]> git.proxmox.com Git - mirror_qemu.git/blob - hw/wdt_i6300esb.c
qdev: add return value to init() callbacks.
[mirror_qemu.git] / hw / wdt_i6300esb.c
1 /*
2 * Virtual hardware watchdog.
3 *
4 * Copyright (C) 2009 Red Hat Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 *
19 * By Richard W.M. Jones (rjones@redhat.com).
20 */
21
22 #include <inttypes.h>
23
24 #include "qemu-common.h"
25 #include "qemu-timer.h"
26 #include "watchdog.h"
27 #include "hw.h"
28 #include "pc.h"
29 #include "pci.h"
30
31 /*#define I6300ESB_DEBUG 1*/
32
33 #ifdef I6300ESB_DEBUG
34 #define i6300esb_debug(fs,...) \
35 fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
36 #else
37 #define i6300esb_debug(fs,...)
38 #endif
39
40 #ifndef PCI_DEVICE_ID_INTEL_ESB_9
41 #define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
42 #endif
43
44 /* PCI configuration registers */
45 #define ESB_CONFIG_REG 0x60 /* Config register */
46 #define ESB_LOCK_REG 0x68 /* WDT lock register */
47
48 /* Memory mapped registers (offset from base address) */
49 #define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
50 #define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
51 #define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
52 #define ESB_RELOAD_REG 0x0c /* Reload register */
53
54 /* Lock register bits */
55 #define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
56 #define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
57 #define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
58
59 /* Config register bits */
60 #define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
61 #define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
62 #define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
63
64 /* Reload register bits */
65 #define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
66
67 /* Magic constants */
68 #define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
69 #define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
70
71 /* Device state. */
72 struct I6300State {
73 PCIDevice dev;
74
75 int reboot_enabled; /* "Reboot" on timer expiry. The real action
76 * performed depends on the -watchdog-action
77 * param passed on QEMU command line.
78 */
79 int clock_scale; /* Clock scale. */
80 #define CLOCK_SCALE_1KHZ 0
81 #define CLOCK_SCALE_1MHZ 1
82
83 int int_type; /* Interrupt type generated. */
84 #define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
85 #define INT_TYPE_SMI 2
86 #define INT_TYPE_DISABLED 3
87
88 int free_run; /* If true, reload timer on expiry. */
89 int locked; /* If true, enabled field cannot be changed. */
90 int enabled; /* If true, watchdog is enabled. */
91
92 QEMUTimer *timer; /* The actual watchdog timer. */
93
94 uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
95 uint32_t timer2_preload;
96 int stage; /* Stage (1 or 2). */
97
98 int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
99 * registers, and we transition through
100 * states 0 -> 1 -> 2 when this happens.
101 */
102
103 int previous_reboot_flag; /* If the watchdog caused the previous
104 * reboot, this flag will be set.
105 */
106 };
107
108 typedef struct I6300State I6300State;
109
110 /* This function is called when the watchdog has either been enabled
111 * (hence it starts counting down) or has been keep-alived.
112 */
113 static void i6300esb_restart_timer(I6300State *d, int stage)
114 {
115 int64_t timeout;
116
117 if (!d->enabled)
118 return;
119
120 d->stage = stage;
121
122 if (d->stage <= 1)
123 timeout = d->timer1_preload;
124 else
125 timeout = d->timer2_preload;
126
127 if (d->clock_scale == CLOCK_SCALE_1KHZ)
128 timeout <<= 15;
129 else
130 timeout <<= 5;
131
132 /* Get the timeout in units of ticks_per_sec. */
133 timeout = ticks_per_sec * timeout / 33000000;
134
135 i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
136
137 qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
138 }
139
140 /* This is called when the guest disables the watchdog. */
141 static void i6300esb_disable_timer(I6300State *d)
142 {
143 i6300esb_debug("timer disabled\n");
144
145 qemu_del_timer(d->timer);
146 }
147
148 static void i6300esb_reset(I6300State *d)
149 {
150 /* XXX We should probably reset other parts of the state here,
151 * but we should also reset our state on general machine reset
152 * too. For now just disable the timer so it doesn't fire
153 * again after the reboot.
154 */
155 i6300esb_disable_timer(d);
156 }
157
158 /* This function is called when the watchdog expires. Note that
159 * the hardware has two timers, and so expiry happens in two stages.
160 * If d->stage == 1 then we perform the first stage action (usually,
161 * sending an interrupt) and then restart the timer again for the
162 * second stage. If the second stage expires then the watchdog
163 * really has run out.
164 */
165 static void i6300esb_timer_expired(void *vp)
166 {
167 I6300State *d = (I6300State *) vp;
168
169 i6300esb_debug("stage %d\n", d->stage);
170
171 if (d->stage == 1) {
172 /* What to do at the end of stage 1? */
173 switch (d->int_type) {
174 case INT_TYPE_IRQ:
175 fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
176 break;
177 case INT_TYPE_SMI:
178 fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
179 break;
180 }
181
182 /* Start the second stage. */
183 i6300esb_restart_timer(d, 2);
184 } else {
185 /* Second stage expired, reboot for real. */
186 if (d->reboot_enabled) {
187 d->previous_reboot_flag = 1;
188 watchdog_perform_action(); /* This reboots, exits, etc */
189 i6300esb_reset(d);
190 }
191
192 /* In "free running mode" we start stage 1 again. */
193 if (d->free_run)
194 i6300esb_restart_timer(d, 1);
195 }
196 }
197
198 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
199 uint32_t data, int len)
200 {
201 I6300State *d = container_of(dev, I6300State, dev);
202 int old;
203
204 i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
205
206 if (addr == ESB_CONFIG_REG && len == 2) {
207 d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
208 d->clock_scale =
209 (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
210 d->int_type = (data & ESB_WDT_INTTYPE);
211 } else if (addr == ESB_LOCK_REG && len == 1) {
212 if (!d->locked) {
213 d->locked = (data & ESB_WDT_LOCK) != 0;
214 d->free_run = (data & ESB_WDT_FUNC) != 0;
215 old = d->enabled;
216 d->enabled = (data & ESB_WDT_ENABLE) != 0;
217 if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
218 i6300esb_restart_timer(d, 1);
219 else if (!d->enabled)
220 i6300esb_disable_timer(d);
221 }
222 } else {
223 pci_default_write_config(dev, addr, data, len);
224 }
225 }
226
227 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
228 {
229 I6300State *d = container_of(dev, I6300State, dev);
230 uint32_t data;
231
232 i6300esb_debug ("addr = %x, len = %d\n", addr, len);
233
234 if (addr == ESB_CONFIG_REG && len == 2) {
235 data =
236 (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
237 (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
238 d->int_type;
239 return data;
240 } else if (addr == ESB_LOCK_REG && len == 1) {
241 data =
242 (d->free_run ? ESB_WDT_FUNC : 0) |
243 (d->locked ? ESB_WDT_LOCK : 0) |
244 (d->enabled ? ESB_WDT_ENABLE : 0);
245 return data;
246 } else {
247 return pci_default_read_config(dev, addr, len);
248 }
249 }
250
251 static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
252 {
253 i6300esb_debug ("addr = %x\n", (int) addr);
254
255 return 0;
256 }
257
258 static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
259 {
260 uint32_t data = 0;
261 I6300State *d = (I6300State *) vp;
262
263 i6300esb_debug("addr = %x\n", (int) addr);
264
265 if (addr == 0xc) {
266 /* The previous reboot flag is really bit 9, but there is
267 * a bug in the Linux driver where it thinks it's bit 12.
268 * Set both.
269 */
270 data = d->previous_reboot_flag ? 0x1200 : 0;
271 }
272
273 return data;
274 }
275
276 static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
277 {
278 i6300esb_debug("addr = %x\n", (int) addr);
279
280 return 0;
281 }
282
283 static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
284 {
285 I6300State *d = (I6300State *) vp;
286
287 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
288
289 if (addr == 0xc && val == 0x80)
290 d->unlock_state = 1;
291 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
292 d->unlock_state = 2;
293 }
294
295 static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
296 {
297 I6300State *d = (I6300State *) vp;
298
299 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
300
301 if (addr == 0xc && val == 0x80)
302 d->unlock_state = 1;
303 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
304 d->unlock_state = 2;
305 else {
306 if (d->unlock_state == 2) {
307 if (addr == 0xc) {
308 if ((val & 0x100) != 0)
309 /* This is the "ping" from the userspace watchdog in
310 * the guest ...
311 */
312 i6300esb_restart_timer(d, 1);
313
314 /* Setting bit 9 resets the previous reboot flag.
315 * There's a bug in the Linux driver where it sets
316 * bit 12 instead.
317 */
318 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
319 d->previous_reboot_flag = 0;
320 }
321 }
322
323 d->unlock_state = 0;
324 }
325 }
326 }
327
328 static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
329 {
330 I6300State *d = (I6300State *) vp;
331
332 i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
333
334 if (addr == 0xc && val == 0x80)
335 d->unlock_state = 1;
336 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
337 d->unlock_state = 2;
338 else {
339 if (d->unlock_state == 2) {
340 if (addr == 0)
341 d->timer1_preload = val & 0xfffff;
342 else if (addr == 4)
343 d->timer2_preload = val & 0xfffff;
344
345 d->unlock_state = 0;
346 }
347 }
348 }
349
350 static void i6300esb_map(PCIDevice *dev, int region_num,
351 uint32_t addr, uint32_t size, int type)
352 {
353 static CPUReadMemoryFunc * const mem_read[3] = {
354 i6300esb_mem_readb,
355 i6300esb_mem_readw,
356 i6300esb_mem_readl,
357 };
358 static CPUWriteMemoryFunc * const mem_write[3] = {
359 i6300esb_mem_writeb,
360 i6300esb_mem_writew,
361 i6300esb_mem_writel,
362 };
363 I6300State *d = container_of(dev, I6300State, dev);
364 int io_mem;
365
366 i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
367
368 io_mem = cpu_register_io_memory(mem_read, mem_write, d);
369 cpu_register_physical_memory (addr, 0x10, io_mem);
370 /* qemu_register_coalesced_mmio (addr, 0x10); ? */
371 }
372
373 static void i6300esb_save(QEMUFile *f, void *vp)
374 {
375 I6300State *d = (I6300State *) vp;
376
377 pci_device_save(&d->dev, f);
378 qemu_put_be32(f, d->reboot_enabled);
379 qemu_put_be32(f, d->clock_scale);
380 qemu_put_be32(f, d->int_type);
381 qemu_put_be32(f, d->free_run);
382 qemu_put_be32(f, d->locked);
383 qemu_put_be32(f, d->enabled);
384 qemu_put_timer(f, d->timer);
385 qemu_put_be32(f, d->timer1_preload);
386 qemu_put_be32(f, d->timer2_preload);
387 qemu_put_be32(f, d->stage);
388 qemu_put_be32(f, d->unlock_state);
389 qemu_put_be32(f, d->previous_reboot_flag);
390 }
391
392 static int i6300esb_load(QEMUFile *f, void *vp, int version)
393 {
394 I6300State *d = (I6300State *) vp;
395
396 if (version != sizeof (I6300State))
397 return -EINVAL;
398
399 pci_device_load(&d->dev, f);
400 d->reboot_enabled = qemu_get_be32(f);
401 d->clock_scale = qemu_get_be32(f);
402 d->int_type = qemu_get_be32(f);
403 d->free_run = qemu_get_be32(f);
404 d->locked = qemu_get_be32(f);
405 d->enabled = qemu_get_be32(f);
406 qemu_get_timer(f, d->timer);
407 d->timer1_preload = qemu_get_be32(f);
408 d->timer2_preload = qemu_get_be32(f);
409 d->stage = qemu_get_be32(f);
410 d->unlock_state = qemu_get_be32(f);
411 d->previous_reboot_flag = qemu_get_be32(f);
412
413 return 0;
414 }
415
416 static int i6300esb_init(PCIDevice *dev)
417 {
418 I6300State *d = container_of(dev, I6300State, dev);
419 uint8_t *pci_conf;
420
421 d->reboot_enabled = 1;
422 d->clock_scale = CLOCK_SCALE_1KHZ;
423 d->int_type = INT_TYPE_IRQ;
424 d->free_run = 0;
425 d->locked = 0;
426 d->enabled = 0;
427 d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
428 d->timer1_preload = 0xfffff;
429 d->timer2_preload = 0xfffff;
430 d->stage = 1;
431 d->unlock_state = 0;
432 d->previous_reboot_flag = 0;
433
434 pci_conf = d->dev.config;
435 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
436 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
437 pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
438 pci_conf[0x0e] = 0x00;
439
440 pci_register_bar(&d->dev, 0, 0x10,
441 PCI_ADDRESS_SPACE_MEM, i6300esb_map);
442
443 register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
444 i6300esb_save, i6300esb_load, d);
445
446 return 0;
447 }
448
449 static WatchdogTimerModel model = {
450 .wdt_name = "i6300esb",
451 .wdt_description = "Intel 6300ESB",
452 };
453
454 static PCIDeviceInfo i6300esb_info = {
455 .qdev.name = "i6300esb",
456 .qdev.size = sizeof(I6300State),
457 .config_read = i6300esb_config_read,
458 .config_write = i6300esb_config_write,
459 .init = i6300esb_init,
460 };
461
462 static void i6300esb_register_devices(void)
463 {
464 watchdog_add_model(&model);
465 pci_qdev_register(&i6300esb_info);
466 }
467
468 device_init(i6300esb_register_devices);