]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xen/xen_pt_config_init.c
xen: limit guest control of PCI command register
[mirror_qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/timer.h"
16 #include "hw/xen/xen_backend.h"
17 #include "xen_pt.h"
18
19 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
20 (((value) & (val_mask)) | ((data) & ~(val_mask)))
21
22 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
23
24 /* prototype */
25
26 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
27 uint32_t real_offset, uint32_t *data);
28
29
30 /* helper */
31
32 /* A return value of 1 means the capability should NOT be exposed to guest. */
33 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
34 {
35 switch (grp_id) {
36 case PCI_CAP_ID_EXP:
37 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
38 * Controller looks trivial, e.g., the PCI Express Capabilities
39 * Register is 0. We should not try to expose it to guest.
40 *
41 * The datasheet is available at
42 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
43 *
44 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
45 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
46 * Controller looks trivial, e.g., the PCI Express Capabilities
47 * Register is 0, so the Capability Version is 0 and
48 * xen_pt_pcie_size_init() would fail.
49 */
50 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
51 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
52 return 1;
53 }
54 break;
55 }
56 return 0;
57 }
58
59 /* find emulate register group entry */
60 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
61 {
62 XenPTRegGroup *entry = NULL;
63
64 /* find register group entry */
65 QLIST_FOREACH(entry, &s->reg_grps, entries) {
66 /* check address */
67 if ((entry->base_offset <= address)
68 && ((entry->base_offset + entry->size) > address)) {
69 return entry;
70 }
71 }
72
73 /* group entry not found */
74 return NULL;
75 }
76
77 /* find emulate register entry */
78 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
79 {
80 XenPTReg *reg_entry = NULL;
81 XenPTRegInfo *reg = NULL;
82 uint32_t real_offset = 0;
83
84 /* find register entry */
85 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
86 reg = reg_entry->reg;
87 real_offset = reg_grp->base_offset + reg->offset;
88 /* check address */
89 if ((real_offset <= address)
90 && ((real_offset + reg->size) > address)) {
91 return reg_entry;
92 }
93 }
94
95 return NULL;
96 }
97
98
99 /****************
100 * general register functions
101 */
102
103 /* register initialization function */
104
105 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
106 XenPTRegInfo *reg, uint32_t real_offset,
107 uint32_t *data)
108 {
109 *data = reg->init_val;
110 return 0;
111 }
112
113 /* Read register functions */
114
115 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
116 uint8_t *value, uint8_t valid_mask)
117 {
118 XenPTRegInfo *reg = cfg_entry->reg;
119 uint8_t valid_emu_mask = 0;
120
121 /* emulate byte register */
122 valid_emu_mask = reg->emu_mask & valid_mask;
123 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
124
125 return 0;
126 }
127 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
128 uint16_t *value, uint16_t valid_mask)
129 {
130 XenPTRegInfo *reg = cfg_entry->reg;
131 uint16_t valid_emu_mask = 0;
132
133 /* emulate word register */
134 valid_emu_mask = reg->emu_mask & valid_mask;
135 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
136
137 return 0;
138 }
139 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
140 uint32_t *value, uint32_t valid_mask)
141 {
142 XenPTRegInfo *reg = cfg_entry->reg;
143 uint32_t valid_emu_mask = 0;
144
145 /* emulate long register */
146 valid_emu_mask = reg->emu_mask & valid_mask;
147 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
148
149 return 0;
150 }
151
152 /* Write register functions */
153
154 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
155 uint8_t *val, uint8_t dev_value,
156 uint8_t valid_mask)
157 {
158 XenPTRegInfo *reg = cfg_entry->reg;
159 uint8_t writable_mask = 0;
160 uint8_t throughable_mask = 0;
161
162 /* modify emulate register */
163 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
164 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
165
166 /* create value for writing to I/O device register */
167 throughable_mask = ~reg->emu_mask & valid_mask;
168 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
169
170 return 0;
171 }
172 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
173 uint16_t *val, uint16_t dev_value,
174 uint16_t valid_mask)
175 {
176 XenPTRegInfo *reg = cfg_entry->reg;
177 uint16_t writable_mask = 0;
178 uint16_t throughable_mask = 0;
179
180 /* modify emulate register */
181 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
182 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
183
184 /* create value for writing to I/O device register */
185 throughable_mask = ~reg->emu_mask & valid_mask;
186 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
187
188 return 0;
189 }
190 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
191 uint32_t *val, uint32_t dev_value,
192 uint32_t valid_mask)
193 {
194 XenPTRegInfo *reg = cfg_entry->reg;
195 uint32_t writable_mask = 0;
196 uint32_t throughable_mask = 0;
197
198 /* modify emulate register */
199 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
200 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
201
202 /* create value for writing to I/O device register */
203 throughable_mask = ~reg->emu_mask & valid_mask;
204 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
205
206 return 0;
207 }
208
209
210 /* XenPTRegInfo declaration
211 * - only for emulated register (either a part or whole bit).
212 * - for passthrough register that need special behavior (like interacting with
213 * other component), set emu_mask to all 0 and specify r/w func properly.
214 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
215 */
216
217 /********************
218 * Header Type0
219 */
220
221 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
222 XenPTRegInfo *reg, uint32_t real_offset,
223 uint32_t *data)
224 {
225 *data = s->real_device.vendor_id;
226 return 0;
227 }
228 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
229 XenPTRegInfo *reg, uint32_t real_offset,
230 uint32_t *data)
231 {
232 *data = s->real_device.device_id;
233 return 0;
234 }
235 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
236 XenPTRegInfo *reg, uint32_t real_offset,
237 uint32_t *data)
238 {
239 XenPTRegGroup *reg_grp_entry = NULL;
240 XenPTReg *reg_entry = NULL;
241 uint32_t reg_field = 0;
242
243 /* find Header register group */
244 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
245 if (reg_grp_entry) {
246 /* find Capabilities Pointer register */
247 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
248 if (reg_entry) {
249 /* check Capabilities Pointer register */
250 if (reg_entry->data) {
251 reg_field |= PCI_STATUS_CAP_LIST;
252 } else {
253 reg_field &= ~PCI_STATUS_CAP_LIST;
254 }
255 } else {
256 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
257 " for Capabilities Pointer register."
258 " (%s)\n", __func__);
259 return -1;
260 }
261 } else {
262 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
263 " for Header. (%s)\n", __func__);
264 return -1;
265 }
266
267 *data = reg_field;
268 return 0;
269 }
270 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
271 XenPTRegInfo *reg, uint32_t real_offset,
272 uint32_t *data)
273 {
274 /* read PCI_HEADER_TYPE */
275 *data = reg->init_val | 0x80;
276 return 0;
277 }
278
279 /* initialize Interrupt Pin register */
280 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
281 XenPTRegInfo *reg, uint32_t real_offset,
282 uint32_t *data)
283 {
284 *data = xen_pt_pci_read_intx(s);
285 return 0;
286 }
287
288 /* Command register */
289 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
290 uint16_t *val, uint16_t dev_value,
291 uint16_t valid_mask)
292 {
293 XenPTRegInfo *reg = cfg_entry->reg;
294 uint16_t writable_mask = 0;
295 uint16_t throughable_mask = 0;
296
297 /* modify emulate register */
298 writable_mask = ~reg->ro_mask & valid_mask;
299 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
300
301 /* create value for writing to I/O device register */
302 throughable_mask = ~reg->emu_mask & valid_mask;
303
304 if (*val & PCI_COMMAND_INTX_DISABLE) {
305 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
306 } else {
307 if (s->machine_irq) {
308 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
309 }
310 }
311
312 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
313
314 return 0;
315 }
316
317 /* BAR */
318 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
319 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
320 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
321 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
322
323 static bool is_64bit_bar(PCIIORegion *r)
324 {
325 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
326 }
327
328 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
329 {
330 if (is_64bit_bar(r)) {
331 uint64_t size64;
332 size64 = (r + 1)->size;
333 size64 <<= 32;
334 size64 += r->size;
335 return size64;
336 }
337 return r->size;
338 }
339
340 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
341 int index)
342 {
343 PCIDevice *d = &s->dev;
344 XenPTRegion *region = NULL;
345 PCIIORegion *r;
346
347 /* check 64bit BAR */
348 if ((0 < index) && (index < PCI_ROM_SLOT)) {
349 int type = s->real_device.io_regions[index - 1].type;
350
351 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
352 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
353 region = &s->bases[index - 1];
354 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
355 return XEN_PT_BAR_FLAG_UPPER;
356 }
357 }
358 }
359
360 /* check unused BAR */
361 r = &d->io_regions[index];
362 if (!xen_pt_get_bar_size(r)) {
363 return XEN_PT_BAR_FLAG_UNUSED;
364 }
365
366 /* for ExpROM BAR */
367 if (index == PCI_ROM_SLOT) {
368 return XEN_PT_BAR_FLAG_MEM;
369 }
370
371 /* check BAR I/O indicator */
372 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
373 return XEN_PT_BAR_FLAG_IO;
374 } else {
375 return XEN_PT_BAR_FLAG_MEM;
376 }
377 }
378
379 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
380 {
381 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
382 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
383 } else {
384 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
385 }
386 }
387
388 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
389 uint32_t real_offset, uint32_t *data)
390 {
391 uint32_t reg_field = 0;
392 int index;
393
394 index = xen_pt_bar_offset_to_index(reg->offset);
395 if (index < 0 || index >= PCI_NUM_REGIONS) {
396 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
397 return -1;
398 }
399
400 /* set BAR flag */
401 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
402 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
403 reg_field = XEN_PT_INVALID_REG;
404 }
405
406 *data = reg_field;
407 return 0;
408 }
409 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
410 uint32_t *value, uint32_t valid_mask)
411 {
412 XenPTRegInfo *reg = cfg_entry->reg;
413 uint32_t valid_emu_mask = 0;
414 uint32_t bar_emu_mask = 0;
415 int index;
416
417 /* get BAR index */
418 index = xen_pt_bar_offset_to_index(reg->offset);
419 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
420 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
421 return -1;
422 }
423
424 /* use fixed-up value from kernel sysfs */
425 *value = base_address_with_flags(&s->real_device.io_regions[index]);
426
427 /* set emulate mask depend on BAR flag */
428 switch (s->bases[index].bar_flag) {
429 case XEN_PT_BAR_FLAG_MEM:
430 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
431 break;
432 case XEN_PT_BAR_FLAG_IO:
433 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
434 break;
435 case XEN_PT_BAR_FLAG_UPPER:
436 bar_emu_mask = XEN_PT_BAR_ALLF;
437 break;
438 default:
439 break;
440 }
441
442 /* emulate BAR */
443 valid_emu_mask = bar_emu_mask & valid_mask;
444 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
445
446 return 0;
447 }
448 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
449 uint32_t *val, uint32_t dev_value,
450 uint32_t valid_mask)
451 {
452 XenPTRegInfo *reg = cfg_entry->reg;
453 XenPTRegion *base = NULL;
454 PCIDevice *d = &s->dev;
455 const PCIIORegion *r;
456 uint32_t writable_mask = 0;
457 uint32_t throughable_mask = 0;
458 uint32_t bar_emu_mask = 0;
459 uint32_t bar_ro_mask = 0;
460 uint32_t r_size = 0;
461 int index = 0;
462
463 index = xen_pt_bar_offset_to_index(reg->offset);
464 if (index < 0 || index >= PCI_NUM_REGIONS) {
465 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
466 return -1;
467 }
468
469 r = &d->io_regions[index];
470 base = &s->bases[index];
471 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
472
473 /* set emulate mask and read-only mask values depend on the BAR flag */
474 switch (s->bases[index].bar_flag) {
475 case XEN_PT_BAR_FLAG_MEM:
476 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
477 if (!r_size) {
478 /* low 32 bits mask for 64 bit bars */
479 bar_ro_mask = XEN_PT_BAR_ALLF;
480 } else {
481 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
482 }
483 break;
484 case XEN_PT_BAR_FLAG_IO:
485 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
486 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
487 break;
488 case XEN_PT_BAR_FLAG_UPPER:
489 bar_emu_mask = XEN_PT_BAR_ALLF;
490 bar_ro_mask = r_size ? r_size - 1 : 0;
491 break;
492 default:
493 break;
494 }
495
496 /* modify emulate register */
497 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
498 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
499
500 /* check whether we need to update the virtual region address or not */
501 switch (s->bases[index].bar_flag) {
502 case XEN_PT_BAR_FLAG_UPPER:
503 case XEN_PT_BAR_FLAG_MEM:
504 /* nothing to do */
505 break;
506 case XEN_PT_BAR_FLAG_IO:
507 /* nothing to do */
508 break;
509 default:
510 break;
511 }
512
513 /* create value for writing to I/O device register */
514 throughable_mask = ~bar_emu_mask & valid_mask;
515 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
516
517 return 0;
518 }
519
520 /* write Exp ROM BAR */
521 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
522 XenPTReg *cfg_entry, uint32_t *val,
523 uint32_t dev_value, uint32_t valid_mask)
524 {
525 XenPTRegInfo *reg = cfg_entry->reg;
526 XenPTRegion *base = NULL;
527 PCIDevice *d = (PCIDevice *)&s->dev;
528 uint32_t writable_mask = 0;
529 uint32_t throughable_mask = 0;
530 pcibus_t r_size = 0;
531 uint32_t bar_emu_mask = 0;
532 uint32_t bar_ro_mask = 0;
533
534 r_size = d->io_regions[PCI_ROM_SLOT].size;
535 base = &s->bases[PCI_ROM_SLOT];
536 /* align memory type resource size */
537 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
538
539 /* set emulate mask and read-only mask */
540 bar_emu_mask = reg->emu_mask;
541 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
542
543 /* modify emulate register */
544 writable_mask = ~bar_ro_mask & valid_mask;
545 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
546
547 /* create value for writing to I/O device register */
548 throughable_mask = ~bar_emu_mask & valid_mask;
549 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
550
551 return 0;
552 }
553
554 /* Header Type0 reg static information table */
555 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
556 /* Vendor ID reg */
557 {
558 .offset = PCI_VENDOR_ID,
559 .size = 2,
560 .init_val = 0x0000,
561 .ro_mask = 0xFFFF,
562 .emu_mask = 0xFFFF,
563 .init = xen_pt_vendor_reg_init,
564 .u.w.read = xen_pt_word_reg_read,
565 .u.w.write = xen_pt_word_reg_write,
566 },
567 /* Device ID reg */
568 {
569 .offset = PCI_DEVICE_ID,
570 .size = 2,
571 .init_val = 0x0000,
572 .ro_mask = 0xFFFF,
573 .emu_mask = 0xFFFF,
574 .init = xen_pt_device_reg_init,
575 .u.w.read = xen_pt_word_reg_read,
576 .u.w.write = xen_pt_word_reg_write,
577 },
578 /* Command reg */
579 {
580 .offset = PCI_COMMAND,
581 .size = 2,
582 .init_val = 0x0000,
583 .ro_mask = 0xF880,
584 .emu_mask = 0x0743,
585 .init = xen_pt_common_reg_init,
586 .u.w.read = xen_pt_word_reg_read,
587 .u.w.write = xen_pt_cmd_reg_write,
588 },
589 /* Capabilities Pointer reg */
590 {
591 .offset = PCI_CAPABILITY_LIST,
592 .size = 1,
593 .init_val = 0x00,
594 .ro_mask = 0xFF,
595 .emu_mask = 0xFF,
596 .init = xen_pt_ptr_reg_init,
597 .u.b.read = xen_pt_byte_reg_read,
598 .u.b.write = xen_pt_byte_reg_write,
599 },
600 /* Status reg */
601 /* use emulated Cap Ptr value to initialize,
602 * so need to be declared after Cap Ptr reg
603 */
604 {
605 .offset = PCI_STATUS,
606 .size = 2,
607 .init_val = 0x0000,
608 .ro_mask = 0x06FF,
609 .emu_mask = 0x0010,
610 .init = xen_pt_status_reg_init,
611 .u.w.read = xen_pt_word_reg_read,
612 .u.w.write = xen_pt_word_reg_write,
613 },
614 /* Cache Line Size reg */
615 {
616 .offset = PCI_CACHE_LINE_SIZE,
617 .size = 1,
618 .init_val = 0x00,
619 .ro_mask = 0x00,
620 .emu_mask = 0xFF,
621 .init = xen_pt_common_reg_init,
622 .u.b.read = xen_pt_byte_reg_read,
623 .u.b.write = xen_pt_byte_reg_write,
624 },
625 /* Latency Timer reg */
626 {
627 .offset = PCI_LATENCY_TIMER,
628 .size = 1,
629 .init_val = 0x00,
630 .ro_mask = 0x00,
631 .emu_mask = 0xFF,
632 .init = xen_pt_common_reg_init,
633 .u.b.read = xen_pt_byte_reg_read,
634 .u.b.write = xen_pt_byte_reg_write,
635 },
636 /* Header Type reg */
637 {
638 .offset = PCI_HEADER_TYPE,
639 .size = 1,
640 .init_val = 0x00,
641 .ro_mask = 0xFF,
642 .emu_mask = 0x00,
643 .init = xen_pt_header_type_reg_init,
644 .u.b.read = xen_pt_byte_reg_read,
645 .u.b.write = xen_pt_byte_reg_write,
646 },
647 /* Interrupt Line reg */
648 {
649 .offset = PCI_INTERRUPT_LINE,
650 .size = 1,
651 .init_val = 0x00,
652 .ro_mask = 0x00,
653 .emu_mask = 0xFF,
654 .init = xen_pt_common_reg_init,
655 .u.b.read = xen_pt_byte_reg_read,
656 .u.b.write = xen_pt_byte_reg_write,
657 },
658 /* Interrupt Pin reg */
659 {
660 .offset = PCI_INTERRUPT_PIN,
661 .size = 1,
662 .init_val = 0x00,
663 .ro_mask = 0xFF,
664 .emu_mask = 0xFF,
665 .init = xen_pt_irqpin_reg_init,
666 .u.b.read = xen_pt_byte_reg_read,
667 .u.b.write = xen_pt_byte_reg_write,
668 },
669 /* BAR 0 reg */
670 /* mask of BAR need to be decided later, depends on IO/MEM type */
671 {
672 .offset = PCI_BASE_ADDRESS_0,
673 .size = 4,
674 .init_val = 0x00000000,
675 .init = xen_pt_bar_reg_init,
676 .u.dw.read = xen_pt_bar_reg_read,
677 .u.dw.write = xen_pt_bar_reg_write,
678 },
679 /* BAR 1 reg */
680 {
681 .offset = PCI_BASE_ADDRESS_1,
682 .size = 4,
683 .init_val = 0x00000000,
684 .init = xen_pt_bar_reg_init,
685 .u.dw.read = xen_pt_bar_reg_read,
686 .u.dw.write = xen_pt_bar_reg_write,
687 },
688 /* BAR 2 reg */
689 {
690 .offset = PCI_BASE_ADDRESS_2,
691 .size = 4,
692 .init_val = 0x00000000,
693 .init = xen_pt_bar_reg_init,
694 .u.dw.read = xen_pt_bar_reg_read,
695 .u.dw.write = xen_pt_bar_reg_write,
696 },
697 /* BAR 3 reg */
698 {
699 .offset = PCI_BASE_ADDRESS_3,
700 .size = 4,
701 .init_val = 0x00000000,
702 .init = xen_pt_bar_reg_init,
703 .u.dw.read = xen_pt_bar_reg_read,
704 .u.dw.write = xen_pt_bar_reg_write,
705 },
706 /* BAR 4 reg */
707 {
708 .offset = PCI_BASE_ADDRESS_4,
709 .size = 4,
710 .init_val = 0x00000000,
711 .init = xen_pt_bar_reg_init,
712 .u.dw.read = xen_pt_bar_reg_read,
713 .u.dw.write = xen_pt_bar_reg_write,
714 },
715 /* BAR 5 reg */
716 {
717 .offset = PCI_BASE_ADDRESS_5,
718 .size = 4,
719 .init_val = 0x00000000,
720 .init = xen_pt_bar_reg_init,
721 .u.dw.read = xen_pt_bar_reg_read,
722 .u.dw.write = xen_pt_bar_reg_write,
723 },
724 /* Expansion ROM BAR reg */
725 {
726 .offset = PCI_ROM_ADDRESS,
727 .size = 4,
728 .init_val = 0x00000000,
729 .ro_mask = 0x000007FE,
730 .emu_mask = 0xFFFFF800,
731 .init = xen_pt_bar_reg_init,
732 .u.dw.read = xen_pt_long_reg_read,
733 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
734 },
735 {
736 .size = 0,
737 },
738 };
739
740
741 /*********************************
742 * Vital Product Data Capability
743 */
744
745 /* Vital Product Data Capability Structure reg static information table */
746 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
747 {
748 .offset = PCI_CAP_LIST_NEXT,
749 .size = 1,
750 .init_val = 0x00,
751 .ro_mask = 0xFF,
752 .emu_mask = 0xFF,
753 .init = xen_pt_ptr_reg_init,
754 .u.b.read = xen_pt_byte_reg_read,
755 .u.b.write = xen_pt_byte_reg_write,
756 },
757 {
758 .size = 0,
759 },
760 };
761
762
763 /**************************************
764 * Vendor Specific Capability
765 */
766
767 /* Vendor Specific Capability Structure reg static information table */
768 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
769 {
770 .offset = PCI_CAP_LIST_NEXT,
771 .size = 1,
772 .init_val = 0x00,
773 .ro_mask = 0xFF,
774 .emu_mask = 0xFF,
775 .init = xen_pt_ptr_reg_init,
776 .u.b.read = xen_pt_byte_reg_read,
777 .u.b.write = xen_pt_byte_reg_write,
778 },
779 {
780 .size = 0,
781 },
782 };
783
784
785 /*****************************
786 * PCI Express Capability
787 */
788
789 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
790 uint32_t offset)
791 {
792 uint8_t flags = pci_get_byte(s->dev.config + offset + PCI_EXP_FLAGS);
793 return flags & PCI_EXP_FLAGS_VERS;
794 }
795
796 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
797 uint32_t offset)
798 {
799 uint8_t flags = pci_get_byte(s->dev.config + offset + PCI_EXP_FLAGS);
800 return (flags & PCI_EXP_FLAGS_TYPE) >> 4;
801 }
802
803 /* initialize Link Control register */
804 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
805 XenPTRegInfo *reg, uint32_t real_offset,
806 uint32_t *data)
807 {
808 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
809 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
810
811 /* no need to initialize in case of Root Complex Integrated Endpoint
812 * with cap_ver 1.x
813 */
814 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
815 *data = XEN_PT_INVALID_REG;
816 }
817
818 *data = reg->init_val;
819 return 0;
820 }
821 /* initialize Device Control 2 register */
822 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
823 XenPTRegInfo *reg, uint32_t real_offset,
824 uint32_t *data)
825 {
826 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
827
828 /* no need to initialize in case of cap_ver 1.x */
829 if (cap_ver == 1) {
830 *data = XEN_PT_INVALID_REG;
831 }
832
833 *data = reg->init_val;
834 return 0;
835 }
836 /* initialize Link Control 2 register */
837 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
838 XenPTRegInfo *reg, uint32_t real_offset,
839 uint32_t *data)
840 {
841 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
842 uint32_t reg_field = 0;
843
844 /* no need to initialize in case of cap_ver 1.x */
845 if (cap_ver == 1) {
846 reg_field = XEN_PT_INVALID_REG;
847 } else {
848 /* set Supported Link Speed */
849 uint8_t lnkcap = pci_get_byte(s->dev.config + real_offset - reg->offset
850 + PCI_EXP_LNKCAP);
851 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
852 }
853
854 *data = reg_field;
855 return 0;
856 }
857
858 /* PCI Express Capability Structure reg static information table */
859 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
860 /* Next Pointer reg */
861 {
862 .offset = PCI_CAP_LIST_NEXT,
863 .size = 1,
864 .init_val = 0x00,
865 .ro_mask = 0xFF,
866 .emu_mask = 0xFF,
867 .init = xen_pt_ptr_reg_init,
868 .u.b.read = xen_pt_byte_reg_read,
869 .u.b.write = xen_pt_byte_reg_write,
870 },
871 /* Device Capabilities reg */
872 {
873 .offset = PCI_EXP_DEVCAP,
874 .size = 4,
875 .init_val = 0x00000000,
876 .ro_mask = 0x1FFCFFFF,
877 .emu_mask = 0x10000000,
878 .init = xen_pt_common_reg_init,
879 .u.dw.read = xen_pt_long_reg_read,
880 .u.dw.write = xen_pt_long_reg_write,
881 },
882 /* Device Control reg */
883 {
884 .offset = PCI_EXP_DEVCTL,
885 .size = 2,
886 .init_val = 0x2810,
887 .ro_mask = 0x8400,
888 .emu_mask = 0xFFFF,
889 .init = xen_pt_common_reg_init,
890 .u.w.read = xen_pt_word_reg_read,
891 .u.w.write = xen_pt_word_reg_write,
892 },
893 /* Link Control reg */
894 {
895 .offset = PCI_EXP_LNKCTL,
896 .size = 2,
897 .init_val = 0x0000,
898 .ro_mask = 0xFC34,
899 .emu_mask = 0xFFFF,
900 .init = xen_pt_linkctrl_reg_init,
901 .u.w.read = xen_pt_word_reg_read,
902 .u.w.write = xen_pt_word_reg_write,
903 },
904 /* Device Control 2 reg */
905 {
906 .offset = 0x28,
907 .size = 2,
908 .init_val = 0x0000,
909 .ro_mask = 0xFFE0,
910 .emu_mask = 0xFFFF,
911 .init = xen_pt_devctrl2_reg_init,
912 .u.w.read = xen_pt_word_reg_read,
913 .u.w.write = xen_pt_word_reg_write,
914 },
915 /* Link Control 2 reg */
916 {
917 .offset = 0x30,
918 .size = 2,
919 .init_val = 0x0000,
920 .ro_mask = 0xE040,
921 .emu_mask = 0xFFFF,
922 .init = xen_pt_linkctrl2_reg_init,
923 .u.w.read = xen_pt_word_reg_read,
924 .u.w.write = xen_pt_word_reg_write,
925 },
926 {
927 .size = 0,
928 },
929 };
930
931
932 /*********************************
933 * Power Management Capability
934 */
935
936 /* read Power Management Control/Status register */
937 static int xen_pt_pmcsr_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
938 uint16_t *value, uint16_t valid_mask)
939 {
940 XenPTRegInfo *reg = cfg_entry->reg;
941 uint16_t valid_emu_mask = reg->emu_mask;
942
943 valid_emu_mask |= PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_NO_SOFT_RESET;
944
945 valid_emu_mask = valid_emu_mask & valid_mask;
946 *value = XEN_PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
947
948 return 0;
949 }
950 /* write Power Management Control/Status register */
951 static int xen_pt_pmcsr_reg_write(XenPCIPassthroughState *s,
952 XenPTReg *cfg_entry, uint16_t *val,
953 uint16_t dev_value, uint16_t valid_mask)
954 {
955 XenPTRegInfo *reg = cfg_entry->reg;
956 uint16_t emu_mask = reg->emu_mask;
957 uint16_t writable_mask = 0;
958 uint16_t throughable_mask = 0;
959
960 emu_mask |= PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_NO_SOFT_RESET;
961
962 /* modify emulate register */
963 writable_mask = emu_mask & ~reg->ro_mask & valid_mask;
964 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
965
966 /* create value for writing to I/O device register */
967 throughable_mask = ~emu_mask & valid_mask;
968 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
969
970 return 0;
971 }
972
973 /* Power Management Capability reg static information table */
974 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
975 /* Next Pointer reg */
976 {
977 .offset = PCI_CAP_LIST_NEXT,
978 .size = 1,
979 .init_val = 0x00,
980 .ro_mask = 0xFF,
981 .emu_mask = 0xFF,
982 .init = xen_pt_ptr_reg_init,
983 .u.b.read = xen_pt_byte_reg_read,
984 .u.b.write = xen_pt_byte_reg_write,
985 },
986 /* Power Management Capabilities reg */
987 {
988 .offset = PCI_CAP_FLAGS,
989 .size = 2,
990 .init_val = 0x0000,
991 .ro_mask = 0xFFFF,
992 .emu_mask = 0xF9C8,
993 .init = xen_pt_common_reg_init,
994 .u.w.read = xen_pt_word_reg_read,
995 .u.w.write = xen_pt_word_reg_write,
996 },
997 /* PCI Power Management Control/Status reg */
998 {
999 .offset = PCI_PM_CTRL,
1000 .size = 2,
1001 .init_val = 0x0008,
1002 .ro_mask = 0xE1FC,
1003 .emu_mask = 0x8100,
1004 .init = xen_pt_common_reg_init,
1005 .u.w.read = xen_pt_pmcsr_reg_read,
1006 .u.w.write = xen_pt_pmcsr_reg_write,
1007 },
1008 {
1009 .size = 0,
1010 },
1011 };
1012
1013
1014 /********************************
1015 * MSI Capability
1016 */
1017
1018 /* Helper */
1019 static bool xen_pt_msgdata_check_type(uint32_t offset, uint16_t flags)
1020 {
1021 /* check the offset whether matches the type or not */
1022 bool is_32 = (offset == PCI_MSI_DATA_32) && !(flags & PCI_MSI_FLAGS_64BIT);
1023 bool is_64 = (offset == PCI_MSI_DATA_64) && (flags & PCI_MSI_FLAGS_64BIT);
1024 return is_32 || is_64;
1025 }
1026
1027 /* Message Control register */
1028 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1029 XenPTRegInfo *reg, uint32_t real_offset,
1030 uint32_t *data)
1031 {
1032 PCIDevice *d = &s->dev;
1033 XenPTMSI *msi = s->msi;
1034 uint16_t reg_field = 0;
1035
1036 /* use I/O device register's value as initial value */
1037 reg_field = pci_get_word(d->config + real_offset);
1038
1039 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1040 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1041 xen_host_pci_set_word(&s->real_device, real_offset,
1042 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1043 }
1044 msi->flags |= reg_field;
1045 msi->ctrl_offset = real_offset;
1046 msi->initialized = false;
1047 msi->mapped = false;
1048
1049 *data = reg->init_val;
1050 return 0;
1051 }
1052 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1053 XenPTReg *cfg_entry, uint16_t *val,
1054 uint16_t dev_value, uint16_t valid_mask)
1055 {
1056 XenPTRegInfo *reg = cfg_entry->reg;
1057 XenPTMSI *msi = s->msi;
1058 uint16_t writable_mask = 0;
1059 uint16_t throughable_mask = 0;
1060 uint16_t raw_val;
1061
1062 /* Currently no support for multi-vector */
1063 if (*val & PCI_MSI_FLAGS_QSIZE) {
1064 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1065 }
1066
1067 /* modify emulate register */
1068 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1069 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1070 msi->flags |= cfg_entry->data & ~PCI_MSI_FLAGS_ENABLE;
1071
1072 /* create value for writing to I/O device register */
1073 raw_val = *val;
1074 throughable_mask = ~reg->emu_mask & valid_mask;
1075 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1076
1077 /* update MSI */
1078 if (raw_val & PCI_MSI_FLAGS_ENABLE) {
1079 /* setup MSI pirq for the first time */
1080 if (!msi->initialized) {
1081 /* Init physical one */
1082 XEN_PT_LOG(&s->dev, "setup MSI\n");
1083 if (xen_pt_msi_setup(s)) {
1084 /* We do not broadcast the error to the framework code, so
1085 * that MSI errors are contained in MSI emulation code and
1086 * QEMU can go on running.
1087 * Guest MSI would be actually not working.
1088 */
1089 *val &= ~PCI_MSI_FLAGS_ENABLE;
1090 XEN_PT_WARN(&s->dev, "Can not map MSI.\n");
1091 return 0;
1092 }
1093 if (xen_pt_msi_update(s)) {
1094 *val &= ~PCI_MSI_FLAGS_ENABLE;
1095 XEN_PT_WARN(&s->dev, "Can not bind MSI\n");
1096 return 0;
1097 }
1098 msi->initialized = true;
1099 msi->mapped = true;
1100 }
1101 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1102 } else if (msi->mapped) {
1103 xen_pt_msi_disable(s);
1104 }
1105
1106 /* pass through MSI_ENABLE bit */
1107 *val &= ~PCI_MSI_FLAGS_ENABLE;
1108 *val |= raw_val & PCI_MSI_FLAGS_ENABLE;
1109
1110 return 0;
1111 }
1112
1113 /* initialize Message Upper Address register */
1114 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1115 XenPTRegInfo *reg, uint32_t real_offset,
1116 uint32_t *data)
1117 {
1118 /* no need to initialize in case of 32 bit type */
1119 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1120 *data = XEN_PT_INVALID_REG;
1121 } else {
1122 *data = reg->init_val;
1123 }
1124
1125 return 0;
1126 }
1127 /* this function will be called twice (for 32 bit and 64 bit type) */
1128 /* initialize Message Data register */
1129 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1130 XenPTRegInfo *reg, uint32_t real_offset,
1131 uint32_t *data)
1132 {
1133 uint32_t flags = s->msi->flags;
1134 uint32_t offset = reg->offset;
1135
1136 /* check the offset whether matches the type or not */
1137 if (xen_pt_msgdata_check_type(offset, flags)) {
1138 *data = reg->init_val;
1139 } else {
1140 *data = XEN_PT_INVALID_REG;
1141 }
1142 return 0;
1143 }
1144
1145 /* write Message Address register */
1146 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1147 XenPTReg *cfg_entry, uint32_t *val,
1148 uint32_t dev_value, uint32_t valid_mask)
1149 {
1150 XenPTRegInfo *reg = cfg_entry->reg;
1151 uint32_t writable_mask = 0;
1152 uint32_t throughable_mask = 0;
1153 uint32_t old_addr = cfg_entry->data;
1154
1155 /* modify emulate register */
1156 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1157 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1158 s->msi->addr_lo = cfg_entry->data;
1159
1160 /* create value for writing to I/O device register */
1161 throughable_mask = ~reg->emu_mask & valid_mask;
1162 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1163
1164 /* update MSI */
1165 if (cfg_entry->data != old_addr) {
1166 if (s->msi->mapped) {
1167 xen_pt_msi_update(s);
1168 }
1169 }
1170
1171 return 0;
1172 }
1173 /* write Message Upper Address register */
1174 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1175 XenPTReg *cfg_entry, uint32_t *val,
1176 uint32_t dev_value, uint32_t valid_mask)
1177 {
1178 XenPTRegInfo *reg = cfg_entry->reg;
1179 uint32_t writable_mask = 0;
1180 uint32_t throughable_mask = 0;
1181 uint32_t old_addr = cfg_entry->data;
1182
1183 /* check whether the type is 64 bit or not */
1184 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1185 XEN_PT_ERR(&s->dev,
1186 "Can't write to the upper address without 64 bit support\n");
1187 return -1;
1188 }
1189
1190 /* modify emulate register */
1191 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1192 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1193 /* update the msi_info too */
1194 s->msi->addr_hi = cfg_entry->data;
1195
1196 /* create value for writing to I/O device register */
1197 throughable_mask = ~reg->emu_mask & valid_mask;
1198 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1199
1200 /* update MSI */
1201 if (cfg_entry->data != old_addr) {
1202 if (s->msi->mapped) {
1203 xen_pt_msi_update(s);
1204 }
1205 }
1206
1207 return 0;
1208 }
1209
1210
1211 /* this function will be called twice (for 32 bit and 64 bit type) */
1212 /* write Message Data register */
1213 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1214 XenPTReg *cfg_entry, uint16_t *val,
1215 uint16_t dev_value, uint16_t valid_mask)
1216 {
1217 XenPTRegInfo *reg = cfg_entry->reg;
1218 XenPTMSI *msi = s->msi;
1219 uint16_t writable_mask = 0;
1220 uint16_t throughable_mask = 0;
1221 uint16_t old_data = cfg_entry->data;
1222 uint32_t offset = reg->offset;
1223
1224 /* check the offset whether matches the type or not */
1225 if (!xen_pt_msgdata_check_type(offset, msi->flags)) {
1226 /* exit I/O emulator */
1227 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1228 return -1;
1229 }
1230
1231 /* modify emulate register */
1232 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1233 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1234 /* update the msi_info too */
1235 msi->data = cfg_entry->data;
1236
1237 /* create value for writing to I/O device register */
1238 throughable_mask = ~reg->emu_mask & valid_mask;
1239 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1240
1241 /* update MSI */
1242 if (cfg_entry->data != old_data) {
1243 if (msi->mapped) {
1244 xen_pt_msi_update(s);
1245 }
1246 }
1247
1248 return 0;
1249 }
1250
1251 /* MSI Capability Structure reg static information table */
1252 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1253 /* Next Pointer reg */
1254 {
1255 .offset = PCI_CAP_LIST_NEXT,
1256 .size = 1,
1257 .init_val = 0x00,
1258 .ro_mask = 0xFF,
1259 .emu_mask = 0xFF,
1260 .init = xen_pt_ptr_reg_init,
1261 .u.b.read = xen_pt_byte_reg_read,
1262 .u.b.write = xen_pt_byte_reg_write,
1263 },
1264 /* Message Control reg */
1265 {
1266 .offset = PCI_MSI_FLAGS,
1267 .size = 2,
1268 .init_val = 0x0000,
1269 .ro_mask = 0xFF8E,
1270 .emu_mask = 0x007F,
1271 .init = xen_pt_msgctrl_reg_init,
1272 .u.w.read = xen_pt_word_reg_read,
1273 .u.w.write = xen_pt_msgctrl_reg_write,
1274 },
1275 /* Message Address reg */
1276 {
1277 .offset = PCI_MSI_ADDRESS_LO,
1278 .size = 4,
1279 .init_val = 0x00000000,
1280 .ro_mask = 0x00000003,
1281 .emu_mask = 0xFFFFFFFF,
1282 .no_wb = 1,
1283 .init = xen_pt_common_reg_init,
1284 .u.dw.read = xen_pt_long_reg_read,
1285 .u.dw.write = xen_pt_msgaddr32_reg_write,
1286 },
1287 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1288 {
1289 .offset = PCI_MSI_ADDRESS_HI,
1290 .size = 4,
1291 .init_val = 0x00000000,
1292 .ro_mask = 0x00000000,
1293 .emu_mask = 0xFFFFFFFF,
1294 .no_wb = 1,
1295 .init = xen_pt_msgaddr64_reg_init,
1296 .u.dw.read = xen_pt_long_reg_read,
1297 .u.dw.write = xen_pt_msgaddr64_reg_write,
1298 },
1299 /* Message Data reg (16 bits of data for 32-bit devices) */
1300 {
1301 .offset = PCI_MSI_DATA_32,
1302 .size = 2,
1303 .init_val = 0x0000,
1304 .ro_mask = 0x0000,
1305 .emu_mask = 0xFFFF,
1306 .no_wb = 1,
1307 .init = xen_pt_msgdata_reg_init,
1308 .u.w.read = xen_pt_word_reg_read,
1309 .u.w.write = xen_pt_msgdata_reg_write,
1310 },
1311 /* Message Data reg (16 bits of data for 64-bit devices) */
1312 {
1313 .offset = PCI_MSI_DATA_64,
1314 .size = 2,
1315 .init_val = 0x0000,
1316 .ro_mask = 0x0000,
1317 .emu_mask = 0xFFFF,
1318 .no_wb = 1,
1319 .init = xen_pt_msgdata_reg_init,
1320 .u.w.read = xen_pt_word_reg_read,
1321 .u.w.write = xen_pt_msgdata_reg_write,
1322 },
1323 {
1324 .size = 0,
1325 },
1326 };
1327
1328
1329 /**************************************
1330 * MSI-X Capability
1331 */
1332
1333 /* Message Control register for MSI-X */
1334 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1335 XenPTRegInfo *reg, uint32_t real_offset,
1336 uint32_t *data)
1337 {
1338 PCIDevice *d = &s->dev;
1339 uint16_t reg_field = 0;
1340
1341 /* use I/O device register's value as initial value */
1342 reg_field = pci_get_word(d->config + real_offset);
1343
1344 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1345 XEN_PT_LOG(d, "MSIX already enabled, disabling it first\n");
1346 xen_host_pci_set_word(&s->real_device, real_offset,
1347 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1348 }
1349
1350 s->msix->ctrl_offset = real_offset;
1351
1352 *data = reg->init_val;
1353 return 0;
1354 }
1355 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1356 XenPTReg *cfg_entry, uint16_t *val,
1357 uint16_t dev_value, uint16_t valid_mask)
1358 {
1359 XenPTRegInfo *reg = cfg_entry->reg;
1360 uint16_t writable_mask = 0;
1361 uint16_t throughable_mask = 0;
1362 int debug_msix_enabled_old;
1363
1364 /* modify emulate register */
1365 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1366 cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
1367
1368 /* create value for writing to I/O device register */
1369 throughable_mask = ~reg->emu_mask & valid_mask;
1370 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1371
1372 /* update MSI-X */
1373 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1374 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1375 xen_pt_msix_update(s);
1376 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1377 xen_pt_msix_disable(s);
1378 }
1379
1380 debug_msix_enabled_old = s->msix->enabled;
1381 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1382 if (s->msix->enabled != debug_msix_enabled_old) {
1383 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1384 s->msix->enabled ? "enable" : "disable");
1385 }
1386
1387 return 0;
1388 }
1389
1390 /* MSI-X Capability Structure reg static information table */
1391 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1392 /* Next Pointer reg */
1393 {
1394 .offset = PCI_CAP_LIST_NEXT,
1395 .size = 1,
1396 .init_val = 0x00,
1397 .ro_mask = 0xFF,
1398 .emu_mask = 0xFF,
1399 .init = xen_pt_ptr_reg_init,
1400 .u.b.read = xen_pt_byte_reg_read,
1401 .u.b.write = xen_pt_byte_reg_write,
1402 },
1403 /* Message Control reg */
1404 {
1405 .offset = PCI_MSI_FLAGS,
1406 .size = 2,
1407 .init_val = 0x0000,
1408 .ro_mask = 0x3FFF,
1409 .emu_mask = 0x0000,
1410 .init = xen_pt_msixctrl_reg_init,
1411 .u.w.read = xen_pt_word_reg_read,
1412 .u.w.write = xen_pt_msixctrl_reg_write,
1413 },
1414 {
1415 .size = 0,
1416 },
1417 };
1418
1419
1420 /****************************
1421 * Capabilities
1422 */
1423
1424 /* capability structure register group size functions */
1425
1426 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1427 const XenPTRegGroupInfo *grp_reg,
1428 uint32_t base_offset, uint8_t *size)
1429 {
1430 *size = grp_reg->grp_size;
1431 return 0;
1432 }
1433 /* get Vendor Specific Capability Structure register group size */
1434 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1435 const XenPTRegGroupInfo *grp_reg,
1436 uint32_t base_offset, uint8_t *size)
1437 {
1438 *size = pci_get_byte(s->dev.config + base_offset + 0x02);
1439 return 0;
1440 }
1441 /* get PCI Express Capability Structure register group size */
1442 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1443 const XenPTRegGroupInfo *grp_reg,
1444 uint32_t base_offset, uint8_t *size)
1445 {
1446 PCIDevice *d = &s->dev;
1447 uint8_t version = get_capability_version(s, base_offset);
1448 uint8_t type = get_device_type(s, base_offset);
1449 uint8_t pcie_size = 0;
1450
1451
1452 /* calculate size depend on capability version and device/port type */
1453 /* in case of PCI Express Base Specification Rev 1.x */
1454 if (version == 1) {
1455 /* The PCI Express Capabilities, Device Capabilities, and Device
1456 * Status/Control registers are required for all PCI Express devices.
1457 * The Link Capabilities and Link Status/Control are required for all
1458 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1459 * are not required to implement registers other than those listed
1460 * above and terminate the capability structure.
1461 */
1462 switch (type) {
1463 case PCI_EXP_TYPE_ENDPOINT:
1464 case PCI_EXP_TYPE_LEG_END:
1465 pcie_size = 0x14;
1466 break;
1467 case PCI_EXP_TYPE_RC_END:
1468 /* has no link */
1469 pcie_size = 0x0C;
1470 break;
1471 /* only EndPoint passthrough is supported */
1472 case PCI_EXP_TYPE_ROOT_PORT:
1473 case PCI_EXP_TYPE_UPSTREAM:
1474 case PCI_EXP_TYPE_DOWNSTREAM:
1475 case PCI_EXP_TYPE_PCI_BRIDGE:
1476 case PCI_EXP_TYPE_PCIE_BRIDGE:
1477 case PCI_EXP_TYPE_RC_EC:
1478 default:
1479 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1480 return -1;
1481 }
1482 }
1483 /* in case of PCI Express Base Specification Rev 2.0 */
1484 else if (version == 2) {
1485 switch (type) {
1486 case PCI_EXP_TYPE_ENDPOINT:
1487 case PCI_EXP_TYPE_LEG_END:
1488 case PCI_EXP_TYPE_RC_END:
1489 /* For Functions that do not implement the registers,
1490 * these spaces must be hardwired to 0b.
1491 */
1492 pcie_size = 0x3C;
1493 break;
1494 /* only EndPoint passthrough is supported */
1495 case PCI_EXP_TYPE_ROOT_PORT:
1496 case PCI_EXP_TYPE_UPSTREAM:
1497 case PCI_EXP_TYPE_DOWNSTREAM:
1498 case PCI_EXP_TYPE_PCI_BRIDGE:
1499 case PCI_EXP_TYPE_PCIE_BRIDGE:
1500 case PCI_EXP_TYPE_RC_EC:
1501 default:
1502 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1503 return -1;
1504 }
1505 } else {
1506 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1507 return -1;
1508 }
1509
1510 *size = pcie_size;
1511 return 0;
1512 }
1513 /* get MSI Capability Structure register group size */
1514 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1515 const XenPTRegGroupInfo *grp_reg,
1516 uint32_t base_offset, uint8_t *size)
1517 {
1518 PCIDevice *d = &s->dev;
1519 uint16_t msg_ctrl = 0;
1520 uint8_t msi_size = 0xa;
1521
1522 msg_ctrl = pci_get_word(d->config + (base_offset + PCI_MSI_FLAGS));
1523
1524 /* check if 64-bit address is capable of per-vector masking */
1525 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1526 msi_size += 4;
1527 }
1528 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1529 msi_size += 10;
1530 }
1531
1532 s->msi = g_new0(XenPTMSI, 1);
1533 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1534
1535 *size = msi_size;
1536 return 0;
1537 }
1538 /* get MSI-X Capability Structure register group size */
1539 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1540 const XenPTRegGroupInfo *grp_reg,
1541 uint32_t base_offset, uint8_t *size)
1542 {
1543 int rc = 0;
1544
1545 rc = xen_pt_msix_init(s, base_offset);
1546
1547 if (rc < 0) {
1548 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1549 return rc;
1550 }
1551
1552 *size = grp_reg->grp_size;
1553 return 0;
1554 }
1555
1556
1557 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1558 /* Header Type0 reg group */
1559 {
1560 .grp_id = 0xFF,
1561 .grp_type = XEN_PT_GRP_TYPE_EMU,
1562 .grp_size = 0x40,
1563 .size_init = xen_pt_reg_grp_size_init,
1564 .emu_regs = xen_pt_emu_reg_header0,
1565 },
1566 /* PCI PowerManagement Capability reg group */
1567 {
1568 .grp_id = PCI_CAP_ID_PM,
1569 .grp_type = XEN_PT_GRP_TYPE_EMU,
1570 .grp_size = PCI_PM_SIZEOF,
1571 .size_init = xen_pt_reg_grp_size_init,
1572 .emu_regs = xen_pt_emu_reg_pm,
1573 },
1574 /* AGP Capability Structure reg group */
1575 {
1576 .grp_id = PCI_CAP_ID_AGP,
1577 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1578 .grp_size = 0x30,
1579 .size_init = xen_pt_reg_grp_size_init,
1580 },
1581 /* Vital Product Data Capability Structure reg group */
1582 {
1583 .grp_id = PCI_CAP_ID_VPD,
1584 .grp_type = XEN_PT_GRP_TYPE_EMU,
1585 .grp_size = 0x08,
1586 .size_init = xen_pt_reg_grp_size_init,
1587 .emu_regs = xen_pt_emu_reg_vpd,
1588 },
1589 /* Slot Identification reg group */
1590 {
1591 .grp_id = PCI_CAP_ID_SLOTID,
1592 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1593 .grp_size = 0x04,
1594 .size_init = xen_pt_reg_grp_size_init,
1595 },
1596 /* MSI Capability Structure reg group */
1597 {
1598 .grp_id = PCI_CAP_ID_MSI,
1599 .grp_type = XEN_PT_GRP_TYPE_EMU,
1600 .grp_size = 0xFF,
1601 .size_init = xen_pt_msi_size_init,
1602 .emu_regs = xen_pt_emu_reg_msi,
1603 },
1604 /* PCI-X Capabilities List Item reg group */
1605 {
1606 .grp_id = PCI_CAP_ID_PCIX,
1607 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1608 .grp_size = 0x18,
1609 .size_init = xen_pt_reg_grp_size_init,
1610 },
1611 /* Vendor Specific Capability Structure reg group */
1612 {
1613 .grp_id = PCI_CAP_ID_VNDR,
1614 .grp_type = XEN_PT_GRP_TYPE_EMU,
1615 .grp_size = 0xFF,
1616 .size_init = xen_pt_vendor_size_init,
1617 .emu_regs = xen_pt_emu_reg_vendor,
1618 },
1619 /* SHPC Capability List Item reg group */
1620 {
1621 .grp_id = PCI_CAP_ID_SHPC,
1622 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1623 .grp_size = 0x08,
1624 .size_init = xen_pt_reg_grp_size_init,
1625 },
1626 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1627 {
1628 .grp_id = PCI_CAP_ID_SSVID,
1629 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1630 .grp_size = 0x08,
1631 .size_init = xen_pt_reg_grp_size_init,
1632 },
1633 /* AGP 8x Capability Structure reg group */
1634 {
1635 .grp_id = PCI_CAP_ID_AGP3,
1636 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1637 .grp_size = 0x30,
1638 .size_init = xen_pt_reg_grp_size_init,
1639 },
1640 /* PCI Express Capability Structure reg group */
1641 {
1642 .grp_id = PCI_CAP_ID_EXP,
1643 .grp_type = XEN_PT_GRP_TYPE_EMU,
1644 .grp_size = 0xFF,
1645 .size_init = xen_pt_pcie_size_init,
1646 .emu_regs = xen_pt_emu_reg_pcie,
1647 },
1648 /* MSI-X Capability Structure reg group */
1649 {
1650 .grp_id = PCI_CAP_ID_MSIX,
1651 .grp_type = XEN_PT_GRP_TYPE_EMU,
1652 .grp_size = 0x0C,
1653 .size_init = xen_pt_msix_size_init,
1654 .emu_regs = xen_pt_emu_reg_msix,
1655 },
1656 {
1657 .grp_size = 0,
1658 },
1659 };
1660
1661 /* initialize Capabilities Pointer or Next Pointer register */
1662 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1663 XenPTRegInfo *reg, uint32_t real_offset,
1664 uint32_t *data)
1665 {
1666 int i;
1667 uint8_t *config = s->dev.config;
1668 uint32_t reg_field = pci_get_byte(config + real_offset);
1669 uint8_t cap_id = 0;
1670
1671 /* find capability offset */
1672 while (reg_field) {
1673 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1674 if (xen_pt_hide_dev_cap(&s->real_device,
1675 xen_pt_emu_reg_grps[i].grp_id)) {
1676 continue;
1677 }
1678
1679 cap_id = pci_get_byte(config + reg_field + PCI_CAP_LIST_ID);
1680 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1681 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1682 goto out;
1683 }
1684 /* ignore the 0 hardwired capability, find next one */
1685 break;
1686 }
1687 }
1688
1689 /* next capability */
1690 reg_field = pci_get_byte(config + reg_field + PCI_CAP_LIST_NEXT);
1691 }
1692
1693 out:
1694 *data = reg_field;
1695 return 0;
1696 }
1697
1698
1699 /*************
1700 * Main
1701 */
1702
1703 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1704 {
1705 uint8_t id;
1706 unsigned max_cap = PCI_CAP_MAX;
1707 uint8_t pos = PCI_CAPABILITY_LIST;
1708 uint8_t status = 0;
1709
1710 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1711 return 0;
1712 }
1713 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1714 return 0;
1715 }
1716
1717 while (max_cap--) {
1718 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1719 break;
1720 }
1721 if (pos < PCI_CONFIG_HEADER_SIZE) {
1722 break;
1723 }
1724
1725 pos &= ~3;
1726 if (xen_host_pci_get_byte(&s->real_device,
1727 pos + PCI_CAP_LIST_ID, &id)) {
1728 break;
1729 }
1730
1731 if (id == 0xff) {
1732 break;
1733 }
1734 if (id == cap) {
1735 return pos;
1736 }
1737
1738 pos += PCI_CAP_LIST_NEXT;
1739 }
1740 return 0;
1741 }
1742
1743 static int xen_pt_config_reg_init(XenPCIPassthroughState *s,
1744 XenPTRegGroup *reg_grp, XenPTRegInfo *reg)
1745 {
1746 XenPTReg *reg_entry;
1747 uint32_t data = 0;
1748 int rc = 0;
1749
1750 reg_entry = g_new0(XenPTReg, 1);
1751 reg_entry->reg = reg;
1752
1753 if (reg->init) {
1754 /* initialize emulate register */
1755 rc = reg->init(s, reg_entry->reg,
1756 reg_grp->base_offset + reg->offset, &data);
1757 if (rc < 0) {
1758 g_free(reg_entry);
1759 return rc;
1760 }
1761 if (data == XEN_PT_INVALID_REG) {
1762 /* free unused BAR register entry */
1763 g_free(reg_entry);
1764 return 0;
1765 }
1766 /* set register value */
1767 reg_entry->data = data;
1768 }
1769 /* list add register entry */
1770 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
1771
1772 return 0;
1773 }
1774
1775 int xen_pt_config_init(XenPCIPassthroughState *s)
1776 {
1777 int i, rc;
1778
1779 QLIST_INIT(&s->reg_grps);
1780
1781 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1782 uint32_t reg_grp_offset = 0;
1783 XenPTRegGroup *reg_grp_entry = NULL;
1784
1785 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF) {
1786 if (xen_pt_hide_dev_cap(&s->real_device,
1787 xen_pt_emu_reg_grps[i].grp_id)) {
1788 continue;
1789 }
1790
1791 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
1792
1793 if (!reg_grp_offset) {
1794 continue;
1795 }
1796 }
1797
1798 reg_grp_entry = g_new0(XenPTRegGroup, 1);
1799 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
1800 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
1801
1802 reg_grp_entry->base_offset = reg_grp_offset;
1803 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
1804 if (xen_pt_emu_reg_grps[i].size_init) {
1805 /* get register group size */
1806 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
1807 reg_grp_offset,
1808 &reg_grp_entry->size);
1809 if (rc < 0) {
1810 xen_pt_config_delete(s);
1811 return rc;
1812 }
1813 }
1814
1815 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1816 if (xen_pt_emu_reg_grps[i].emu_regs) {
1817 int j = 0;
1818 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
1819 /* initialize capability register */
1820 for (j = 0; regs->size != 0; j++, regs++) {
1821 /* initialize capability register */
1822 rc = xen_pt_config_reg_init(s, reg_grp_entry, regs);
1823 if (rc < 0) {
1824 xen_pt_config_delete(s);
1825 return rc;
1826 }
1827 }
1828 }
1829 }
1830 }
1831
1832 return 0;
1833 }
1834
1835 /* delete all emulate register */
1836 void xen_pt_config_delete(XenPCIPassthroughState *s)
1837 {
1838 struct XenPTRegGroup *reg_group, *next_grp;
1839 struct XenPTReg *reg, *next_reg;
1840
1841 /* free MSI/MSI-X info table */
1842 if (s->msix) {
1843 xen_pt_msix_delete(s);
1844 }
1845 if (s->msi) {
1846 g_free(s->msi);
1847 }
1848
1849 /* free all register group entry */
1850 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
1851 /* free all register entry */
1852 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
1853 QLIST_REMOVE(reg, entries);
1854 g_free(reg);
1855 }
1856
1857 QLIST_REMOVE(reg_group, entries);
1858 g_free(reg_group);
1859 }
1860 }