]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xen/xen_pt_config_init.c
xen/pt: mark reserved bits in PCI config space fields
[mirror_qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/timer.h"
16 #include "hw/xen/xen_backend.h"
17 #include "xen_pt.h"
18
19 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
20 (((value) & (val_mask)) | ((data) & ~(val_mask)))
21
22 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
23
24 /* prototype */
25
26 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
27 uint32_t real_offset, uint32_t *data);
28
29
30 /* helper */
31
32 /* A return value of 1 means the capability should NOT be exposed to guest. */
33 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
34 {
35 switch (grp_id) {
36 case PCI_CAP_ID_EXP:
37 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
38 * Controller looks trivial, e.g., the PCI Express Capabilities
39 * Register is 0. We should not try to expose it to guest.
40 *
41 * The datasheet is available at
42 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
43 *
44 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
45 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
46 * Controller looks trivial, e.g., the PCI Express Capabilities
47 * Register is 0, so the Capability Version is 0 and
48 * xen_pt_pcie_size_init() would fail.
49 */
50 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
51 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
52 return 1;
53 }
54 break;
55 }
56 return 0;
57 }
58
59 /* find emulate register group entry */
60 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
61 {
62 XenPTRegGroup *entry = NULL;
63
64 /* find register group entry */
65 QLIST_FOREACH(entry, &s->reg_grps, entries) {
66 /* check address */
67 if ((entry->base_offset <= address)
68 && ((entry->base_offset + entry->size) > address)) {
69 return entry;
70 }
71 }
72
73 /* group entry not found */
74 return NULL;
75 }
76
77 /* find emulate register entry */
78 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
79 {
80 XenPTReg *reg_entry = NULL;
81 XenPTRegInfo *reg = NULL;
82 uint32_t real_offset = 0;
83
84 /* find register entry */
85 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
86 reg = reg_entry->reg;
87 real_offset = reg_grp->base_offset + reg->offset;
88 /* check address */
89 if ((real_offset <= address)
90 && ((real_offset + reg->size) > address)) {
91 return reg_entry;
92 }
93 }
94
95 return NULL;
96 }
97
98 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
99 const XenPTRegInfo *reg,
100 uint32_t valid_mask)
101 {
102 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
103
104 return throughable_mask & valid_mask;
105 }
106
107 /****************
108 * general register functions
109 */
110
111 /* register initialization function */
112
113 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
114 XenPTRegInfo *reg, uint32_t real_offset,
115 uint32_t *data)
116 {
117 *data = reg->init_val;
118 return 0;
119 }
120
121 /* Read register functions */
122
123 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
124 uint8_t *value, uint8_t valid_mask)
125 {
126 XenPTRegInfo *reg = cfg_entry->reg;
127 uint8_t valid_emu_mask = 0;
128
129 /* emulate byte register */
130 valid_emu_mask = reg->emu_mask & valid_mask;
131 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
132
133 return 0;
134 }
135 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
136 uint16_t *value, uint16_t valid_mask)
137 {
138 XenPTRegInfo *reg = cfg_entry->reg;
139 uint16_t valid_emu_mask = 0;
140
141 /* emulate word register */
142 valid_emu_mask = reg->emu_mask & valid_mask;
143 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
144
145 return 0;
146 }
147 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
148 uint32_t *value, uint32_t valid_mask)
149 {
150 XenPTRegInfo *reg = cfg_entry->reg;
151 uint32_t valid_emu_mask = 0;
152
153 /* emulate long register */
154 valid_emu_mask = reg->emu_mask & valid_mask;
155 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
156
157 return 0;
158 }
159
160 /* Write register functions */
161
162 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
163 uint8_t *val, uint8_t dev_value,
164 uint8_t valid_mask)
165 {
166 XenPTRegInfo *reg = cfg_entry->reg;
167 uint8_t writable_mask = 0;
168 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
169
170 /* modify emulate register */
171 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
172 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
173
174 /* create value for writing to I/O device register */
175 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
176
177 return 0;
178 }
179 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
180 uint16_t *val, uint16_t dev_value,
181 uint16_t valid_mask)
182 {
183 XenPTRegInfo *reg = cfg_entry->reg;
184 uint16_t writable_mask = 0;
185 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
186
187 /* modify emulate register */
188 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
189 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
190
191 /* create value for writing to I/O device register */
192 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
193
194 return 0;
195 }
196 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
197 uint32_t *val, uint32_t dev_value,
198 uint32_t valid_mask)
199 {
200 XenPTRegInfo *reg = cfg_entry->reg;
201 uint32_t writable_mask = 0;
202 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
203
204 /* modify emulate register */
205 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
206 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
207
208 /* create value for writing to I/O device register */
209 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
210
211 return 0;
212 }
213
214
215 /* XenPTRegInfo declaration
216 * - only for emulated register (either a part or whole bit).
217 * - for passthrough register that need special behavior (like interacting with
218 * other component), set emu_mask to all 0 and specify r/w func properly.
219 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
220 */
221
222 /********************
223 * Header Type0
224 */
225
226 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
227 XenPTRegInfo *reg, uint32_t real_offset,
228 uint32_t *data)
229 {
230 *data = s->real_device.vendor_id;
231 return 0;
232 }
233 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
234 XenPTRegInfo *reg, uint32_t real_offset,
235 uint32_t *data)
236 {
237 *data = s->real_device.device_id;
238 return 0;
239 }
240 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
241 XenPTRegInfo *reg, uint32_t real_offset,
242 uint32_t *data)
243 {
244 XenPTRegGroup *reg_grp_entry = NULL;
245 XenPTReg *reg_entry = NULL;
246 uint32_t reg_field = 0;
247
248 /* find Header register group */
249 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
250 if (reg_grp_entry) {
251 /* find Capabilities Pointer register */
252 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
253 if (reg_entry) {
254 /* check Capabilities Pointer register */
255 if (reg_entry->data) {
256 reg_field |= PCI_STATUS_CAP_LIST;
257 } else {
258 reg_field &= ~PCI_STATUS_CAP_LIST;
259 }
260 } else {
261 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
262 " for Capabilities Pointer register."
263 " (%s)\n", __func__);
264 return -1;
265 }
266 } else {
267 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
268 " for Header. (%s)\n", __func__);
269 return -1;
270 }
271
272 *data = reg_field;
273 return 0;
274 }
275 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
276 XenPTRegInfo *reg, uint32_t real_offset,
277 uint32_t *data)
278 {
279 /* read PCI_HEADER_TYPE */
280 *data = reg->init_val | 0x80;
281 return 0;
282 }
283
284 /* initialize Interrupt Pin register */
285 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
286 XenPTRegInfo *reg, uint32_t real_offset,
287 uint32_t *data)
288 {
289 *data = xen_pt_pci_read_intx(s);
290 return 0;
291 }
292
293 /* Command register */
294 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
295 uint16_t *val, uint16_t dev_value,
296 uint16_t valid_mask)
297 {
298 XenPTRegInfo *reg = cfg_entry->reg;
299 uint16_t writable_mask = 0;
300 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
301
302 /* modify emulate register */
303 writable_mask = ~reg->ro_mask & valid_mask;
304 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
305
306 /* create value for writing to I/O device register */
307 if (*val & PCI_COMMAND_INTX_DISABLE) {
308 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
309 } else {
310 if (s->machine_irq) {
311 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
312 }
313 }
314
315 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
316
317 return 0;
318 }
319
320 /* BAR */
321 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
322 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
323 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
324 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
325
326 static bool is_64bit_bar(PCIIORegion *r)
327 {
328 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
329 }
330
331 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
332 {
333 if (is_64bit_bar(r)) {
334 uint64_t size64;
335 size64 = (r + 1)->size;
336 size64 <<= 32;
337 size64 += r->size;
338 return size64;
339 }
340 return r->size;
341 }
342
343 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
344 int index)
345 {
346 PCIDevice *d = &s->dev;
347 XenPTRegion *region = NULL;
348 PCIIORegion *r;
349
350 /* check 64bit BAR */
351 if ((0 < index) && (index < PCI_ROM_SLOT)) {
352 int type = s->real_device.io_regions[index - 1].type;
353
354 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
355 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
356 region = &s->bases[index - 1];
357 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
358 return XEN_PT_BAR_FLAG_UPPER;
359 }
360 }
361 }
362
363 /* check unused BAR */
364 r = &d->io_regions[index];
365 if (!xen_pt_get_bar_size(r)) {
366 return XEN_PT_BAR_FLAG_UNUSED;
367 }
368
369 /* for ExpROM BAR */
370 if (index == PCI_ROM_SLOT) {
371 return XEN_PT_BAR_FLAG_MEM;
372 }
373
374 /* check BAR I/O indicator */
375 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
376 return XEN_PT_BAR_FLAG_IO;
377 } else {
378 return XEN_PT_BAR_FLAG_MEM;
379 }
380 }
381
382 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
383 {
384 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
385 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
386 } else {
387 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
388 }
389 }
390
391 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
392 uint32_t real_offset, uint32_t *data)
393 {
394 uint32_t reg_field = 0;
395 int index;
396
397 index = xen_pt_bar_offset_to_index(reg->offset);
398 if (index < 0 || index >= PCI_NUM_REGIONS) {
399 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
400 return -1;
401 }
402
403 /* set BAR flag */
404 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
405 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
406 reg_field = XEN_PT_INVALID_REG;
407 }
408
409 *data = reg_field;
410 return 0;
411 }
412 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
413 uint32_t *value, uint32_t valid_mask)
414 {
415 XenPTRegInfo *reg = cfg_entry->reg;
416 uint32_t valid_emu_mask = 0;
417 uint32_t bar_emu_mask = 0;
418 int index;
419
420 /* get BAR index */
421 index = xen_pt_bar_offset_to_index(reg->offset);
422 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
423 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
424 return -1;
425 }
426
427 /* use fixed-up value from kernel sysfs */
428 *value = base_address_with_flags(&s->real_device.io_regions[index]);
429
430 /* set emulate mask depend on BAR flag */
431 switch (s->bases[index].bar_flag) {
432 case XEN_PT_BAR_FLAG_MEM:
433 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
434 break;
435 case XEN_PT_BAR_FLAG_IO:
436 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
437 break;
438 case XEN_PT_BAR_FLAG_UPPER:
439 bar_emu_mask = XEN_PT_BAR_ALLF;
440 break;
441 default:
442 break;
443 }
444
445 /* emulate BAR */
446 valid_emu_mask = bar_emu_mask & valid_mask;
447 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
448
449 return 0;
450 }
451 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
452 uint32_t *val, uint32_t dev_value,
453 uint32_t valid_mask)
454 {
455 XenPTRegInfo *reg = cfg_entry->reg;
456 XenPTRegion *base = NULL;
457 PCIDevice *d = &s->dev;
458 const PCIIORegion *r;
459 uint32_t writable_mask = 0;
460 uint32_t bar_emu_mask = 0;
461 uint32_t bar_ro_mask = 0;
462 uint32_t r_size = 0;
463 int index = 0;
464
465 index = xen_pt_bar_offset_to_index(reg->offset);
466 if (index < 0 || index >= PCI_NUM_REGIONS) {
467 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
468 return -1;
469 }
470
471 r = &d->io_regions[index];
472 base = &s->bases[index];
473 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
474
475 /* set emulate mask and read-only mask values depend on the BAR flag */
476 switch (s->bases[index].bar_flag) {
477 case XEN_PT_BAR_FLAG_MEM:
478 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
479 if (!r_size) {
480 /* low 32 bits mask for 64 bit bars */
481 bar_ro_mask = XEN_PT_BAR_ALLF;
482 } else {
483 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
484 }
485 break;
486 case XEN_PT_BAR_FLAG_IO:
487 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
488 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
489 break;
490 case XEN_PT_BAR_FLAG_UPPER:
491 bar_emu_mask = XEN_PT_BAR_ALLF;
492 bar_ro_mask = r_size ? r_size - 1 : 0;
493 break;
494 default:
495 break;
496 }
497
498 /* modify emulate register */
499 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
500 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
501
502 /* check whether we need to update the virtual region address or not */
503 switch (s->bases[index].bar_flag) {
504 case XEN_PT_BAR_FLAG_UPPER:
505 case XEN_PT_BAR_FLAG_MEM:
506 /* nothing to do */
507 break;
508 case XEN_PT_BAR_FLAG_IO:
509 /* nothing to do */
510 break;
511 default:
512 break;
513 }
514
515 /* create value for writing to I/O device register */
516 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
517
518 return 0;
519 }
520
521 /* write Exp ROM BAR */
522 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
523 XenPTReg *cfg_entry, uint32_t *val,
524 uint32_t dev_value, uint32_t valid_mask)
525 {
526 XenPTRegInfo *reg = cfg_entry->reg;
527 XenPTRegion *base = NULL;
528 PCIDevice *d = (PCIDevice *)&s->dev;
529 uint32_t writable_mask = 0;
530 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
531 pcibus_t r_size = 0;
532 uint32_t bar_ro_mask = 0;
533
534 r_size = d->io_regions[PCI_ROM_SLOT].size;
535 base = &s->bases[PCI_ROM_SLOT];
536 /* align memory type resource size */
537 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
538
539 /* set emulate mask and read-only mask */
540 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
541
542 /* modify emulate register */
543 writable_mask = ~bar_ro_mask & valid_mask;
544 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
545
546 /* create value for writing to I/O device register */
547 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
548
549 return 0;
550 }
551
552 /* Header Type0 reg static information table */
553 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
554 /* Vendor ID reg */
555 {
556 .offset = PCI_VENDOR_ID,
557 .size = 2,
558 .init_val = 0x0000,
559 .ro_mask = 0xFFFF,
560 .emu_mask = 0xFFFF,
561 .init = xen_pt_vendor_reg_init,
562 .u.w.read = xen_pt_word_reg_read,
563 .u.w.write = xen_pt_word_reg_write,
564 },
565 /* Device ID reg */
566 {
567 .offset = PCI_DEVICE_ID,
568 .size = 2,
569 .init_val = 0x0000,
570 .ro_mask = 0xFFFF,
571 .emu_mask = 0xFFFF,
572 .init = xen_pt_device_reg_init,
573 .u.w.read = xen_pt_word_reg_read,
574 .u.w.write = xen_pt_word_reg_write,
575 },
576 /* Command reg */
577 {
578 .offset = PCI_COMMAND,
579 .size = 2,
580 .init_val = 0x0000,
581 .res_mask = 0xF880,
582 .emu_mask = 0x0743,
583 .init = xen_pt_common_reg_init,
584 .u.w.read = xen_pt_word_reg_read,
585 .u.w.write = xen_pt_cmd_reg_write,
586 },
587 /* Capabilities Pointer reg */
588 {
589 .offset = PCI_CAPABILITY_LIST,
590 .size = 1,
591 .init_val = 0x00,
592 .ro_mask = 0xFF,
593 .emu_mask = 0xFF,
594 .init = xen_pt_ptr_reg_init,
595 .u.b.read = xen_pt_byte_reg_read,
596 .u.b.write = xen_pt_byte_reg_write,
597 },
598 /* Status reg */
599 /* use emulated Cap Ptr value to initialize,
600 * so need to be declared after Cap Ptr reg
601 */
602 {
603 .offset = PCI_STATUS,
604 .size = 2,
605 .init_val = 0x0000,
606 .res_mask = 0x0007,
607 .ro_mask = 0x06F8,
608 .emu_mask = 0x0010,
609 .init = xen_pt_status_reg_init,
610 .u.w.read = xen_pt_word_reg_read,
611 .u.w.write = xen_pt_word_reg_write,
612 },
613 /* Cache Line Size reg */
614 {
615 .offset = PCI_CACHE_LINE_SIZE,
616 .size = 1,
617 .init_val = 0x00,
618 .ro_mask = 0x00,
619 .emu_mask = 0xFF,
620 .init = xen_pt_common_reg_init,
621 .u.b.read = xen_pt_byte_reg_read,
622 .u.b.write = xen_pt_byte_reg_write,
623 },
624 /* Latency Timer reg */
625 {
626 .offset = PCI_LATENCY_TIMER,
627 .size = 1,
628 .init_val = 0x00,
629 .ro_mask = 0x00,
630 .emu_mask = 0xFF,
631 .init = xen_pt_common_reg_init,
632 .u.b.read = xen_pt_byte_reg_read,
633 .u.b.write = xen_pt_byte_reg_write,
634 },
635 /* Header Type reg */
636 {
637 .offset = PCI_HEADER_TYPE,
638 .size = 1,
639 .init_val = 0x00,
640 .ro_mask = 0xFF,
641 .emu_mask = 0x00,
642 .init = xen_pt_header_type_reg_init,
643 .u.b.read = xen_pt_byte_reg_read,
644 .u.b.write = xen_pt_byte_reg_write,
645 },
646 /* Interrupt Line reg */
647 {
648 .offset = PCI_INTERRUPT_LINE,
649 .size = 1,
650 .init_val = 0x00,
651 .ro_mask = 0x00,
652 .emu_mask = 0xFF,
653 .init = xen_pt_common_reg_init,
654 .u.b.read = xen_pt_byte_reg_read,
655 .u.b.write = xen_pt_byte_reg_write,
656 },
657 /* Interrupt Pin reg */
658 {
659 .offset = PCI_INTERRUPT_PIN,
660 .size = 1,
661 .init_val = 0x00,
662 .ro_mask = 0xFF,
663 .emu_mask = 0xFF,
664 .init = xen_pt_irqpin_reg_init,
665 .u.b.read = xen_pt_byte_reg_read,
666 .u.b.write = xen_pt_byte_reg_write,
667 },
668 /* BAR 0 reg */
669 /* mask of BAR need to be decided later, depends on IO/MEM type */
670 {
671 .offset = PCI_BASE_ADDRESS_0,
672 .size = 4,
673 .init_val = 0x00000000,
674 .init = xen_pt_bar_reg_init,
675 .u.dw.read = xen_pt_bar_reg_read,
676 .u.dw.write = xen_pt_bar_reg_write,
677 },
678 /* BAR 1 reg */
679 {
680 .offset = PCI_BASE_ADDRESS_1,
681 .size = 4,
682 .init_val = 0x00000000,
683 .init = xen_pt_bar_reg_init,
684 .u.dw.read = xen_pt_bar_reg_read,
685 .u.dw.write = xen_pt_bar_reg_write,
686 },
687 /* BAR 2 reg */
688 {
689 .offset = PCI_BASE_ADDRESS_2,
690 .size = 4,
691 .init_val = 0x00000000,
692 .init = xen_pt_bar_reg_init,
693 .u.dw.read = xen_pt_bar_reg_read,
694 .u.dw.write = xen_pt_bar_reg_write,
695 },
696 /* BAR 3 reg */
697 {
698 .offset = PCI_BASE_ADDRESS_3,
699 .size = 4,
700 .init_val = 0x00000000,
701 .init = xen_pt_bar_reg_init,
702 .u.dw.read = xen_pt_bar_reg_read,
703 .u.dw.write = xen_pt_bar_reg_write,
704 },
705 /* BAR 4 reg */
706 {
707 .offset = PCI_BASE_ADDRESS_4,
708 .size = 4,
709 .init_val = 0x00000000,
710 .init = xen_pt_bar_reg_init,
711 .u.dw.read = xen_pt_bar_reg_read,
712 .u.dw.write = xen_pt_bar_reg_write,
713 },
714 /* BAR 5 reg */
715 {
716 .offset = PCI_BASE_ADDRESS_5,
717 .size = 4,
718 .init_val = 0x00000000,
719 .init = xen_pt_bar_reg_init,
720 .u.dw.read = xen_pt_bar_reg_read,
721 .u.dw.write = xen_pt_bar_reg_write,
722 },
723 /* Expansion ROM BAR reg */
724 {
725 .offset = PCI_ROM_ADDRESS,
726 .size = 4,
727 .init_val = 0x00000000,
728 .ro_mask = 0x000007FE,
729 .emu_mask = 0xFFFFF800,
730 .init = xen_pt_bar_reg_init,
731 .u.dw.read = xen_pt_long_reg_read,
732 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
733 },
734 {
735 .size = 0,
736 },
737 };
738
739
740 /*********************************
741 * Vital Product Data Capability
742 */
743
744 /* Vital Product Data Capability Structure reg static information table */
745 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
746 {
747 .offset = PCI_CAP_LIST_NEXT,
748 .size = 1,
749 .init_val = 0x00,
750 .ro_mask = 0xFF,
751 .emu_mask = 0xFF,
752 .init = xen_pt_ptr_reg_init,
753 .u.b.read = xen_pt_byte_reg_read,
754 .u.b.write = xen_pt_byte_reg_write,
755 },
756 {
757 .size = 0,
758 },
759 };
760
761
762 /**************************************
763 * Vendor Specific Capability
764 */
765
766 /* Vendor Specific Capability Structure reg static information table */
767 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
768 {
769 .offset = PCI_CAP_LIST_NEXT,
770 .size = 1,
771 .init_val = 0x00,
772 .ro_mask = 0xFF,
773 .emu_mask = 0xFF,
774 .init = xen_pt_ptr_reg_init,
775 .u.b.read = xen_pt_byte_reg_read,
776 .u.b.write = xen_pt_byte_reg_write,
777 },
778 {
779 .size = 0,
780 },
781 };
782
783
784 /*****************************
785 * PCI Express Capability
786 */
787
788 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
789 uint32_t offset)
790 {
791 uint8_t flags = pci_get_byte(s->dev.config + offset + PCI_EXP_FLAGS);
792 return flags & PCI_EXP_FLAGS_VERS;
793 }
794
795 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
796 uint32_t offset)
797 {
798 uint8_t flags = pci_get_byte(s->dev.config + offset + PCI_EXP_FLAGS);
799 return (flags & PCI_EXP_FLAGS_TYPE) >> 4;
800 }
801
802 /* initialize Link Control register */
803 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
804 XenPTRegInfo *reg, uint32_t real_offset,
805 uint32_t *data)
806 {
807 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
808 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
809
810 /* no need to initialize in case of Root Complex Integrated Endpoint
811 * with cap_ver 1.x
812 */
813 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
814 *data = XEN_PT_INVALID_REG;
815 }
816
817 *data = reg->init_val;
818 return 0;
819 }
820 /* initialize Device Control 2 register */
821 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
822 XenPTRegInfo *reg, uint32_t real_offset,
823 uint32_t *data)
824 {
825 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
826
827 /* no need to initialize in case of cap_ver 1.x */
828 if (cap_ver == 1) {
829 *data = XEN_PT_INVALID_REG;
830 }
831
832 *data = reg->init_val;
833 return 0;
834 }
835 /* initialize Link Control 2 register */
836 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
837 XenPTRegInfo *reg, uint32_t real_offset,
838 uint32_t *data)
839 {
840 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
841 uint32_t reg_field = 0;
842
843 /* no need to initialize in case of cap_ver 1.x */
844 if (cap_ver == 1) {
845 reg_field = XEN_PT_INVALID_REG;
846 } else {
847 /* set Supported Link Speed */
848 uint8_t lnkcap = pci_get_byte(s->dev.config + real_offset - reg->offset
849 + PCI_EXP_LNKCAP);
850 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
851 }
852
853 *data = reg_field;
854 return 0;
855 }
856
857 /* PCI Express Capability Structure reg static information table */
858 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
859 /* Next Pointer reg */
860 {
861 .offset = PCI_CAP_LIST_NEXT,
862 .size = 1,
863 .init_val = 0x00,
864 .ro_mask = 0xFF,
865 .emu_mask = 0xFF,
866 .init = xen_pt_ptr_reg_init,
867 .u.b.read = xen_pt_byte_reg_read,
868 .u.b.write = xen_pt_byte_reg_write,
869 },
870 /* Device Capabilities reg */
871 {
872 .offset = PCI_EXP_DEVCAP,
873 .size = 4,
874 .init_val = 0x00000000,
875 .ro_mask = 0xFFFFFFFF,
876 .emu_mask = 0x10000000,
877 .init = xen_pt_common_reg_init,
878 .u.dw.read = xen_pt_long_reg_read,
879 .u.dw.write = xen_pt_long_reg_write,
880 },
881 /* Device Control reg */
882 {
883 .offset = PCI_EXP_DEVCTL,
884 .size = 2,
885 .init_val = 0x2810,
886 .ro_mask = 0x8400,
887 .emu_mask = 0xFFFF,
888 .init = xen_pt_common_reg_init,
889 .u.w.read = xen_pt_word_reg_read,
890 .u.w.write = xen_pt_word_reg_write,
891 },
892 /* Link Control reg */
893 {
894 .offset = PCI_EXP_LNKCTL,
895 .size = 2,
896 .init_val = 0x0000,
897 .ro_mask = 0xFC34,
898 .emu_mask = 0xFFFF,
899 .init = xen_pt_linkctrl_reg_init,
900 .u.w.read = xen_pt_word_reg_read,
901 .u.w.write = xen_pt_word_reg_write,
902 },
903 /* Device Control 2 reg */
904 {
905 .offset = 0x28,
906 .size = 2,
907 .init_val = 0x0000,
908 .ro_mask = 0xFFE0,
909 .emu_mask = 0xFFFF,
910 .init = xen_pt_devctrl2_reg_init,
911 .u.w.read = xen_pt_word_reg_read,
912 .u.w.write = xen_pt_word_reg_write,
913 },
914 /* Link Control 2 reg */
915 {
916 .offset = 0x30,
917 .size = 2,
918 .init_val = 0x0000,
919 .ro_mask = 0xE040,
920 .emu_mask = 0xFFFF,
921 .init = xen_pt_linkctrl2_reg_init,
922 .u.w.read = xen_pt_word_reg_read,
923 .u.w.write = xen_pt_word_reg_write,
924 },
925 {
926 .size = 0,
927 },
928 };
929
930
931 /*********************************
932 * Power Management Capability
933 */
934
935 /* write Power Management Control/Status register */
936 static int xen_pt_pmcsr_reg_write(XenPCIPassthroughState *s,
937 XenPTReg *cfg_entry, uint16_t *val,
938 uint16_t dev_value, uint16_t valid_mask)
939 {
940 XenPTRegInfo *reg = cfg_entry->reg;
941 uint16_t writable_mask = 0;
942 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
943
944 /* modify emulate register */
945 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
946 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
947
948 /* create value for writing to I/O device register */
949 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~PCI_PM_CTRL_PME_STATUS,
950 throughable_mask);
951
952 return 0;
953 }
954
955 /* Power Management Capability reg static information table */
956 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
957 /* Next Pointer reg */
958 {
959 .offset = PCI_CAP_LIST_NEXT,
960 .size = 1,
961 .init_val = 0x00,
962 .ro_mask = 0xFF,
963 .emu_mask = 0xFF,
964 .init = xen_pt_ptr_reg_init,
965 .u.b.read = xen_pt_byte_reg_read,
966 .u.b.write = xen_pt_byte_reg_write,
967 },
968 /* Power Management Capabilities reg */
969 {
970 .offset = PCI_CAP_FLAGS,
971 .size = 2,
972 .init_val = 0x0000,
973 .ro_mask = 0xFFFF,
974 .emu_mask = 0xF9C8,
975 .init = xen_pt_common_reg_init,
976 .u.w.read = xen_pt_word_reg_read,
977 .u.w.write = xen_pt_word_reg_write,
978 },
979 /* PCI Power Management Control/Status reg */
980 {
981 .offset = PCI_PM_CTRL,
982 .size = 2,
983 .init_val = 0x0008,
984 .res_mask = 0x00F0,
985 .ro_mask = 0xE10C,
986 .emu_mask = 0x810B,
987 .init = xen_pt_common_reg_init,
988 .u.w.read = xen_pt_word_reg_read,
989 .u.w.write = xen_pt_pmcsr_reg_write,
990 },
991 {
992 .size = 0,
993 },
994 };
995
996
997 /********************************
998 * MSI Capability
999 */
1000
1001 /* Helper */
1002 #define xen_pt_msi_check_type(offset, flags, what) \
1003 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1004 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1005
1006 /* Message Control register */
1007 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1008 XenPTRegInfo *reg, uint32_t real_offset,
1009 uint32_t *data)
1010 {
1011 PCIDevice *d = &s->dev;
1012 XenPTMSI *msi = s->msi;
1013 uint16_t reg_field = 0;
1014
1015 /* use I/O device register's value as initial value */
1016 reg_field = pci_get_word(d->config + real_offset);
1017
1018 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1019 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1020 xen_host_pci_set_word(&s->real_device, real_offset,
1021 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1022 }
1023 msi->flags |= reg_field;
1024 msi->ctrl_offset = real_offset;
1025 msi->initialized = false;
1026 msi->mapped = false;
1027
1028 *data = reg->init_val;
1029 return 0;
1030 }
1031 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1032 XenPTReg *cfg_entry, uint16_t *val,
1033 uint16_t dev_value, uint16_t valid_mask)
1034 {
1035 XenPTRegInfo *reg = cfg_entry->reg;
1036 XenPTMSI *msi = s->msi;
1037 uint16_t writable_mask = 0;
1038 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1039
1040 /* Currently no support for multi-vector */
1041 if (*val & PCI_MSI_FLAGS_QSIZE) {
1042 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1043 }
1044
1045 /* modify emulate register */
1046 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1047 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1048 msi->flags |= cfg_entry->data & ~PCI_MSI_FLAGS_ENABLE;
1049
1050 /* create value for writing to I/O device register */
1051 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1052
1053 /* update MSI */
1054 if (*val & PCI_MSI_FLAGS_ENABLE) {
1055 /* setup MSI pirq for the first time */
1056 if (!msi->initialized) {
1057 /* Init physical one */
1058 XEN_PT_LOG(&s->dev, "setup MSI\n");
1059 if (xen_pt_msi_setup(s)) {
1060 /* We do not broadcast the error to the framework code, so
1061 * that MSI errors are contained in MSI emulation code and
1062 * QEMU can go on running.
1063 * Guest MSI would be actually not working.
1064 */
1065 *val &= ~PCI_MSI_FLAGS_ENABLE;
1066 XEN_PT_WARN(&s->dev, "Can not map MSI.\n");
1067 return 0;
1068 }
1069 if (xen_pt_msi_update(s)) {
1070 *val &= ~PCI_MSI_FLAGS_ENABLE;
1071 XEN_PT_WARN(&s->dev, "Can not bind MSI\n");
1072 return 0;
1073 }
1074 msi->initialized = true;
1075 msi->mapped = true;
1076 }
1077 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1078 } else if (msi->mapped) {
1079 xen_pt_msi_disable(s);
1080 }
1081
1082 return 0;
1083 }
1084
1085 /* initialize Message Upper Address register */
1086 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1087 XenPTRegInfo *reg, uint32_t real_offset,
1088 uint32_t *data)
1089 {
1090 /* no need to initialize in case of 32 bit type */
1091 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1092 *data = XEN_PT_INVALID_REG;
1093 } else {
1094 *data = reg->init_val;
1095 }
1096
1097 return 0;
1098 }
1099 /* this function will be called twice (for 32 bit and 64 bit type) */
1100 /* initialize Message Data register */
1101 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1102 XenPTRegInfo *reg, uint32_t real_offset,
1103 uint32_t *data)
1104 {
1105 uint32_t flags = s->msi->flags;
1106 uint32_t offset = reg->offset;
1107
1108 /* check the offset whether matches the type or not */
1109 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1110 *data = reg->init_val;
1111 } else {
1112 *data = XEN_PT_INVALID_REG;
1113 }
1114 return 0;
1115 }
1116
1117 /* this function will be called twice (for 32 bit and 64 bit type) */
1118 /* initialize Mask register */
1119 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1120 XenPTRegInfo *reg, uint32_t real_offset,
1121 uint32_t *data)
1122 {
1123 uint32_t flags = s->msi->flags;
1124
1125 /* check the offset whether matches the type or not */
1126 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1127 *data = XEN_PT_INVALID_REG;
1128 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1129 *data = reg->init_val;
1130 } else {
1131 *data = XEN_PT_INVALID_REG;
1132 }
1133 return 0;
1134 }
1135
1136 /* this function will be called twice (for 32 bit and 64 bit type) */
1137 /* initialize Pending register */
1138 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1139 XenPTRegInfo *reg, uint32_t real_offset,
1140 uint32_t *data)
1141 {
1142 uint32_t flags = s->msi->flags;
1143
1144 /* check the offset whether matches the type or not */
1145 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1146 *data = XEN_PT_INVALID_REG;
1147 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1148 *data = reg->init_val;
1149 } else {
1150 *data = XEN_PT_INVALID_REG;
1151 }
1152 return 0;
1153 }
1154
1155 /* write Message Address register */
1156 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1157 XenPTReg *cfg_entry, uint32_t *val,
1158 uint32_t dev_value, uint32_t valid_mask)
1159 {
1160 XenPTRegInfo *reg = cfg_entry->reg;
1161 uint32_t writable_mask = 0;
1162 uint32_t old_addr = cfg_entry->data;
1163
1164 /* modify emulate register */
1165 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1166 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1167 s->msi->addr_lo = cfg_entry->data;
1168
1169 /* create value for writing to I/O device register */
1170 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1171
1172 /* update MSI */
1173 if (cfg_entry->data != old_addr) {
1174 if (s->msi->mapped) {
1175 xen_pt_msi_update(s);
1176 }
1177 }
1178
1179 return 0;
1180 }
1181 /* write Message Upper Address register */
1182 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1183 XenPTReg *cfg_entry, uint32_t *val,
1184 uint32_t dev_value, uint32_t valid_mask)
1185 {
1186 XenPTRegInfo *reg = cfg_entry->reg;
1187 uint32_t writable_mask = 0;
1188 uint32_t old_addr = cfg_entry->data;
1189
1190 /* check whether the type is 64 bit or not */
1191 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1192 XEN_PT_ERR(&s->dev,
1193 "Can't write to the upper address without 64 bit support\n");
1194 return -1;
1195 }
1196
1197 /* modify emulate register */
1198 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1199 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1200 /* update the msi_info too */
1201 s->msi->addr_hi = cfg_entry->data;
1202
1203 /* create value for writing to I/O device register */
1204 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1205
1206 /* update MSI */
1207 if (cfg_entry->data != old_addr) {
1208 if (s->msi->mapped) {
1209 xen_pt_msi_update(s);
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216
1217 /* this function will be called twice (for 32 bit and 64 bit type) */
1218 /* write Message Data register */
1219 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1220 XenPTReg *cfg_entry, uint16_t *val,
1221 uint16_t dev_value, uint16_t valid_mask)
1222 {
1223 XenPTRegInfo *reg = cfg_entry->reg;
1224 XenPTMSI *msi = s->msi;
1225 uint16_t writable_mask = 0;
1226 uint16_t old_data = cfg_entry->data;
1227 uint32_t offset = reg->offset;
1228
1229 /* check the offset whether matches the type or not */
1230 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1231 /* exit I/O emulator */
1232 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1233 return -1;
1234 }
1235
1236 /* modify emulate register */
1237 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1238 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1239 /* update the msi_info too */
1240 msi->data = cfg_entry->data;
1241
1242 /* create value for writing to I/O device register */
1243 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1244
1245 /* update MSI */
1246 if (cfg_entry->data != old_data) {
1247 if (msi->mapped) {
1248 xen_pt_msi_update(s);
1249 }
1250 }
1251
1252 return 0;
1253 }
1254
1255 /* MSI Capability Structure reg static information table */
1256 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1257 /* Next Pointer reg */
1258 {
1259 .offset = PCI_CAP_LIST_NEXT,
1260 .size = 1,
1261 .init_val = 0x00,
1262 .ro_mask = 0xFF,
1263 .emu_mask = 0xFF,
1264 .init = xen_pt_ptr_reg_init,
1265 .u.b.read = xen_pt_byte_reg_read,
1266 .u.b.write = xen_pt_byte_reg_write,
1267 },
1268 /* Message Control reg */
1269 {
1270 .offset = PCI_MSI_FLAGS,
1271 .size = 2,
1272 .init_val = 0x0000,
1273 .res_mask = 0xFE00,
1274 .ro_mask = 0x018E,
1275 .emu_mask = 0x017E,
1276 .init = xen_pt_msgctrl_reg_init,
1277 .u.w.read = xen_pt_word_reg_read,
1278 .u.w.write = xen_pt_msgctrl_reg_write,
1279 },
1280 /* Message Address reg */
1281 {
1282 .offset = PCI_MSI_ADDRESS_LO,
1283 .size = 4,
1284 .init_val = 0x00000000,
1285 .ro_mask = 0x00000003,
1286 .emu_mask = 0xFFFFFFFF,
1287 .init = xen_pt_common_reg_init,
1288 .u.dw.read = xen_pt_long_reg_read,
1289 .u.dw.write = xen_pt_msgaddr32_reg_write,
1290 },
1291 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1292 {
1293 .offset = PCI_MSI_ADDRESS_HI,
1294 .size = 4,
1295 .init_val = 0x00000000,
1296 .ro_mask = 0x00000000,
1297 .emu_mask = 0xFFFFFFFF,
1298 .init = xen_pt_msgaddr64_reg_init,
1299 .u.dw.read = xen_pt_long_reg_read,
1300 .u.dw.write = xen_pt_msgaddr64_reg_write,
1301 },
1302 /* Message Data reg (16 bits of data for 32-bit devices) */
1303 {
1304 .offset = PCI_MSI_DATA_32,
1305 .size = 2,
1306 .init_val = 0x0000,
1307 .ro_mask = 0x0000,
1308 .emu_mask = 0xFFFF,
1309 .init = xen_pt_msgdata_reg_init,
1310 .u.w.read = xen_pt_word_reg_read,
1311 .u.w.write = xen_pt_msgdata_reg_write,
1312 },
1313 /* Message Data reg (16 bits of data for 64-bit devices) */
1314 {
1315 .offset = PCI_MSI_DATA_64,
1316 .size = 2,
1317 .init_val = 0x0000,
1318 .ro_mask = 0x0000,
1319 .emu_mask = 0xFFFF,
1320 .init = xen_pt_msgdata_reg_init,
1321 .u.w.read = xen_pt_word_reg_read,
1322 .u.w.write = xen_pt_msgdata_reg_write,
1323 },
1324 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1325 {
1326 .offset = PCI_MSI_MASK_32,
1327 .size = 4,
1328 .init_val = 0x00000000,
1329 .ro_mask = 0xFFFFFFFF,
1330 .emu_mask = 0xFFFFFFFF,
1331 .init = xen_pt_mask_reg_init,
1332 .u.dw.read = xen_pt_long_reg_read,
1333 .u.dw.write = xen_pt_long_reg_write,
1334 },
1335 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1336 {
1337 .offset = PCI_MSI_MASK_64,
1338 .size = 4,
1339 .init_val = 0x00000000,
1340 .ro_mask = 0xFFFFFFFF,
1341 .emu_mask = 0xFFFFFFFF,
1342 .init = xen_pt_mask_reg_init,
1343 .u.dw.read = xen_pt_long_reg_read,
1344 .u.dw.write = xen_pt_long_reg_write,
1345 },
1346 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1347 {
1348 .offset = PCI_MSI_MASK_32 + 4,
1349 .size = 4,
1350 .init_val = 0x00000000,
1351 .ro_mask = 0xFFFFFFFF,
1352 .emu_mask = 0x00000000,
1353 .init = xen_pt_pending_reg_init,
1354 .u.dw.read = xen_pt_long_reg_read,
1355 .u.dw.write = xen_pt_long_reg_write,
1356 },
1357 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1358 {
1359 .offset = PCI_MSI_MASK_64 + 4,
1360 .size = 4,
1361 .init_val = 0x00000000,
1362 .ro_mask = 0xFFFFFFFF,
1363 .emu_mask = 0x00000000,
1364 .init = xen_pt_pending_reg_init,
1365 .u.dw.read = xen_pt_long_reg_read,
1366 .u.dw.write = xen_pt_long_reg_write,
1367 },
1368 {
1369 .size = 0,
1370 },
1371 };
1372
1373
1374 /**************************************
1375 * MSI-X Capability
1376 */
1377
1378 /* Message Control register for MSI-X */
1379 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1380 XenPTRegInfo *reg, uint32_t real_offset,
1381 uint32_t *data)
1382 {
1383 PCIDevice *d = &s->dev;
1384 uint16_t reg_field = 0;
1385
1386 /* use I/O device register's value as initial value */
1387 reg_field = pci_get_word(d->config + real_offset);
1388
1389 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1390 XEN_PT_LOG(d, "MSIX already enabled, disabling it first\n");
1391 xen_host_pci_set_word(&s->real_device, real_offset,
1392 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1393 }
1394
1395 s->msix->ctrl_offset = real_offset;
1396
1397 *data = reg->init_val;
1398 return 0;
1399 }
1400 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1401 XenPTReg *cfg_entry, uint16_t *val,
1402 uint16_t dev_value, uint16_t valid_mask)
1403 {
1404 XenPTRegInfo *reg = cfg_entry->reg;
1405 uint16_t writable_mask = 0;
1406 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1407 int debug_msix_enabled_old;
1408
1409 /* modify emulate register */
1410 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1411 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1412
1413 /* create value for writing to I/O device register */
1414 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1415
1416 /* update MSI-X */
1417 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1418 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1419 xen_pt_msix_update(s);
1420 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1421 xen_pt_msix_disable(s);
1422 }
1423
1424 debug_msix_enabled_old = s->msix->enabled;
1425 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1426 if (s->msix->enabled != debug_msix_enabled_old) {
1427 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1428 s->msix->enabled ? "enable" : "disable");
1429 }
1430
1431 return 0;
1432 }
1433
1434 /* MSI-X Capability Structure reg static information table */
1435 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1436 /* Next Pointer reg */
1437 {
1438 .offset = PCI_CAP_LIST_NEXT,
1439 .size = 1,
1440 .init_val = 0x00,
1441 .ro_mask = 0xFF,
1442 .emu_mask = 0xFF,
1443 .init = xen_pt_ptr_reg_init,
1444 .u.b.read = xen_pt_byte_reg_read,
1445 .u.b.write = xen_pt_byte_reg_write,
1446 },
1447 /* Message Control reg */
1448 {
1449 .offset = PCI_MSI_FLAGS,
1450 .size = 2,
1451 .init_val = 0x0000,
1452 .res_mask = 0x3800,
1453 .ro_mask = 0x07FF,
1454 .emu_mask = 0x0000,
1455 .init = xen_pt_msixctrl_reg_init,
1456 .u.w.read = xen_pt_word_reg_read,
1457 .u.w.write = xen_pt_msixctrl_reg_write,
1458 },
1459 {
1460 .size = 0,
1461 },
1462 };
1463
1464
1465 /****************************
1466 * Capabilities
1467 */
1468
1469 /* capability structure register group size functions */
1470
1471 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1472 const XenPTRegGroupInfo *grp_reg,
1473 uint32_t base_offset, uint8_t *size)
1474 {
1475 *size = grp_reg->grp_size;
1476 return 0;
1477 }
1478 /* get Vendor Specific Capability Structure register group size */
1479 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1480 const XenPTRegGroupInfo *grp_reg,
1481 uint32_t base_offset, uint8_t *size)
1482 {
1483 *size = pci_get_byte(s->dev.config + base_offset + 0x02);
1484 return 0;
1485 }
1486 /* get PCI Express Capability Structure register group size */
1487 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1488 const XenPTRegGroupInfo *grp_reg,
1489 uint32_t base_offset, uint8_t *size)
1490 {
1491 PCIDevice *d = &s->dev;
1492 uint8_t version = get_capability_version(s, base_offset);
1493 uint8_t type = get_device_type(s, base_offset);
1494 uint8_t pcie_size = 0;
1495
1496
1497 /* calculate size depend on capability version and device/port type */
1498 /* in case of PCI Express Base Specification Rev 1.x */
1499 if (version == 1) {
1500 /* The PCI Express Capabilities, Device Capabilities, and Device
1501 * Status/Control registers are required for all PCI Express devices.
1502 * The Link Capabilities and Link Status/Control are required for all
1503 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1504 * are not required to implement registers other than those listed
1505 * above and terminate the capability structure.
1506 */
1507 switch (type) {
1508 case PCI_EXP_TYPE_ENDPOINT:
1509 case PCI_EXP_TYPE_LEG_END:
1510 pcie_size = 0x14;
1511 break;
1512 case PCI_EXP_TYPE_RC_END:
1513 /* has no link */
1514 pcie_size = 0x0C;
1515 break;
1516 /* only EndPoint passthrough is supported */
1517 case PCI_EXP_TYPE_ROOT_PORT:
1518 case PCI_EXP_TYPE_UPSTREAM:
1519 case PCI_EXP_TYPE_DOWNSTREAM:
1520 case PCI_EXP_TYPE_PCI_BRIDGE:
1521 case PCI_EXP_TYPE_PCIE_BRIDGE:
1522 case PCI_EXP_TYPE_RC_EC:
1523 default:
1524 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1525 return -1;
1526 }
1527 }
1528 /* in case of PCI Express Base Specification Rev 2.0 */
1529 else if (version == 2) {
1530 switch (type) {
1531 case PCI_EXP_TYPE_ENDPOINT:
1532 case PCI_EXP_TYPE_LEG_END:
1533 case PCI_EXP_TYPE_RC_END:
1534 /* For Functions that do not implement the registers,
1535 * these spaces must be hardwired to 0b.
1536 */
1537 pcie_size = 0x3C;
1538 break;
1539 /* only EndPoint passthrough is supported */
1540 case PCI_EXP_TYPE_ROOT_PORT:
1541 case PCI_EXP_TYPE_UPSTREAM:
1542 case PCI_EXP_TYPE_DOWNSTREAM:
1543 case PCI_EXP_TYPE_PCI_BRIDGE:
1544 case PCI_EXP_TYPE_PCIE_BRIDGE:
1545 case PCI_EXP_TYPE_RC_EC:
1546 default:
1547 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1548 return -1;
1549 }
1550 } else {
1551 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1552 return -1;
1553 }
1554
1555 *size = pcie_size;
1556 return 0;
1557 }
1558 /* get MSI Capability Structure register group size */
1559 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1560 const XenPTRegGroupInfo *grp_reg,
1561 uint32_t base_offset, uint8_t *size)
1562 {
1563 PCIDevice *d = &s->dev;
1564 uint16_t msg_ctrl = 0;
1565 uint8_t msi_size = 0xa;
1566
1567 msg_ctrl = pci_get_word(d->config + (base_offset + PCI_MSI_FLAGS));
1568
1569 /* check if 64-bit address is capable of per-vector masking */
1570 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1571 msi_size += 4;
1572 }
1573 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1574 msi_size += 10;
1575 }
1576
1577 s->msi = g_new0(XenPTMSI, 1);
1578 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1579
1580 *size = msi_size;
1581 return 0;
1582 }
1583 /* get MSI-X Capability Structure register group size */
1584 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1585 const XenPTRegGroupInfo *grp_reg,
1586 uint32_t base_offset, uint8_t *size)
1587 {
1588 int rc = 0;
1589
1590 rc = xen_pt_msix_init(s, base_offset);
1591
1592 if (rc < 0) {
1593 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1594 return rc;
1595 }
1596
1597 *size = grp_reg->grp_size;
1598 return 0;
1599 }
1600
1601
1602 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1603 /* Header Type0 reg group */
1604 {
1605 .grp_id = 0xFF,
1606 .grp_type = XEN_PT_GRP_TYPE_EMU,
1607 .grp_size = 0x40,
1608 .size_init = xen_pt_reg_grp_size_init,
1609 .emu_regs = xen_pt_emu_reg_header0,
1610 },
1611 /* PCI PowerManagement Capability reg group */
1612 {
1613 .grp_id = PCI_CAP_ID_PM,
1614 .grp_type = XEN_PT_GRP_TYPE_EMU,
1615 .grp_size = PCI_PM_SIZEOF,
1616 .size_init = xen_pt_reg_grp_size_init,
1617 .emu_regs = xen_pt_emu_reg_pm,
1618 },
1619 /* AGP Capability Structure reg group */
1620 {
1621 .grp_id = PCI_CAP_ID_AGP,
1622 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1623 .grp_size = 0x30,
1624 .size_init = xen_pt_reg_grp_size_init,
1625 },
1626 /* Vital Product Data Capability Structure reg group */
1627 {
1628 .grp_id = PCI_CAP_ID_VPD,
1629 .grp_type = XEN_PT_GRP_TYPE_EMU,
1630 .grp_size = 0x08,
1631 .size_init = xen_pt_reg_grp_size_init,
1632 .emu_regs = xen_pt_emu_reg_vpd,
1633 },
1634 /* Slot Identification reg group */
1635 {
1636 .grp_id = PCI_CAP_ID_SLOTID,
1637 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1638 .grp_size = 0x04,
1639 .size_init = xen_pt_reg_grp_size_init,
1640 },
1641 /* MSI Capability Structure reg group */
1642 {
1643 .grp_id = PCI_CAP_ID_MSI,
1644 .grp_type = XEN_PT_GRP_TYPE_EMU,
1645 .grp_size = 0xFF,
1646 .size_init = xen_pt_msi_size_init,
1647 .emu_regs = xen_pt_emu_reg_msi,
1648 },
1649 /* PCI-X Capabilities List Item reg group */
1650 {
1651 .grp_id = PCI_CAP_ID_PCIX,
1652 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1653 .grp_size = 0x18,
1654 .size_init = xen_pt_reg_grp_size_init,
1655 },
1656 /* Vendor Specific Capability Structure reg group */
1657 {
1658 .grp_id = PCI_CAP_ID_VNDR,
1659 .grp_type = XEN_PT_GRP_TYPE_EMU,
1660 .grp_size = 0xFF,
1661 .size_init = xen_pt_vendor_size_init,
1662 .emu_regs = xen_pt_emu_reg_vendor,
1663 },
1664 /* SHPC Capability List Item reg group */
1665 {
1666 .grp_id = PCI_CAP_ID_SHPC,
1667 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1668 .grp_size = 0x08,
1669 .size_init = xen_pt_reg_grp_size_init,
1670 },
1671 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1672 {
1673 .grp_id = PCI_CAP_ID_SSVID,
1674 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1675 .grp_size = 0x08,
1676 .size_init = xen_pt_reg_grp_size_init,
1677 },
1678 /* AGP 8x Capability Structure reg group */
1679 {
1680 .grp_id = PCI_CAP_ID_AGP3,
1681 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1682 .grp_size = 0x30,
1683 .size_init = xen_pt_reg_grp_size_init,
1684 },
1685 /* PCI Express Capability Structure reg group */
1686 {
1687 .grp_id = PCI_CAP_ID_EXP,
1688 .grp_type = XEN_PT_GRP_TYPE_EMU,
1689 .grp_size = 0xFF,
1690 .size_init = xen_pt_pcie_size_init,
1691 .emu_regs = xen_pt_emu_reg_pcie,
1692 },
1693 /* MSI-X Capability Structure reg group */
1694 {
1695 .grp_id = PCI_CAP_ID_MSIX,
1696 .grp_type = XEN_PT_GRP_TYPE_EMU,
1697 .grp_size = 0x0C,
1698 .size_init = xen_pt_msix_size_init,
1699 .emu_regs = xen_pt_emu_reg_msix,
1700 },
1701 {
1702 .grp_size = 0,
1703 },
1704 };
1705
1706 /* initialize Capabilities Pointer or Next Pointer register */
1707 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1708 XenPTRegInfo *reg, uint32_t real_offset,
1709 uint32_t *data)
1710 {
1711 int i;
1712 uint8_t *config = s->dev.config;
1713 uint32_t reg_field = pci_get_byte(config + real_offset);
1714 uint8_t cap_id = 0;
1715
1716 /* find capability offset */
1717 while (reg_field) {
1718 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1719 if (xen_pt_hide_dev_cap(&s->real_device,
1720 xen_pt_emu_reg_grps[i].grp_id)) {
1721 continue;
1722 }
1723
1724 cap_id = pci_get_byte(config + reg_field + PCI_CAP_LIST_ID);
1725 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1726 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1727 goto out;
1728 }
1729 /* ignore the 0 hardwired capability, find next one */
1730 break;
1731 }
1732 }
1733
1734 /* next capability */
1735 reg_field = pci_get_byte(config + reg_field + PCI_CAP_LIST_NEXT);
1736 }
1737
1738 out:
1739 *data = reg_field;
1740 return 0;
1741 }
1742
1743
1744 /*************
1745 * Main
1746 */
1747
1748 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1749 {
1750 uint8_t id;
1751 unsigned max_cap = PCI_CAP_MAX;
1752 uint8_t pos = PCI_CAPABILITY_LIST;
1753 uint8_t status = 0;
1754
1755 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1756 return 0;
1757 }
1758 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1759 return 0;
1760 }
1761
1762 while (max_cap--) {
1763 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1764 break;
1765 }
1766 if (pos < PCI_CONFIG_HEADER_SIZE) {
1767 break;
1768 }
1769
1770 pos &= ~3;
1771 if (xen_host_pci_get_byte(&s->real_device,
1772 pos + PCI_CAP_LIST_ID, &id)) {
1773 break;
1774 }
1775
1776 if (id == 0xff) {
1777 break;
1778 }
1779 if (id == cap) {
1780 return pos;
1781 }
1782
1783 pos += PCI_CAP_LIST_NEXT;
1784 }
1785 return 0;
1786 }
1787
1788 static int xen_pt_config_reg_init(XenPCIPassthroughState *s,
1789 XenPTRegGroup *reg_grp, XenPTRegInfo *reg)
1790 {
1791 XenPTReg *reg_entry;
1792 uint32_t data = 0;
1793 int rc = 0;
1794
1795 reg_entry = g_new0(XenPTReg, 1);
1796 reg_entry->reg = reg;
1797
1798 if (reg->init) {
1799 /* initialize emulate register */
1800 rc = reg->init(s, reg_entry->reg,
1801 reg_grp->base_offset + reg->offset, &data);
1802 if (rc < 0) {
1803 g_free(reg_entry);
1804 return rc;
1805 }
1806 if (data == XEN_PT_INVALID_REG) {
1807 /* free unused BAR register entry */
1808 g_free(reg_entry);
1809 return 0;
1810 }
1811 /* set register value */
1812 reg_entry->data = data;
1813 }
1814 /* list add register entry */
1815 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
1816
1817 return 0;
1818 }
1819
1820 int xen_pt_config_init(XenPCIPassthroughState *s)
1821 {
1822 int i, rc;
1823
1824 QLIST_INIT(&s->reg_grps);
1825
1826 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1827 uint32_t reg_grp_offset = 0;
1828 XenPTRegGroup *reg_grp_entry = NULL;
1829
1830 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF) {
1831 if (xen_pt_hide_dev_cap(&s->real_device,
1832 xen_pt_emu_reg_grps[i].grp_id)) {
1833 continue;
1834 }
1835
1836 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
1837
1838 if (!reg_grp_offset) {
1839 continue;
1840 }
1841 }
1842
1843 reg_grp_entry = g_new0(XenPTRegGroup, 1);
1844 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
1845 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
1846
1847 reg_grp_entry->base_offset = reg_grp_offset;
1848 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
1849 if (xen_pt_emu_reg_grps[i].size_init) {
1850 /* get register group size */
1851 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
1852 reg_grp_offset,
1853 &reg_grp_entry->size);
1854 if (rc < 0) {
1855 xen_pt_config_delete(s);
1856 return rc;
1857 }
1858 }
1859
1860 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1861 if (xen_pt_emu_reg_grps[i].emu_regs) {
1862 int j = 0;
1863 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
1864 /* initialize capability register */
1865 for (j = 0; regs->size != 0; j++, regs++) {
1866 /* initialize capability register */
1867 rc = xen_pt_config_reg_init(s, reg_grp_entry, regs);
1868 if (rc < 0) {
1869 xen_pt_config_delete(s);
1870 return rc;
1871 }
1872 }
1873 }
1874 }
1875 }
1876
1877 return 0;
1878 }
1879
1880 /* delete all emulate register */
1881 void xen_pt_config_delete(XenPCIPassthroughState *s)
1882 {
1883 struct XenPTRegGroup *reg_group, *next_grp;
1884 struct XenPTReg *reg, *next_reg;
1885
1886 /* free MSI/MSI-X info table */
1887 if (s->msix) {
1888 xen_pt_msix_delete(s);
1889 }
1890 if (s->msi) {
1891 g_free(s->msi);
1892 }
1893
1894 /* free all register group entry */
1895 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
1896 /* free all register entry */
1897 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
1898 QLIST_REMOVE(reg, entries);
1899 g_free(reg);
1900 }
1901
1902 QLIST_REMOVE(reg_group, entries);
1903 g_free(reg_group);
1904 }
1905 }