Check that the host device exists */
3497 snprintf(path, sizeof(path),
3498 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
3499 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3500 vdev->host.function);
3501 if (stat(path, &st) < 0) {
3502 error_report("vfio: error: no such host device: %s", path);
3503 return -errno;
3504 }
3505
3506 vdev->vbasedev.ops = &vfio_pci_ops;
3507
3508 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
3509 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x",
3510 vdev->host.domain, vdev->host.bus,
3511 vdev->host.slot, vdev->host.function);
3512
3513 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
3514
3515 len = readlink(path, iommu_group_path, sizeof(path));
3516 if (len <= 0 || len >= sizeof(path)) {
3517 error_report("vfio: error no iommu_group for device");
3518 return len < 0 ? -errno : -ENAMETOOLONG;
3519 }
3520
3521 iommu_group_path[len] = 0;
3522 group_name = basename(iommu_group_path);
3523
3524 if (sscanf(group_name, "%d", &groupid) != 1) {
3525 error_report("vfio: error reading %s: %m", path);
3526 return -errno;
3527 }
3528
3529 trace_vfio_initfn(vdev->vbasedev.name, groupid);
3530
3531 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev));
3532 if (!group) {
3533 error_report("vfio: failed to get group %d", groupid);
3534 return -ENOENT;
3535 }
3536
3537 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
3538 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3539 vdev->host.function);
3540
3541 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
3542 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
3543 error_report("vfio: error: device %s is already attached", path);
3544 vfio_put_group(group);
3545 return -EBUSY;
3546 }
3547 }
3548
3549 ret = vfio_get_device(group, path, &vdev->vbasedev);
3550 if (ret) {
3551 error_report("vfio: failed to get device %s", path);
3552 vfio_put_group(group);
3553 return ret;
3554 }
3555
3556 ret = vfio_populate_device(vdev);
3557 if (ret) {
3558 return ret;
3559 }
3560
3561 /* Get a copy of config space */
3562 ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
3563 MIN(pci_config_size(&vdev->pdev), vdev->config_size),
3564 vdev->config_offset);
3565 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
3566 ret = ret < 0 ? -errno : -EFAULT;
3567 error_report("vfio: Failed to read device config space");
3568 return ret;
3569 }
3570
3571 /* vfio emulates a lot for us, but some bits need extra love */
3572 vdev->emulated_config_bits = g_malloc0(vdev->config_size);
3573
3574 /* QEMU can choose to expose the ROM or not */
3575 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
3576
3577 /* QEMU can change multi-function devices to single function, or reverse */
3578 vdev->emulated_config_bits[PCI_HEADER_TYPE] =
3579 PCI_HEADER_TYPE_MULTI_FUNCTION;
3580
3581 /* Restore or clear multifunction, this is always controlled by QEMU */
3582 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
3583 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
3584 } else {
3585 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
3586 }
3587
3588 /*
3589 * Clear host resource mapping info. If we choose not to register a
3590 * BAR, such as might be the case with the option ROM, we can get
3591 * confusing, unwritable, residual addresses from the host here.
3592 */
3593 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
3594 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
3595
3596 vfio_pci_size_rom(vdev);
3597
3598 ret = vfio_early_setup_msix(vdev);
3599 if (ret) {
3600 return ret;
3601 }
3602
3603 vfio_map_bars(vdev);
3604
3605 ret = vfio_add_capabilities(vdev);
3606 if (ret) {
3607 goto out_teardown;
3608 }
3609
3610 /* QEMU emulates all of MSI & MSIX */
3611 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
3612 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
3613 MSIX_CAP_LENGTH);
3614 }
3615
3616 if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
3617 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
3618 vdev->msi_cap_size);
3619 }
3620
3621 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
3622 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3623 vfio_intx_mmap_enable, vdev);
3624 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq);
3625 ret = vfio_enable_intx(vdev);
3626 if (ret) {
3627 goto out_teardown;
3628 }
3629 }
3630
3631 vfio_register_err_notifier(vdev);
3632 vfio_register_req_notifier(vdev);
3633 vfio_setup_resetfn(vdev);
3634
3635 return 0;
3636
3637 out_teardown:
3638 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3639 vfio_teardown_msi(vdev);
3640 vfio_unregister_bars(vdev);
3641 return ret;
3642 }
3643
3644 static void vfio_instance_finalize(Object *obj)
3645 {
3646 PCIDevice *pci_dev = PCI_DEVICE(obj);
3647 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev);
3648 VFIOGroup *group = vdev->vbasedev.group;
3649
3650 vfio_unmap_bars(vdev);
3651 g_free(vdev->emulated_config_bits);
3652 g_free(vdev->rom);
3653 vfio_put_device(vdev);
3654 vfio_put_group(group);
3655 }
3656
3657 static void vfio_exitfn(PCIDevice *pdev)
3658 {
3659 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3660
3661 vfio_unregister_req_notifier(vdev);
3662 vfio_unregister_err_notifier(vdev);
3663 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3664 vfio_disable_interrupts(vdev);
3665 if (vdev->intx.mmap_timer) {
3666 timer_free(vdev->intx.mmap_timer);
3667 }
3668 vfio_teardown_msi(vdev);
3669 vfio_unregister_bars(vdev);
3670 }
3671
3672 static void vfio_pci_reset(DeviceState *dev)
3673 {
3674 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
3675 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3676
3677 trace_vfio_pci_reset(vdev->vbasedev.name);
3678
3679 vfio_pci_pre_reset(vdev);
3680
3681 if (vdev->resetfn && !vdev->resetfn(vdev)) {
3682 goto post_reset;
3683 }
3684
3685 if (vdev->vbasedev.reset_works &&
3686 (vdev->has_flr || !vdev->has_pm_reset) &&
3687 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3688 trace_vfio_pci_reset_flr(vdev->vbasedev.name);
3689 goto post_reset;
3690 }
3691
3692 /* See if we can do our own bus reset */
3693 if (!vfio_pci_hot_reset_one(vdev)) {
3694 goto post_reset;
3695 }
3696
3697 /* If nothing else works and the device supports PM reset, use it */
3698 if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
3699 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3700 trace_vfio_pci_reset_pm(vdev->vbasedev.name);
3701 goto post_reset;
3702 }
3703
3704 post_reset:
3705 vfio_pci_post_reset(vdev);
3706 }
3707
3708 static void vfio_instance_init(Object *obj)
3709 {
3710 PCIDevice *pci_dev = PCI_DEVICE(obj);
3711 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
3712
3713 device_add_bootindex_property(obj, &vdev->bootindex,
3714 "bootindex", NULL,
3715 &pci_dev->qdev, NULL);
3716 }
3717
3718 static Property vfio_pci_dev_properties[] = {
3719 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
3720 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
3721 intx.mmap_timeout, 1100),
3722 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
3723 VFIO_FEATURE_ENABLE_VGA_BIT, false),
3724 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features,
3725 VFIO_FEATURE_ENABLE_REQ_BIT, true),
3726 DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1),
3727 DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true),
3728 /*
3729 * TODO - support passed fds... is this necessary?
3730 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
3731 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
3732 */
3733 DEFINE_PROP_END_OF_LIST(),
3734 };
3735
3736 static const VMStateDescription vfio_pci_vmstate = {
3737 .name = "vfio-pci",
3738 .unmigratable = 1,
3739 };
3740
3741 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
3742 {
3743 DeviceClass *dc = DEVICE_CLASS(klass);
3744 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
3745
3746 dc->reset = vfio_pci_reset;
3747 dc->props = vfio_pci_dev_properties;
3748 dc->vmsd = &vfio_pci_vmstate;
3749 dc->desc = "VFIO-based PCI device assignment";
3750 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3751 pdc->init = vfio_initfn;
3752 pdc->exit = vfio_exitfn;
3753 pdc->config_read = vfio_pci_read_config;
3754 pdc->config_write = vfio_pci_write_config;
3755 pdc->is_express = 1; /* We might be */
3756 }
3757
3758 static const TypeInfo vfio_pci_dev_info = {
3759 .name = "vfio-pci",
3760 .parent = TYPE_PCI_DEVICE,
3761 .instance_size = sizeof(VFIOPCIDevice),
3762 .class_init = vfio_pci_dev_class_init,
3763 .instance_init = vfio_instance_init,
3764 .instance_finalize = vfio_instance_finalize,
3765 };
3766
3767 static void register_vfio_pci_dev_type(void)
3768 {
3769 type_register_static(&vfio_pci_dev_info);
3770 }
3771
3772 type_init(register_vfio_pci_dev_type)