]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xen/xen_pt_config_init.c
xen/pass-through: constify some static data
[mirror_qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/timer.h"
16 #include "hw/xen/xen_backend.h"
17 #include "xen_pt.h"
18
19 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
20 (((value) & (val_mask)) | ((data) & ~(val_mask)))
21
22 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
23
24 /* prototype */
25
26 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
27 uint32_t real_offset, uint32_t *data);
28
29
30 /* helper */
31
32 /* A return value of 1 means the capability should NOT be exposed to guest. */
33 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
34 {
35 switch (grp_id) {
36 case PCI_CAP_ID_EXP:
37 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
38 * Controller looks trivial, e.g., the PCI Express Capabilities
39 * Register is 0. We should not try to expose it to guest.
40 *
41 * The datasheet is available at
42 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
43 *
44 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
45 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
46 * Controller looks trivial, e.g., the PCI Express Capabilities
47 * Register is 0, so the Capability Version is 0 and
48 * xen_pt_pcie_size_init() would fail.
49 */
50 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
51 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
52 return 1;
53 }
54 break;
55 }
56 return 0;
57 }
58
59 /* find emulate register group entry */
60 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
61 {
62 XenPTRegGroup *entry = NULL;
63
64 /* find register group entry */
65 QLIST_FOREACH(entry, &s->reg_grps, entries) {
66 /* check address */
67 if ((entry->base_offset <= address)
68 && ((entry->base_offset + entry->size) > address)) {
69 return entry;
70 }
71 }
72
73 /* group entry not found */
74 return NULL;
75 }
76
77 /* find emulate register entry */
78 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
79 {
80 XenPTReg *reg_entry = NULL;
81 XenPTRegInfo *reg = NULL;
82 uint32_t real_offset = 0;
83
84 /* find register entry */
85 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
86 reg = reg_entry->reg;
87 real_offset = reg_grp->base_offset + reg->offset;
88 /* check address */
89 if ((real_offset <= address)
90 && ((real_offset + reg->size) > address)) {
91 return reg_entry;
92 }
93 }
94
95 return NULL;
96 }
97
98 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
99 XenPTRegInfo *reg, uint32_t valid_mask)
100 {
101 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
102
103 if (!s->permissive) {
104 throughable_mask &= ~reg->res_mask;
105 }
106
107 return throughable_mask & valid_mask;
108 }
109
110 /****************
111 * general register functions
112 */
113
114 /* register initialization function */
115
116 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
117 XenPTRegInfo *reg, uint32_t real_offset,
118 uint32_t *data)
119 {
120 *data = reg->init_val;
121 return 0;
122 }
123
124 /* Read register functions */
125
126 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
127 uint8_t *value, uint8_t valid_mask)
128 {
129 XenPTRegInfo *reg = cfg_entry->reg;
130 uint8_t valid_emu_mask = 0;
131
132 /* emulate byte register */
133 valid_emu_mask = reg->emu_mask & valid_mask;
134 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
135
136 return 0;
137 }
138 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
139 uint16_t *value, uint16_t valid_mask)
140 {
141 XenPTRegInfo *reg = cfg_entry->reg;
142 uint16_t valid_emu_mask = 0;
143
144 /* emulate word register */
145 valid_emu_mask = reg->emu_mask & valid_mask;
146 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
147
148 return 0;
149 }
150 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
151 uint32_t *value, uint32_t valid_mask)
152 {
153 XenPTRegInfo *reg = cfg_entry->reg;
154 uint32_t valid_emu_mask = 0;
155
156 /* emulate long register */
157 valid_emu_mask = reg->emu_mask & valid_mask;
158 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
159
160 return 0;
161 }
162
163 /* Write register functions */
164
165 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
166 uint8_t *val, uint8_t dev_value,
167 uint8_t valid_mask)
168 {
169 XenPTRegInfo *reg = cfg_entry->reg;
170 uint8_t writable_mask = 0;
171 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
172
173 /* modify emulate register */
174 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
175 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
176
177 /* create value for writing to I/O device register */
178 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
179
180 return 0;
181 }
182 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
183 uint16_t *val, uint16_t dev_value,
184 uint16_t valid_mask)
185 {
186 XenPTRegInfo *reg = cfg_entry->reg;
187 uint16_t writable_mask = 0;
188 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
189
190 /* modify emulate register */
191 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
192 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
193
194 /* create value for writing to I/O device register */
195 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
196
197 return 0;
198 }
199 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
200 uint32_t *val, uint32_t dev_value,
201 uint32_t valid_mask)
202 {
203 XenPTRegInfo *reg = cfg_entry->reg;
204 uint32_t writable_mask = 0;
205 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
206
207 /* modify emulate register */
208 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
209 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
210
211 /* create value for writing to I/O device register */
212 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
213
214 return 0;
215 }
216
217
218 /* XenPTRegInfo declaration
219 * - only for emulated register (either a part or whole bit).
220 * - for passthrough register that need special behavior (like interacting with
221 * other component), set emu_mask to all 0 and specify r/w func properly.
222 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
223 */
224
225 /********************
226 * Header Type0
227 */
228
229 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
230 XenPTRegInfo *reg, uint32_t real_offset,
231 uint32_t *data)
232 {
233 *data = s->real_device.vendor_id;
234 return 0;
235 }
236 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
237 XenPTRegInfo *reg, uint32_t real_offset,
238 uint32_t *data)
239 {
240 *data = s->real_device.device_id;
241 return 0;
242 }
243 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
244 XenPTRegInfo *reg, uint32_t real_offset,
245 uint32_t *data)
246 {
247 XenPTRegGroup *reg_grp_entry = NULL;
248 XenPTReg *reg_entry = NULL;
249 uint32_t reg_field = 0;
250
251 /* find Header register group */
252 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
253 if (reg_grp_entry) {
254 /* find Capabilities Pointer register */
255 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
256 if (reg_entry) {
257 /* check Capabilities Pointer register */
258 if (reg_entry->data) {
259 reg_field |= PCI_STATUS_CAP_LIST;
260 } else {
261 reg_field &= ~PCI_STATUS_CAP_LIST;
262 }
263 } else {
264 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
265 " for Capabilities Pointer register."
266 " (%s)\n", __func__);
267 return -1;
268 }
269 } else {
270 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
271 " for Header. (%s)\n", __func__);
272 return -1;
273 }
274
275 *data = reg_field;
276 return 0;
277 }
278 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
279 XenPTRegInfo *reg, uint32_t real_offset,
280 uint32_t *data)
281 {
282 /* read PCI_HEADER_TYPE */
283 *data = reg->init_val | 0x80;
284 return 0;
285 }
286
287 /* initialize Interrupt Pin register */
288 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
289 XenPTRegInfo *reg, uint32_t real_offset,
290 uint32_t *data)
291 {
292 *data = xen_pt_pci_read_intx(s);
293 return 0;
294 }
295
296 /* Command register */
297 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
298 uint16_t *val, uint16_t dev_value,
299 uint16_t valid_mask)
300 {
301 XenPTRegInfo *reg = cfg_entry->reg;
302 uint16_t writable_mask = 0;
303 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
304
305 /* modify emulate register */
306 writable_mask = ~reg->ro_mask & valid_mask;
307 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
308
309 /* create value for writing to I/O device register */
310 if (*val & PCI_COMMAND_INTX_DISABLE) {
311 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
312 } else {
313 if (s->machine_irq) {
314 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
315 }
316 }
317
318 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
319
320 return 0;
321 }
322
323 /* BAR */
324 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
325 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
326 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
327 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
328
329 static bool is_64bit_bar(PCIIORegion *r)
330 {
331 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
332 }
333
334 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
335 {
336 if (is_64bit_bar(r)) {
337 uint64_t size64;
338 size64 = (r + 1)->size;
339 size64 <<= 32;
340 size64 += r->size;
341 return size64;
342 }
343 return r->size;
344 }
345
346 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
347 int index)
348 {
349 PCIDevice *d = &s->dev;
350 XenPTRegion *region = NULL;
351 PCIIORegion *r;
352
353 /* check 64bit BAR */
354 if ((0 < index) && (index < PCI_ROM_SLOT)) {
355 int type = s->real_device.io_regions[index - 1].type;
356
357 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
358 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
359 region = &s->bases[index - 1];
360 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
361 return XEN_PT_BAR_FLAG_UPPER;
362 }
363 }
364 }
365
366 /* check unused BAR */
367 r = &d->io_regions[index];
368 if (!xen_pt_get_bar_size(r)) {
369 return XEN_PT_BAR_FLAG_UNUSED;
370 }
371
372 /* for ExpROM BAR */
373 if (index == PCI_ROM_SLOT) {
374 return XEN_PT_BAR_FLAG_MEM;
375 }
376
377 /* check BAR I/O indicator */
378 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
379 return XEN_PT_BAR_FLAG_IO;
380 } else {
381 return XEN_PT_BAR_FLAG_MEM;
382 }
383 }
384
385 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
386 {
387 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
388 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
389 } else {
390 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
391 }
392 }
393
394 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
395 uint32_t real_offset, uint32_t *data)
396 {
397 uint32_t reg_field = 0;
398 int index;
399
400 index = xen_pt_bar_offset_to_index(reg->offset);
401 if (index < 0 || index >= PCI_NUM_REGIONS) {
402 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
403 return -1;
404 }
405
406 /* set BAR flag */
407 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
408 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
409 reg_field = XEN_PT_INVALID_REG;
410 }
411
412 *data = reg_field;
413 return 0;
414 }
415 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
416 uint32_t *value, uint32_t valid_mask)
417 {
418 XenPTRegInfo *reg = cfg_entry->reg;
419 uint32_t valid_emu_mask = 0;
420 uint32_t bar_emu_mask = 0;
421 int index;
422
423 /* get BAR index */
424 index = xen_pt_bar_offset_to_index(reg->offset);
425 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
426 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
427 return -1;
428 }
429
430 /* use fixed-up value from kernel sysfs */
431 *value = base_address_with_flags(&s->real_device.io_regions[index]);
432
433 /* set emulate mask depend on BAR flag */
434 switch (s->bases[index].bar_flag) {
435 case XEN_PT_BAR_FLAG_MEM:
436 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
437 break;
438 case XEN_PT_BAR_FLAG_IO:
439 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
440 break;
441 case XEN_PT_BAR_FLAG_UPPER:
442 bar_emu_mask = XEN_PT_BAR_ALLF;
443 break;
444 default:
445 break;
446 }
447
448 /* emulate BAR */
449 valid_emu_mask = bar_emu_mask & valid_mask;
450 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
451
452 return 0;
453 }
454 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
455 uint32_t *val, uint32_t dev_value,
456 uint32_t valid_mask)
457 {
458 XenPTRegInfo *reg = cfg_entry->reg;
459 XenPTRegion *base = NULL;
460 PCIDevice *d = &s->dev;
461 const PCIIORegion *r;
462 uint32_t writable_mask = 0;
463 uint32_t bar_emu_mask = 0;
464 uint32_t bar_ro_mask = 0;
465 uint32_t r_size = 0;
466 int index = 0;
467
468 index = xen_pt_bar_offset_to_index(reg->offset);
469 if (index < 0 || index >= PCI_NUM_REGIONS) {
470 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
471 return -1;
472 }
473
474 r = &d->io_regions[index];
475 base = &s->bases[index];
476 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
477
478 /* set emulate mask and read-only mask values depend on the BAR flag */
479 switch (s->bases[index].bar_flag) {
480 case XEN_PT_BAR_FLAG_MEM:
481 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
482 if (!r_size) {
483 /* low 32 bits mask for 64 bit bars */
484 bar_ro_mask = XEN_PT_BAR_ALLF;
485 } else {
486 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
487 }
488 break;
489 case XEN_PT_BAR_FLAG_IO:
490 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
491 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
492 break;
493 case XEN_PT_BAR_FLAG_UPPER:
494 bar_emu_mask = XEN_PT_BAR_ALLF;
495 bar_ro_mask = r_size ? r_size - 1 : 0;
496 break;
497 default:
498 break;
499 }
500
501 /* modify emulate register */
502 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
503 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
504
505 /* check whether we need to update the virtual region address or not */
506 switch (s->bases[index].bar_flag) {
507 case XEN_PT_BAR_FLAG_UPPER:
508 case XEN_PT_BAR_FLAG_MEM:
509 /* nothing to do */
510 break;
511 case XEN_PT_BAR_FLAG_IO:
512 /* nothing to do */
513 break;
514 default:
515 break;
516 }
517
518 /* create value for writing to I/O device register */
519 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
520
521 return 0;
522 }
523
524 /* write Exp ROM BAR */
525 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
526 XenPTReg *cfg_entry, uint32_t *val,
527 uint32_t dev_value, uint32_t valid_mask)
528 {
529 XenPTRegInfo *reg = cfg_entry->reg;
530 XenPTRegion *base = NULL;
531 PCIDevice *d = (PCIDevice *)&s->dev;
532 uint32_t writable_mask = 0;
533 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
534 pcibus_t r_size = 0;
535 uint32_t bar_ro_mask = 0;
536
537 r_size = d->io_regions[PCI_ROM_SLOT].size;
538 base = &s->bases[PCI_ROM_SLOT];
539 /* align memory type resource size */
540 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
541
542 /* set emulate mask and read-only mask */
543 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
544
545 /* modify emulate register */
546 writable_mask = ~bar_ro_mask & valid_mask;
547 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
548
549 /* create value for writing to I/O device register */
550 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
551
552 return 0;
553 }
554
555 /* Header Type0 reg static information table */
556 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
557 /* Vendor ID reg */
558 {
559 .offset = PCI_VENDOR_ID,
560 .size = 2,
561 .init_val = 0x0000,
562 .ro_mask = 0xFFFF,
563 .emu_mask = 0xFFFF,
564 .init = xen_pt_vendor_reg_init,
565 .u.w.read = xen_pt_word_reg_read,
566 .u.w.write = xen_pt_word_reg_write,
567 },
568 /* Device ID reg */
569 {
570 .offset = PCI_DEVICE_ID,
571 .size = 2,
572 .init_val = 0x0000,
573 .ro_mask = 0xFFFF,
574 .emu_mask = 0xFFFF,
575 .init = xen_pt_device_reg_init,
576 .u.w.read = xen_pt_word_reg_read,
577 .u.w.write = xen_pt_word_reg_write,
578 },
579 /* Command reg */
580 {
581 .offset = PCI_COMMAND,
582 .size = 2,
583 .init_val = 0x0000,
584 .res_mask = 0xF880,
585 .emu_mask = 0x0743,
586 .init = xen_pt_common_reg_init,
587 .u.w.read = xen_pt_word_reg_read,
588 .u.w.write = xen_pt_cmd_reg_write,
589 },
590 /* Capabilities Pointer reg */
591 {
592 .offset = PCI_CAPABILITY_LIST,
593 .size = 1,
594 .init_val = 0x00,
595 .ro_mask = 0xFF,
596 .emu_mask = 0xFF,
597 .init = xen_pt_ptr_reg_init,
598 .u.b.read = xen_pt_byte_reg_read,
599 .u.b.write = xen_pt_byte_reg_write,
600 },
601 /* Status reg */
602 /* use emulated Cap Ptr value to initialize,
603 * so need to be declared after Cap Ptr reg
604 */
605 {
606 .offset = PCI_STATUS,
607 .size = 2,
608 .init_val = 0x0000,
609 .res_mask = 0x0007,
610 .ro_mask = 0x06F8,
611 .emu_mask = 0x0010,
612 .init = xen_pt_status_reg_init,
613 .u.w.read = xen_pt_word_reg_read,
614 .u.w.write = xen_pt_word_reg_write,
615 },
616 /* Cache Line Size reg */
617 {
618 .offset = PCI_CACHE_LINE_SIZE,
619 .size = 1,
620 .init_val = 0x00,
621 .ro_mask = 0x00,
622 .emu_mask = 0xFF,
623 .init = xen_pt_common_reg_init,
624 .u.b.read = xen_pt_byte_reg_read,
625 .u.b.write = xen_pt_byte_reg_write,
626 },
627 /* Latency Timer reg */
628 {
629 .offset = PCI_LATENCY_TIMER,
630 .size = 1,
631 .init_val = 0x00,
632 .ro_mask = 0x00,
633 .emu_mask = 0xFF,
634 .init = xen_pt_common_reg_init,
635 .u.b.read = xen_pt_byte_reg_read,
636 .u.b.write = xen_pt_byte_reg_write,
637 },
638 /* Header Type reg */
639 {
640 .offset = PCI_HEADER_TYPE,
641 .size = 1,
642 .init_val = 0x00,
643 .ro_mask = 0xFF,
644 .emu_mask = 0x00,
645 .init = xen_pt_header_type_reg_init,
646 .u.b.read = xen_pt_byte_reg_read,
647 .u.b.write = xen_pt_byte_reg_write,
648 },
649 /* Interrupt Line reg */
650 {
651 .offset = PCI_INTERRUPT_LINE,
652 .size = 1,
653 .init_val = 0x00,
654 .ro_mask = 0x00,
655 .emu_mask = 0xFF,
656 .init = xen_pt_common_reg_init,
657 .u.b.read = xen_pt_byte_reg_read,
658 .u.b.write = xen_pt_byte_reg_write,
659 },
660 /* Interrupt Pin reg */
661 {
662 .offset = PCI_INTERRUPT_PIN,
663 .size = 1,
664 .init_val = 0x00,
665 .ro_mask = 0xFF,
666 .emu_mask = 0xFF,
667 .init = xen_pt_irqpin_reg_init,
668 .u.b.read = xen_pt_byte_reg_read,
669 .u.b.write = xen_pt_byte_reg_write,
670 },
671 /* BAR 0 reg */
672 /* mask of BAR need to be decided later, depends on IO/MEM type */
673 {
674 .offset = PCI_BASE_ADDRESS_0,
675 .size = 4,
676 .init_val = 0x00000000,
677 .init = xen_pt_bar_reg_init,
678 .u.dw.read = xen_pt_bar_reg_read,
679 .u.dw.write = xen_pt_bar_reg_write,
680 },
681 /* BAR 1 reg */
682 {
683 .offset = PCI_BASE_ADDRESS_1,
684 .size = 4,
685 .init_val = 0x00000000,
686 .init = xen_pt_bar_reg_init,
687 .u.dw.read = xen_pt_bar_reg_read,
688 .u.dw.write = xen_pt_bar_reg_write,
689 },
690 /* BAR 2 reg */
691 {
692 .offset = PCI_BASE_ADDRESS_2,
693 .size = 4,
694 .init_val = 0x00000000,
695 .init = xen_pt_bar_reg_init,
696 .u.dw.read = xen_pt_bar_reg_read,
697 .u.dw.write = xen_pt_bar_reg_write,
698 },
699 /* BAR 3 reg */
700 {
701 .offset = PCI_BASE_ADDRESS_3,
702 .size = 4,
703 .init_val = 0x00000000,
704 .init = xen_pt_bar_reg_init,
705 .u.dw.read = xen_pt_bar_reg_read,
706 .u.dw.write = xen_pt_bar_reg_write,
707 },
708 /* BAR 4 reg */
709 {
710 .offset = PCI_BASE_ADDRESS_4,
711 .size = 4,
712 .init_val = 0x00000000,
713 .init = xen_pt_bar_reg_init,
714 .u.dw.read = xen_pt_bar_reg_read,
715 .u.dw.write = xen_pt_bar_reg_write,
716 },
717 /* BAR 5 reg */
718 {
719 .offset = PCI_BASE_ADDRESS_5,
720 .size = 4,
721 .init_val = 0x00000000,
722 .init = xen_pt_bar_reg_init,
723 .u.dw.read = xen_pt_bar_reg_read,
724 .u.dw.write = xen_pt_bar_reg_write,
725 },
726 /* Expansion ROM BAR reg */
727 {
728 .offset = PCI_ROM_ADDRESS,
729 .size = 4,
730 .init_val = 0x00000000,
731 .ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
732 .emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
733 .init = xen_pt_bar_reg_init,
734 .u.dw.read = xen_pt_long_reg_read,
735 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
736 },
737 {
738 .size = 0,
739 },
740 };
741
742
743 /*********************************
744 * Vital Product Data Capability
745 */
746
747 /* Vital Product Data Capability Structure reg static information table */
748 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
749 {
750 .offset = PCI_CAP_LIST_NEXT,
751 .size = 1,
752 .init_val = 0x00,
753 .ro_mask = 0xFF,
754 .emu_mask = 0xFF,
755 .init = xen_pt_ptr_reg_init,
756 .u.b.read = xen_pt_byte_reg_read,
757 .u.b.write = xen_pt_byte_reg_write,
758 },
759 {
760 .offset = PCI_VPD_ADDR,
761 .size = 2,
762 .ro_mask = 0x0003,
763 .emu_mask = 0x0003,
764 .init = xen_pt_common_reg_init,
765 .u.w.read = xen_pt_word_reg_read,
766 .u.w.write = xen_pt_word_reg_write,
767 },
768 {
769 .size = 0,
770 },
771 };
772
773
774 /**************************************
775 * Vendor Specific Capability
776 */
777
778 /* Vendor Specific Capability Structure reg static information table */
779 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
780 {
781 .offset = PCI_CAP_LIST_NEXT,
782 .size = 1,
783 .init_val = 0x00,
784 .ro_mask = 0xFF,
785 .emu_mask = 0xFF,
786 .init = xen_pt_ptr_reg_init,
787 .u.b.read = xen_pt_byte_reg_read,
788 .u.b.write = xen_pt_byte_reg_write,
789 },
790 {
791 .size = 0,
792 },
793 };
794
795
796 /*****************************
797 * PCI Express Capability
798 */
799
800 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
801 uint32_t offset)
802 {
803 uint8_t flags = pci_get_byte(s->dev.config + offset + PCI_EXP_FLAGS);
804 return flags & PCI_EXP_FLAGS_VERS;
805 }
806
807 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
808 uint32_t offset)
809 {
810 uint8_t flags = pci_get_byte(s->dev.config + offset + PCI_EXP_FLAGS);
811 return (flags & PCI_EXP_FLAGS_TYPE) >> 4;
812 }
813
814 /* initialize Link Control register */
815 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
816 XenPTRegInfo *reg, uint32_t real_offset,
817 uint32_t *data)
818 {
819 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
820 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
821
822 /* no need to initialize in case of Root Complex Integrated Endpoint
823 * with cap_ver 1.x
824 */
825 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
826 *data = XEN_PT_INVALID_REG;
827 }
828
829 *data = reg->init_val;
830 return 0;
831 }
832 /* initialize Device Control 2 register */
833 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
834 XenPTRegInfo *reg, uint32_t real_offset,
835 uint32_t *data)
836 {
837 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
838
839 /* no need to initialize in case of cap_ver 1.x */
840 if (cap_ver == 1) {
841 *data = XEN_PT_INVALID_REG;
842 }
843
844 *data = reg->init_val;
845 return 0;
846 }
847 /* initialize Link Control 2 register */
848 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
849 XenPTRegInfo *reg, uint32_t real_offset,
850 uint32_t *data)
851 {
852 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
853 uint32_t reg_field = 0;
854
855 /* no need to initialize in case of cap_ver 1.x */
856 if (cap_ver == 1) {
857 reg_field = XEN_PT_INVALID_REG;
858 } else {
859 /* set Supported Link Speed */
860 uint8_t lnkcap = pci_get_byte(s->dev.config + real_offset - reg->offset
861 + PCI_EXP_LNKCAP);
862 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
863 }
864
865 *data = reg_field;
866 return 0;
867 }
868
869 /* PCI Express Capability Structure reg static information table */
870 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
871 /* Next Pointer reg */
872 {
873 .offset = PCI_CAP_LIST_NEXT,
874 .size = 1,
875 .init_val = 0x00,
876 .ro_mask = 0xFF,
877 .emu_mask = 0xFF,
878 .init = xen_pt_ptr_reg_init,
879 .u.b.read = xen_pt_byte_reg_read,
880 .u.b.write = xen_pt_byte_reg_write,
881 },
882 /* Device Capabilities reg */
883 {
884 .offset = PCI_EXP_DEVCAP,
885 .size = 4,
886 .init_val = 0x00000000,
887 .ro_mask = 0xFFFFFFFF,
888 .emu_mask = 0x10000000,
889 .init = xen_pt_common_reg_init,
890 .u.dw.read = xen_pt_long_reg_read,
891 .u.dw.write = xen_pt_long_reg_write,
892 },
893 /* Device Control reg */
894 {
895 .offset = PCI_EXP_DEVCTL,
896 .size = 2,
897 .init_val = 0x2810,
898 .ro_mask = 0x8400,
899 .emu_mask = 0xFFFF,
900 .init = xen_pt_common_reg_init,
901 .u.w.read = xen_pt_word_reg_read,
902 .u.w.write = xen_pt_word_reg_write,
903 },
904 /* Device Status reg */
905 {
906 .offset = PCI_EXP_DEVSTA,
907 .size = 2,
908 .res_mask = 0xFFC0,
909 .ro_mask = 0x0030,
910 .init = xen_pt_common_reg_init,
911 .u.w.read = xen_pt_word_reg_read,
912 .u.w.write = xen_pt_word_reg_write,
913 },
914 /* Link Control reg */
915 {
916 .offset = PCI_EXP_LNKCTL,
917 .size = 2,
918 .init_val = 0x0000,
919 .ro_mask = 0xFC34,
920 .emu_mask = 0xFFFF,
921 .init = xen_pt_linkctrl_reg_init,
922 .u.w.read = xen_pt_word_reg_read,
923 .u.w.write = xen_pt_word_reg_write,
924 },
925 /* Link Status reg */
926 {
927 .offset = PCI_EXP_LNKSTA,
928 .size = 2,
929 .ro_mask = 0x3FFF,
930 .init = xen_pt_common_reg_init,
931 .u.w.read = xen_pt_word_reg_read,
932 .u.w.write = xen_pt_word_reg_write,
933 },
934 /* Device Control 2 reg */
935 {
936 .offset = 0x28,
937 .size = 2,
938 .init_val = 0x0000,
939 .ro_mask = 0xFFE0,
940 .emu_mask = 0xFFFF,
941 .init = xen_pt_devctrl2_reg_init,
942 .u.w.read = xen_pt_word_reg_read,
943 .u.w.write = xen_pt_word_reg_write,
944 },
945 /* Link Control 2 reg */
946 {
947 .offset = 0x30,
948 .size = 2,
949 .init_val = 0x0000,
950 .ro_mask = 0xE040,
951 .emu_mask = 0xFFFF,
952 .init = xen_pt_linkctrl2_reg_init,
953 .u.w.read = xen_pt_word_reg_read,
954 .u.w.write = xen_pt_word_reg_write,
955 },
956 {
957 .size = 0,
958 },
959 };
960
961
962 /*********************************
963 * Power Management Capability
964 */
965
966 /* write Power Management Control/Status register */
967 static int xen_pt_pmcsr_reg_write(XenPCIPassthroughState *s,
968 XenPTReg *cfg_entry, uint16_t *val,
969 uint16_t dev_value, uint16_t valid_mask)
970 {
971 XenPTRegInfo *reg = cfg_entry->reg;
972 uint16_t writable_mask = 0;
973 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
974
975 /* modify emulate register */
976 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
977 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
978
979 /* create value for writing to I/O device register */
980 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~PCI_PM_CTRL_PME_STATUS,
981 throughable_mask);
982
983 return 0;
984 }
985
986 /* Power Management Capability reg static information table */
987 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
988 /* Next Pointer reg */
989 {
990 .offset = PCI_CAP_LIST_NEXT,
991 .size = 1,
992 .init_val = 0x00,
993 .ro_mask = 0xFF,
994 .emu_mask = 0xFF,
995 .init = xen_pt_ptr_reg_init,
996 .u.b.read = xen_pt_byte_reg_read,
997 .u.b.write = xen_pt_byte_reg_write,
998 },
999 /* Power Management Capabilities reg */
1000 {
1001 .offset = PCI_CAP_FLAGS,
1002 .size = 2,
1003 .init_val = 0x0000,
1004 .ro_mask = 0xFFFF,
1005 .emu_mask = 0xF9C8,
1006 .init = xen_pt_common_reg_init,
1007 .u.w.read = xen_pt_word_reg_read,
1008 .u.w.write = xen_pt_word_reg_write,
1009 },
1010 /* PCI Power Management Control/Status reg */
1011 {
1012 .offset = PCI_PM_CTRL,
1013 .size = 2,
1014 .init_val = 0x0008,
1015 .res_mask = 0x00F0,
1016 .ro_mask = 0xE10C,
1017 .emu_mask = 0x810B,
1018 .init = xen_pt_common_reg_init,
1019 .u.w.read = xen_pt_word_reg_read,
1020 .u.w.write = xen_pt_pmcsr_reg_write,
1021 },
1022 {
1023 .size = 0,
1024 },
1025 };
1026
1027
1028 /********************************
1029 * MSI Capability
1030 */
1031
1032 /* Helper */
1033 #define xen_pt_msi_check_type(offset, flags, what) \
1034 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1035 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1036
1037 /* Message Control register */
1038 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1039 XenPTRegInfo *reg, uint32_t real_offset,
1040 uint32_t *data)
1041 {
1042 PCIDevice *d = &s->dev;
1043 XenPTMSI *msi = s->msi;
1044 uint16_t reg_field = 0;
1045
1046 /* use I/O device register's value as initial value */
1047 reg_field = pci_get_word(d->config + real_offset);
1048
1049 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1050 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1051 xen_host_pci_set_word(&s->real_device, real_offset,
1052 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1053 }
1054 msi->flags |= reg_field;
1055 msi->ctrl_offset = real_offset;
1056 msi->initialized = false;
1057 msi->mapped = false;
1058
1059 *data = reg->init_val;
1060 return 0;
1061 }
1062 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1063 XenPTReg *cfg_entry, uint16_t *val,
1064 uint16_t dev_value, uint16_t valid_mask)
1065 {
1066 XenPTRegInfo *reg = cfg_entry->reg;
1067 XenPTMSI *msi = s->msi;
1068 uint16_t writable_mask = 0;
1069 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1070
1071 /* Currently no support for multi-vector */
1072 if (*val & PCI_MSI_FLAGS_QSIZE) {
1073 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1074 }
1075
1076 /* modify emulate register */
1077 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1078 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1079 msi->flags |= cfg_entry->data & ~PCI_MSI_FLAGS_ENABLE;
1080
1081 /* create value for writing to I/O device register */
1082 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1083
1084 /* update MSI */
1085 if (*val & PCI_MSI_FLAGS_ENABLE) {
1086 /* setup MSI pirq for the first time */
1087 if (!msi->initialized) {
1088 /* Init physical one */
1089 XEN_PT_LOG(&s->dev, "setup MSI\n");
1090 if (xen_pt_msi_setup(s)) {
1091 /* We do not broadcast the error to the framework code, so
1092 * that MSI errors are contained in MSI emulation code and
1093 * QEMU can go on running.
1094 * Guest MSI would be actually not working.
1095 */
1096 *val &= ~PCI_MSI_FLAGS_ENABLE;
1097 XEN_PT_WARN(&s->dev, "Can not map MSI.\n");
1098 return 0;
1099 }
1100 if (xen_pt_msi_update(s)) {
1101 *val &= ~PCI_MSI_FLAGS_ENABLE;
1102 XEN_PT_WARN(&s->dev, "Can not bind MSI\n");
1103 return 0;
1104 }
1105 msi->initialized = true;
1106 msi->mapped = true;
1107 }
1108 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1109 } else if (msi->mapped) {
1110 xen_pt_msi_disable(s);
1111 }
1112
1113 return 0;
1114 }
1115
1116 /* initialize Message Upper Address register */
1117 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1118 XenPTRegInfo *reg, uint32_t real_offset,
1119 uint32_t *data)
1120 {
1121 /* no need to initialize in case of 32 bit type */
1122 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1123 *data = XEN_PT_INVALID_REG;
1124 } else {
1125 *data = reg->init_val;
1126 }
1127
1128 return 0;
1129 }
1130 /* this function will be called twice (for 32 bit and 64 bit type) */
1131 /* initialize Message Data register */
1132 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1133 XenPTRegInfo *reg, uint32_t real_offset,
1134 uint32_t *data)
1135 {
1136 uint32_t flags = s->msi->flags;
1137 uint32_t offset = reg->offset;
1138
1139 /* check the offset whether matches the type or not */
1140 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1141 *data = reg->init_val;
1142 } else {
1143 *data = XEN_PT_INVALID_REG;
1144 }
1145 return 0;
1146 }
1147
1148 /* this function will be called twice (for 32 bit and 64 bit type) */
1149 /* initialize Mask register */
1150 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1151 XenPTRegInfo *reg, uint32_t real_offset,
1152 uint32_t *data)
1153 {
1154 uint32_t flags = s->msi->flags;
1155
1156 /* check the offset whether matches the type or not */
1157 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1158 *data = XEN_PT_INVALID_REG;
1159 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1160 *data = reg->init_val;
1161 } else {
1162 *data = XEN_PT_INVALID_REG;
1163 }
1164 return 0;
1165 }
1166
1167 /* this function will be called twice (for 32 bit and 64 bit type) */
1168 /* initialize Pending register */
1169 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1170 XenPTRegInfo *reg, uint32_t real_offset,
1171 uint32_t *data)
1172 {
1173 uint32_t flags = s->msi->flags;
1174
1175 /* check the offset whether matches the type or not */
1176 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1177 *data = XEN_PT_INVALID_REG;
1178 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1179 *data = reg->init_val;
1180 } else {
1181 *data = XEN_PT_INVALID_REG;
1182 }
1183 return 0;
1184 }
1185
1186 /* write Message Address register */
1187 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1188 XenPTReg *cfg_entry, uint32_t *val,
1189 uint32_t dev_value, uint32_t valid_mask)
1190 {
1191 XenPTRegInfo *reg = cfg_entry->reg;
1192 uint32_t writable_mask = 0;
1193 uint32_t old_addr = cfg_entry->data;
1194
1195 /* modify emulate register */
1196 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1197 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1198 s->msi->addr_lo = cfg_entry->data;
1199
1200 /* create value for writing to I/O device register */
1201 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1202
1203 /* update MSI */
1204 if (cfg_entry->data != old_addr) {
1205 if (s->msi->mapped) {
1206 xen_pt_msi_update(s);
1207 }
1208 }
1209
1210 return 0;
1211 }
1212 /* write Message Upper Address register */
1213 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1214 XenPTReg *cfg_entry, uint32_t *val,
1215 uint32_t dev_value, uint32_t valid_mask)
1216 {
1217 XenPTRegInfo *reg = cfg_entry->reg;
1218 uint32_t writable_mask = 0;
1219 uint32_t old_addr = cfg_entry->data;
1220
1221 /* check whether the type is 64 bit or not */
1222 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1223 XEN_PT_ERR(&s->dev,
1224 "Can't write to the upper address without 64 bit support\n");
1225 return -1;
1226 }
1227
1228 /* modify emulate register */
1229 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1230 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1231 /* update the msi_info too */
1232 s->msi->addr_hi = cfg_entry->data;
1233
1234 /* create value for writing to I/O device register */
1235 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1236
1237 /* update MSI */
1238 if (cfg_entry->data != old_addr) {
1239 if (s->msi->mapped) {
1240 xen_pt_msi_update(s);
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
1247
1248 /* this function will be called twice (for 32 bit and 64 bit type) */
1249 /* write Message Data register */
1250 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1251 XenPTReg *cfg_entry, uint16_t *val,
1252 uint16_t dev_value, uint16_t valid_mask)
1253 {
1254 XenPTRegInfo *reg = cfg_entry->reg;
1255 XenPTMSI *msi = s->msi;
1256 uint16_t writable_mask = 0;
1257 uint16_t old_data = cfg_entry->data;
1258 uint32_t offset = reg->offset;
1259
1260 /* check the offset whether matches the type or not */
1261 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1262 /* exit I/O emulator */
1263 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1264 return -1;
1265 }
1266
1267 /* modify emulate register */
1268 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1269 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1270 /* update the msi_info too */
1271 msi->data = cfg_entry->data;
1272
1273 /* create value for writing to I/O device register */
1274 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1275
1276 /* update MSI */
1277 if (cfg_entry->data != old_data) {
1278 if (msi->mapped) {
1279 xen_pt_msi_update(s);
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* MSI Capability Structure reg static information table */
1287 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1288 /* Next Pointer reg */
1289 {
1290 .offset = PCI_CAP_LIST_NEXT,
1291 .size = 1,
1292 .init_val = 0x00,
1293 .ro_mask = 0xFF,
1294 .emu_mask = 0xFF,
1295 .init = xen_pt_ptr_reg_init,
1296 .u.b.read = xen_pt_byte_reg_read,
1297 .u.b.write = xen_pt_byte_reg_write,
1298 },
1299 /* Message Control reg */
1300 {
1301 .offset = PCI_MSI_FLAGS,
1302 .size = 2,
1303 .init_val = 0x0000,
1304 .res_mask = 0xFE00,
1305 .ro_mask = 0x018E,
1306 .emu_mask = 0x017E,
1307 .init = xen_pt_msgctrl_reg_init,
1308 .u.w.read = xen_pt_word_reg_read,
1309 .u.w.write = xen_pt_msgctrl_reg_write,
1310 },
1311 /* Message Address reg */
1312 {
1313 .offset = PCI_MSI_ADDRESS_LO,
1314 .size = 4,
1315 .init_val = 0x00000000,
1316 .ro_mask = 0x00000003,
1317 .emu_mask = 0xFFFFFFFF,
1318 .init = xen_pt_common_reg_init,
1319 .u.dw.read = xen_pt_long_reg_read,
1320 .u.dw.write = xen_pt_msgaddr32_reg_write,
1321 },
1322 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1323 {
1324 .offset = PCI_MSI_ADDRESS_HI,
1325 .size = 4,
1326 .init_val = 0x00000000,
1327 .ro_mask = 0x00000000,
1328 .emu_mask = 0xFFFFFFFF,
1329 .init = xen_pt_msgaddr64_reg_init,
1330 .u.dw.read = xen_pt_long_reg_read,
1331 .u.dw.write = xen_pt_msgaddr64_reg_write,
1332 },
1333 /* Message Data reg (16 bits of data for 32-bit devices) */
1334 {
1335 .offset = PCI_MSI_DATA_32,
1336 .size = 2,
1337 .init_val = 0x0000,
1338 .ro_mask = 0x0000,
1339 .emu_mask = 0xFFFF,
1340 .init = xen_pt_msgdata_reg_init,
1341 .u.w.read = xen_pt_word_reg_read,
1342 .u.w.write = xen_pt_msgdata_reg_write,
1343 },
1344 /* Message Data reg (16 bits of data for 64-bit devices) */
1345 {
1346 .offset = PCI_MSI_DATA_64,
1347 .size = 2,
1348 .init_val = 0x0000,
1349 .ro_mask = 0x0000,
1350 .emu_mask = 0xFFFF,
1351 .init = xen_pt_msgdata_reg_init,
1352 .u.w.read = xen_pt_word_reg_read,
1353 .u.w.write = xen_pt_msgdata_reg_write,
1354 },
1355 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1356 {
1357 .offset = PCI_MSI_MASK_32,
1358 .size = 4,
1359 .init_val = 0x00000000,
1360 .ro_mask = 0xFFFFFFFF,
1361 .emu_mask = 0xFFFFFFFF,
1362 .init = xen_pt_mask_reg_init,
1363 .u.dw.read = xen_pt_long_reg_read,
1364 .u.dw.write = xen_pt_long_reg_write,
1365 },
1366 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1367 {
1368 .offset = PCI_MSI_MASK_64,
1369 .size = 4,
1370 .init_val = 0x00000000,
1371 .ro_mask = 0xFFFFFFFF,
1372 .emu_mask = 0xFFFFFFFF,
1373 .init = xen_pt_mask_reg_init,
1374 .u.dw.read = xen_pt_long_reg_read,
1375 .u.dw.write = xen_pt_long_reg_write,
1376 },
1377 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1378 {
1379 .offset = PCI_MSI_MASK_32 + 4,
1380 .size = 4,
1381 .init_val = 0x00000000,
1382 .ro_mask = 0xFFFFFFFF,
1383 .emu_mask = 0x00000000,
1384 .init = xen_pt_pending_reg_init,
1385 .u.dw.read = xen_pt_long_reg_read,
1386 .u.dw.write = xen_pt_long_reg_write,
1387 },
1388 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1389 {
1390 .offset = PCI_MSI_MASK_64 + 4,
1391 .size = 4,
1392 .init_val = 0x00000000,
1393 .ro_mask = 0xFFFFFFFF,
1394 .emu_mask = 0x00000000,
1395 .init = xen_pt_pending_reg_init,
1396 .u.dw.read = xen_pt_long_reg_read,
1397 .u.dw.write = xen_pt_long_reg_write,
1398 },
1399 {
1400 .size = 0,
1401 },
1402 };
1403
1404
1405 /**************************************
1406 * MSI-X Capability
1407 */
1408
1409 /* Message Control register for MSI-X */
1410 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1411 XenPTRegInfo *reg, uint32_t real_offset,
1412 uint32_t *data)
1413 {
1414 PCIDevice *d = &s->dev;
1415 uint16_t reg_field = 0;
1416
1417 /* use I/O device register's value as initial value */
1418 reg_field = pci_get_word(d->config + real_offset);
1419
1420 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1421 XEN_PT_LOG(d, "MSIX already enabled, disabling it first\n");
1422 xen_host_pci_set_word(&s->real_device, real_offset,
1423 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1424 }
1425
1426 s->msix->ctrl_offset = real_offset;
1427
1428 *data = reg->init_val;
1429 return 0;
1430 }
1431 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1432 XenPTReg *cfg_entry, uint16_t *val,
1433 uint16_t dev_value, uint16_t valid_mask)
1434 {
1435 XenPTRegInfo *reg = cfg_entry->reg;
1436 uint16_t writable_mask = 0;
1437 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1438 int debug_msix_enabled_old;
1439
1440 /* modify emulate register */
1441 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1442 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1443
1444 /* create value for writing to I/O device register */
1445 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1446
1447 /* update MSI-X */
1448 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1449 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1450 xen_pt_msix_update(s);
1451 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1452 xen_pt_msix_disable(s);
1453 }
1454
1455 debug_msix_enabled_old = s->msix->enabled;
1456 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1457 if (s->msix->enabled != debug_msix_enabled_old) {
1458 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1459 s->msix->enabled ? "enable" : "disable");
1460 }
1461
1462 return 0;
1463 }
1464
1465 /* MSI-X Capability Structure reg static information table */
1466 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1467 /* Next Pointer reg */
1468 {
1469 .offset = PCI_CAP_LIST_NEXT,
1470 .size = 1,
1471 .init_val = 0x00,
1472 .ro_mask = 0xFF,
1473 .emu_mask = 0xFF,
1474 .init = xen_pt_ptr_reg_init,
1475 .u.b.read = xen_pt_byte_reg_read,
1476 .u.b.write = xen_pt_byte_reg_write,
1477 },
1478 /* Message Control reg */
1479 {
1480 .offset = PCI_MSI_FLAGS,
1481 .size = 2,
1482 .init_val = 0x0000,
1483 .res_mask = 0x3800,
1484 .ro_mask = 0x07FF,
1485 .emu_mask = 0x0000,
1486 .init = xen_pt_msixctrl_reg_init,
1487 .u.w.read = xen_pt_word_reg_read,
1488 .u.w.write = xen_pt_msixctrl_reg_write,
1489 },
1490 {
1491 .size = 0,
1492 },
1493 };
1494
1495
1496 /****************************
1497 * Capabilities
1498 */
1499
1500 /* capability structure register group size functions */
1501
1502 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1503 const XenPTRegGroupInfo *grp_reg,
1504 uint32_t base_offset, uint8_t *size)
1505 {
1506 *size = grp_reg->grp_size;
1507 return 0;
1508 }
1509 /* get Vendor Specific Capability Structure register group size */
1510 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1511 const XenPTRegGroupInfo *grp_reg,
1512 uint32_t base_offset, uint8_t *size)
1513 {
1514 *size = pci_get_byte(s->dev.config + base_offset + 0x02);
1515 return 0;
1516 }
1517 /* get PCI Express Capability Structure register group size */
1518 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1519 const XenPTRegGroupInfo *grp_reg,
1520 uint32_t base_offset, uint8_t *size)
1521 {
1522 PCIDevice *d = &s->dev;
1523 uint8_t version = get_capability_version(s, base_offset);
1524 uint8_t type = get_device_type(s, base_offset);
1525 uint8_t pcie_size = 0;
1526
1527
1528 /* calculate size depend on capability version and device/port type */
1529 /* in case of PCI Express Base Specification Rev 1.x */
1530 if (version == 1) {
1531 /* The PCI Express Capabilities, Device Capabilities, and Device
1532 * Status/Control registers are required for all PCI Express devices.
1533 * The Link Capabilities and Link Status/Control are required for all
1534 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1535 * are not required to implement registers other than those listed
1536 * above and terminate the capability structure.
1537 */
1538 switch (type) {
1539 case PCI_EXP_TYPE_ENDPOINT:
1540 case PCI_EXP_TYPE_LEG_END:
1541 pcie_size = 0x14;
1542 break;
1543 case PCI_EXP_TYPE_RC_END:
1544 /* has no link */
1545 pcie_size = 0x0C;
1546 break;
1547 /* only EndPoint passthrough is supported */
1548 case PCI_EXP_TYPE_ROOT_PORT:
1549 case PCI_EXP_TYPE_UPSTREAM:
1550 case PCI_EXP_TYPE_DOWNSTREAM:
1551 case PCI_EXP_TYPE_PCI_BRIDGE:
1552 case PCI_EXP_TYPE_PCIE_BRIDGE:
1553 case PCI_EXP_TYPE_RC_EC:
1554 default:
1555 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1556 return -1;
1557 }
1558 }
1559 /* in case of PCI Express Base Specification Rev 2.0 */
1560 else if (version == 2) {
1561 switch (type) {
1562 case PCI_EXP_TYPE_ENDPOINT:
1563 case PCI_EXP_TYPE_LEG_END:
1564 case PCI_EXP_TYPE_RC_END:
1565 /* For Functions that do not implement the registers,
1566 * these spaces must be hardwired to 0b.
1567 */
1568 pcie_size = 0x3C;
1569 break;
1570 /* only EndPoint passthrough is supported */
1571 case PCI_EXP_TYPE_ROOT_PORT:
1572 case PCI_EXP_TYPE_UPSTREAM:
1573 case PCI_EXP_TYPE_DOWNSTREAM:
1574 case PCI_EXP_TYPE_PCI_BRIDGE:
1575 case PCI_EXP_TYPE_PCIE_BRIDGE:
1576 case PCI_EXP_TYPE_RC_EC:
1577 default:
1578 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1579 return -1;
1580 }
1581 } else {
1582 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1583 return -1;
1584 }
1585
1586 *size = pcie_size;
1587 return 0;
1588 }
1589 /* get MSI Capability Structure register group size */
1590 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1591 const XenPTRegGroupInfo *grp_reg,
1592 uint32_t base_offset, uint8_t *size)
1593 {
1594 PCIDevice *d = &s->dev;
1595 uint16_t msg_ctrl = 0;
1596 uint8_t msi_size = 0xa;
1597
1598 msg_ctrl = pci_get_word(d->config + (base_offset + PCI_MSI_FLAGS));
1599
1600 /* check if 64-bit address is capable of per-vector masking */
1601 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1602 msi_size += 4;
1603 }
1604 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1605 msi_size += 10;
1606 }
1607
1608 s->msi = g_new0(XenPTMSI, 1);
1609 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1610
1611 *size = msi_size;
1612 return 0;
1613 }
1614 /* get MSI-X Capability Structure register group size */
1615 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1616 const XenPTRegGroupInfo *grp_reg,
1617 uint32_t base_offset, uint8_t *size)
1618 {
1619 int rc = 0;
1620
1621 rc = xen_pt_msix_init(s, base_offset);
1622
1623 if (rc < 0) {
1624 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1625 return rc;
1626 }
1627
1628 *size = grp_reg->grp_size;
1629 return 0;
1630 }
1631
1632
1633 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1634 /* Header Type0 reg group */
1635 {
1636 .grp_id = 0xFF,
1637 .grp_type = XEN_PT_GRP_TYPE_EMU,
1638 .grp_size = 0x40,
1639 .size_init = xen_pt_reg_grp_size_init,
1640 .emu_regs = xen_pt_emu_reg_header0,
1641 },
1642 /* PCI PowerManagement Capability reg group */
1643 {
1644 .grp_id = PCI_CAP_ID_PM,
1645 .grp_type = XEN_PT_GRP_TYPE_EMU,
1646 .grp_size = PCI_PM_SIZEOF,
1647 .size_init = xen_pt_reg_grp_size_init,
1648 .emu_regs = xen_pt_emu_reg_pm,
1649 },
1650 /* AGP Capability Structure reg group */
1651 {
1652 .grp_id = PCI_CAP_ID_AGP,
1653 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1654 .grp_size = 0x30,
1655 .size_init = xen_pt_reg_grp_size_init,
1656 },
1657 /* Vital Product Data Capability Structure reg group */
1658 {
1659 .grp_id = PCI_CAP_ID_VPD,
1660 .grp_type = XEN_PT_GRP_TYPE_EMU,
1661 .grp_size = 0x08,
1662 .size_init = xen_pt_reg_grp_size_init,
1663 .emu_regs = xen_pt_emu_reg_vpd,
1664 },
1665 /* Slot Identification reg group */
1666 {
1667 .grp_id = PCI_CAP_ID_SLOTID,
1668 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1669 .grp_size = 0x04,
1670 .size_init = xen_pt_reg_grp_size_init,
1671 },
1672 /* MSI Capability Structure reg group */
1673 {
1674 .grp_id = PCI_CAP_ID_MSI,
1675 .grp_type = XEN_PT_GRP_TYPE_EMU,
1676 .grp_size = 0xFF,
1677 .size_init = xen_pt_msi_size_init,
1678 .emu_regs = xen_pt_emu_reg_msi,
1679 },
1680 /* PCI-X Capabilities List Item reg group */
1681 {
1682 .grp_id = PCI_CAP_ID_PCIX,
1683 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1684 .grp_size = 0x18,
1685 .size_init = xen_pt_reg_grp_size_init,
1686 },
1687 /* Vendor Specific Capability Structure reg group */
1688 {
1689 .grp_id = PCI_CAP_ID_VNDR,
1690 .grp_type = XEN_PT_GRP_TYPE_EMU,
1691 .grp_size = 0xFF,
1692 .size_init = xen_pt_vendor_size_init,
1693 .emu_regs = xen_pt_emu_reg_vendor,
1694 },
1695 /* SHPC Capability List Item reg group */
1696 {
1697 .grp_id = PCI_CAP_ID_SHPC,
1698 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1699 .grp_size = 0x08,
1700 .size_init = xen_pt_reg_grp_size_init,
1701 },
1702 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1703 {
1704 .grp_id = PCI_CAP_ID_SSVID,
1705 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1706 .grp_size = 0x08,
1707 .size_init = xen_pt_reg_grp_size_init,
1708 },
1709 /* AGP 8x Capability Structure reg group */
1710 {
1711 .grp_id = PCI_CAP_ID_AGP3,
1712 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1713 .grp_size = 0x30,
1714 .size_init = xen_pt_reg_grp_size_init,
1715 },
1716 /* PCI Express Capability Structure reg group */
1717 {
1718 .grp_id = PCI_CAP_ID_EXP,
1719 .grp_type = XEN_PT_GRP_TYPE_EMU,
1720 .grp_size = 0xFF,
1721 .size_init = xen_pt_pcie_size_init,
1722 .emu_regs = xen_pt_emu_reg_pcie,
1723 },
1724 /* MSI-X Capability Structure reg group */
1725 {
1726 .grp_id = PCI_CAP_ID_MSIX,
1727 .grp_type = XEN_PT_GRP_TYPE_EMU,
1728 .grp_size = 0x0C,
1729 .size_init = xen_pt_msix_size_init,
1730 .emu_regs = xen_pt_emu_reg_msix,
1731 },
1732 {
1733 .grp_size = 0,
1734 },
1735 };
1736
1737 /* initialize Capabilities Pointer or Next Pointer register */
1738 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1739 XenPTRegInfo *reg, uint32_t real_offset,
1740 uint32_t *data)
1741 {
1742 int i;
1743 uint8_t *config = s->dev.config;
1744 uint32_t reg_field = pci_get_byte(config + real_offset);
1745 uint8_t cap_id = 0;
1746
1747 /* find capability offset */
1748 while (reg_field) {
1749 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1750 if (xen_pt_hide_dev_cap(&s->real_device,
1751 xen_pt_emu_reg_grps[i].grp_id)) {
1752 continue;
1753 }
1754
1755 cap_id = pci_get_byte(config + reg_field + PCI_CAP_LIST_ID);
1756 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1757 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1758 goto out;
1759 }
1760 /* ignore the 0 hardwired capability, find next one */
1761 break;
1762 }
1763 }
1764
1765 /* next capability */
1766 reg_field = pci_get_byte(config + reg_field + PCI_CAP_LIST_NEXT);
1767 }
1768
1769 out:
1770 *data = reg_field;
1771 return 0;
1772 }
1773
1774
1775 /*************
1776 * Main
1777 */
1778
1779 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1780 {
1781 uint8_t id;
1782 unsigned max_cap = PCI_CAP_MAX;
1783 uint8_t pos = PCI_CAPABILITY_LIST;
1784 uint8_t status = 0;
1785
1786 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1787 return 0;
1788 }
1789 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1790 return 0;
1791 }
1792
1793 while (max_cap--) {
1794 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1795 break;
1796 }
1797 if (pos < PCI_CONFIG_HEADER_SIZE) {
1798 break;
1799 }
1800
1801 pos &= ~3;
1802 if (xen_host_pci_get_byte(&s->real_device,
1803 pos + PCI_CAP_LIST_ID, &id)) {
1804 break;
1805 }
1806
1807 if (id == 0xff) {
1808 break;
1809 }
1810 if (id == cap) {
1811 return pos;
1812 }
1813
1814 pos += PCI_CAP_LIST_NEXT;
1815 }
1816 return 0;
1817 }
1818
1819 static int xen_pt_config_reg_init(XenPCIPassthroughState *s,
1820 XenPTRegGroup *reg_grp, XenPTRegInfo *reg)
1821 {
1822 XenPTReg *reg_entry;
1823 uint32_t data = 0;
1824 int rc = 0;
1825
1826 reg_entry = g_new0(XenPTReg, 1);
1827 reg_entry->reg = reg;
1828
1829 if (reg->init) {
1830 /* initialize emulate register */
1831 rc = reg->init(s, reg_entry->reg,
1832 reg_grp->base_offset + reg->offset, &data);
1833 if (rc < 0) {
1834 g_free(reg_entry);
1835 return rc;
1836 }
1837 if (data == XEN_PT_INVALID_REG) {
1838 /* free unused BAR register entry */
1839 g_free(reg_entry);
1840 return 0;
1841 }
1842 /* set register value */
1843 reg_entry->data = data;
1844 }
1845 /* list add register entry */
1846 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
1847
1848 return 0;
1849 }
1850
1851 int xen_pt_config_init(XenPCIPassthroughState *s)
1852 {
1853 int i, rc;
1854
1855 QLIST_INIT(&s->reg_grps);
1856
1857 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1858 uint32_t reg_grp_offset = 0;
1859 XenPTRegGroup *reg_grp_entry = NULL;
1860
1861 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF) {
1862 if (xen_pt_hide_dev_cap(&s->real_device,
1863 xen_pt_emu_reg_grps[i].grp_id)) {
1864 continue;
1865 }
1866
1867 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
1868
1869 if (!reg_grp_offset) {
1870 continue;
1871 }
1872 }
1873
1874 reg_grp_entry = g_new0(XenPTRegGroup, 1);
1875 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
1876 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
1877
1878 reg_grp_entry->base_offset = reg_grp_offset;
1879 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
1880 if (xen_pt_emu_reg_grps[i].size_init) {
1881 /* get register group size */
1882 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
1883 reg_grp_offset,
1884 &reg_grp_entry->size);
1885 if (rc < 0) {
1886 xen_pt_config_delete(s);
1887 return rc;
1888 }
1889 }
1890
1891 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1892 if (xen_pt_emu_reg_grps[i].emu_regs) {
1893 int j = 0;
1894 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
1895 /* initialize capability register */
1896 for (j = 0; regs->size != 0; j++, regs++) {
1897 /* initialize capability register */
1898 rc = xen_pt_config_reg_init(s, reg_grp_entry, regs);
1899 if (rc < 0) {
1900 xen_pt_config_delete(s);
1901 return rc;
1902 }
1903 }
1904 }
1905 }
1906 }
1907
1908 return 0;
1909 }
1910
1911 /* delete all emulate register */
1912 void xen_pt_config_delete(XenPCIPassthroughState *s)
1913 {
1914 struct XenPTRegGroup *reg_group, *next_grp;
1915 struct XenPTReg *reg, *next_reg;
1916
1917 /* free MSI/MSI-X info table */
1918 if (s->msix) {
1919 xen_pt_msix_delete(s);
1920 }
1921 if (s->msi) {
1922 g_free(s->msi);
1923 }
1924
1925 /* free all register group entry */
1926 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
1927 /* free all register entry */
1928 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
1929 QLIST_REMOVE(reg, entries);
1930 g_free(reg);
1931 }
1932
1933 QLIST_REMOVE(reg_group, entries);
1934 g_free(reg_group);
1935 }
1936 }