]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xen/xen_pt_config_init.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/timer.h"
16 #include "hw/xen/xen_backend.h"
17 #include "xen_pt.h"
18
19 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
20 (((value) & (val_mask)) | ((data) & ~(val_mask)))
21
22 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
23
24 /* prototype */
25
26 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
27 uint32_t real_offset, uint32_t *data);
28
29
30 /* helper */
31
32 /* A return value of 1 means the capability should NOT be exposed to guest. */
33 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
34 {
35 switch (grp_id) {
36 case PCI_CAP_ID_EXP:
37 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
38 * Controller looks trivial, e.g., the PCI Express Capabilities
39 * Register is 0. We should not try to expose it to guest.
40 *
41 * The datasheet is available at
42 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
43 *
44 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
45 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
46 * Controller looks trivial, e.g., the PCI Express Capabilities
47 * Register is 0, so the Capability Version is 0 and
48 * xen_pt_pcie_size_init() would fail.
49 */
50 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
51 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
52 return 1;
53 }
54 break;
55 }
56 return 0;
57 }
58
59 /* find emulate register group entry */
60 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
61 {
62 XenPTRegGroup *entry = NULL;
63
64 /* find register group entry */
65 QLIST_FOREACH(entry, &s->reg_grps, entries) {
66 /* check address */
67 if ((entry->base_offset <= address)
68 && ((entry->base_offset + entry->size) > address)) {
69 return entry;
70 }
71 }
72
73 /* group entry not found */
74 return NULL;
75 }
76
77 /* find emulate register entry */
78 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
79 {
80 XenPTReg *reg_entry = NULL;
81 XenPTRegInfo *reg = NULL;
82 uint32_t real_offset = 0;
83
84 /* find register entry */
85 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
86 reg = reg_entry->reg;
87 real_offset = reg_grp->base_offset + reg->offset;
88 /* check address */
89 if ((real_offset <= address)
90 && ((real_offset + reg->size) > address)) {
91 return reg_entry;
92 }
93 }
94
95 return NULL;
96 }
97
98 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
99 XenPTRegInfo *reg, uint32_t valid_mask)
100 {
101 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
102
103 if (!s->permissive) {
104 throughable_mask &= ~reg->res_mask;
105 }
106
107 return throughable_mask & valid_mask;
108 }
109
110 /****************
111 * general register functions
112 */
113
114 /* register initialization function */
115
116 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
117 XenPTRegInfo *reg, uint32_t real_offset,
118 uint32_t *data)
119 {
120 *data = reg->init_val;
121 return 0;
122 }
123
124 /* Read register functions */
125
126 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
127 uint8_t *value, uint8_t valid_mask)
128 {
129 XenPTRegInfo *reg = cfg_entry->reg;
130 uint8_t valid_emu_mask = 0;
131 uint8_t *data = cfg_entry->ptr.byte;
132
133 /* emulate byte register */
134 valid_emu_mask = reg->emu_mask & valid_mask;
135 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
136
137 return 0;
138 }
139 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
140 uint16_t *value, uint16_t valid_mask)
141 {
142 XenPTRegInfo *reg = cfg_entry->reg;
143 uint16_t valid_emu_mask = 0;
144 uint16_t *data = cfg_entry->ptr.half_word;
145
146 /* emulate word register */
147 valid_emu_mask = reg->emu_mask & valid_mask;
148 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
149
150 return 0;
151 }
152 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
153 uint32_t *value, uint32_t valid_mask)
154 {
155 XenPTRegInfo *reg = cfg_entry->reg;
156 uint32_t valid_emu_mask = 0;
157 uint32_t *data = cfg_entry->ptr.word;
158
159 /* emulate long register */
160 valid_emu_mask = reg->emu_mask & valid_mask;
161 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
162
163 return 0;
164 }
165
166 /* Write register functions */
167
168 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
169 uint8_t *val, uint8_t dev_value,
170 uint8_t valid_mask)
171 {
172 XenPTRegInfo *reg = cfg_entry->reg;
173 uint8_t writable_mask = 0;
174 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
175 uint8_t *data = cfg_entry->ptr.byte;
176
177 /* modify emulate register */
178 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
179 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
180
181 /* create value for writing to I/O device register */
182 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
183
184 return 0;
185 }
186 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
187 uint16_t *val, uint16_t dev_value,
188 uint16_t valid_mask)
189 {
190 XenPTRegInfo *reg = cfg_entry->reg;
191 uint16_t writable_mask = 0;
192 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
193 uint16_t *data = cfg_entry->ptr.half_word;
194
195 /* modify emulate register */
196 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
197 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
198
199 /* create value for writing to I/O device register */
200 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
201
202 return 0;
203 }
204 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
205 uint32_t *val, uint32_t dev_value,
206 uint32_t valid_mask)
207 {
208 XenPTRegInfo *reg = cfg_entry->reg;
209 uint32_t writable_mask = 0;
210 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
211 uint32_t *data = cfg_entry->ptr.word;
212
213 /* modify emulate register */
214 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
215 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
216
217 /* create value for writing to I/O device register */
218 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
219
220 return 0;
221 }
222
223
224 /* XenPTRegInfo declaration
225 * - only for emulated register (either a part or whole bit).
226 * - for passthrough register that need special behavior (like interacting with
227 * other component), set emu_mask to all 0 and specify r/w func properly.
228 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
229 */
230
231 /********************
232 * Header Type0
233 */
234
235 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
236 XenPTRegInfo *reg, uint32_t real_offset,
237 uint32_t *data)
238 {
239 *data = s->real_device.vendor_id;
240 return 0;
241 }
242 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
243 XenPTRegInfo *reg, uint32_t real_offset,
244 uint32_t *data)
245 {
246 *data = s->real_device.device_id;
247 return 0;
248 }
249 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
250 XenPTRegInfo *reg, uint32_t real_offset,
251 uint32_t *data)
252 {
253 XenPTRegGroup *reg_grp_entry = NULL;
254 XenPTReg *reg_entry = NULL;
255 uint32_t reg_field = 0;
256
257 /* find Header register group */
258 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
259 if (reg_grp_entry) {
260 /* find Capabilities Pointer register */
261 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
262 if (reg_entry) {
263 /* check Capabilities Pointer register */
264 if (*reg_entry->ptr.half_word) {
265 reg_field |= PCI_STATUS_CAP_LIST;
266 } else {
267 reg_field &= ~PCI_STATUS_CAP_LIST;
268 }
269 } else {
270 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
271 " for Capabilities Pointer register."
272 " (%s)\n", __func__);
273 return -1;
274 }
275 } else {
276 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
277 " for Header. (%s)\n", __func__);
278 return -1;
279 }
280
281 *data = reg_field;
282 return 0;
283 }
284 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
285 XenPTRegInfo *reg, uint32_t real_offset,
286 uint32_t *data)
287 {
288 /* read PCI_HEADER_TYPE */
289 *data = reg->init_val | 0x80;
290 return 0;
291 }
292
293 /* initialize Interrupt Pin register */
294 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
295 XenPTRegInfo *reg, uint32_t real_offset,
296 uint32_t *data)
297 {
298 *data = xen_pt_pci_read_intx(s);
299 return 0;
300 }
301
302 /* Command register */
303 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
304 uint16_t *val, uint16_t dev_value,
305 uint16_t valid_mask)
306 {
307 XenPTRegInfo *reg = cfg_entry->reg;
308 uint16_t writable_mask = 0;
309 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
310 uint16_t *data = cfg_entry->ptr.half_word;
311
312 /* modify emulate register */
313 writable_mask = ~reg->ro_mask & valid_mask;
314 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
315
316 /* create value for writing to I/O device register */
317 if (*val & PCI_COMMAND_INTX_DISABLE) {
318 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
319 } else {
320 if (s->machine_irq) {
321 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
322 }
323 }
324
325 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
326
327 return 0;
328 }
329
330 /* BAR */
331 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
332 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
333 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
334 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
335
336 static bool is_64bit_bar(PCIIORegion *r)
337 {
338 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
339 }
340
341 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
342 {
343 if (is_64bit_bar(r)) {
344 uint64_t size64;
345 size64 = (r + 1)->size;
346 size64 <<= 32;
347 size64 += r->size;
348 return size64;
349 }
350 return r->size;
351 }
352
353 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
354 int index)
355 {
356 PCIDevice *d = &s->dev;
357 XenPTRegion *region = NULL;
358 PCIIORegion *r;
359
360 /* check 64bit BAR */
361 if ((0 < index) && (index < PCI_ROM_SLOT)) {
362 int type = s->real_device.io_regions[index - 1].type;
363
364 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
365 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
366 region = &s->bases[index - 1];
367 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
368 return XEN_PT_BAR_FLAG_UPPER;
369 }
370 }
371 }
372
373 /* check unused BAR */
374 r = &d->io_regions[index];
375 if (!xen_pt_get_bar_size(r)) {
376 return XEN_PT_BAR_FLAG_UNUSED;
377 }
378
379 /* for ExpROM BAR */
380 if (index == PCI_ROM_SLOT) {
381 return XEN_PT_BAR_FLAG_MEM;
382 }
383
384 /* check BAR I/O indicator */
385 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
386 return XEN_PT_BAR_FLAG_IO;
387 } else {
388 return XEN_PT_BAR_FLAG_MEM;
389 }
390 }
391
392 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
393 {
394 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
395 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
396 } else {
397 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
398 }
399 }
400
401 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
402 uint32_t real_offset, uint32_t *data)
403 {
404 uint32_t reg_field = 0;
405 int index;
406
407 index = xen_pt_bar_offset_to_index(reg->offset);
408 if (index < 0 || index >= PCI_NUM_REGIONS) {
409 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
410 return -1;
411 }
412
413 /* set BAR flag */
414 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
415 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
416 reg_field = XEN_PT_INVALID_REG;
417 }
418
419 *data = reg_field;
420 return 0;
421 }
422 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
423 uint32_t *value, uint32_t valid_mask)
424 {
425 XenPTRegInfo *reg = cfg_entry->reg;
426 uint32_t valid_emu_mask = 0;
427 uint32_t bar_emu_mask = 0;
428 int index;
429
430 /* get BAR index */
431 index = xen_pt_bar_offset_to_index(reg->offset);
432 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
433 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
434 return -1;
435 }
436
437 /* use fixed-up value from kernel sysfs */
438 *value = base_address_with_flags(&s->real_device.io_regions[index]);
439
440 /* set emulate mask depend on BAR flag */
441 switch (s->bases[index].bar_flag) {
442 case XEN_PT_BAR_FLAG_MEM:
443 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
444 break;
445 case XEN_PT_BAR_FLAG_IO:
446 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
447 break;
448 case XEN_PT_BAR_FLAG_UPPER:
449 bar_emu_mask = XEN_PT_BAR_ALLF;
450 break;
451 default:
452 break;
453 }
454
455 /* emulate BAR */
456 valid_emu_mask = bar_emu_mask & valid_mask;
457 *value = XEN_PT_MERGE_VALUE(*value, *cfg_entry->ptr.word, ~valid_emu_mask);
458
459 return 0;
460 }
461 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
462 uint32_t *val, uint32_t dev_value,
463 uint32_t valid_mask)
464 {
465 XenPTRegInfo *reg = cfg_entry->reg;
466 XenPTRegion *base = NULL;
467 PCIDevice *d = &s->dev;
468 const PCIIORegion *r;
469 uint32_t writable_mask = 0;
470 uint32_t bar_emu_mask = 0;
471 uint32_t bar_ro_mask = 0;
472 uint32_t r_size = 0;
473 int index = 0;
474 uint32_t *data = cfg_entry->ptr.word;
475
476 index = xen_pt_bar_offset_to_index(reg->offset);
477 if (index < 0 || index >= PCI_NUM_REGIONS) {
478 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
479 return -1;
480 }
481
482 r = &d->io_regions[index];
483 base = &s->bases[index];
484 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
485
486 /* set emulate mask and read-only mask values depend on the BAR flag */
487 switch (s->bases[index].bar_flag) {
488 case XEN_PT_BAR_FLAG_MEM:
489 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
490 if (!r_size) {
491 /* low 32 bits mask for 64 bit bars */
492 bar_ro_mask = XEN_PT_BAR_ALLF;
493 } else {
494 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
495 }
496 break;
497 case XEN_PT_BAR_FLAG_IO:
498 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
499 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
500 break;
501 case XEN_PT_BAR_FLAG_UPPER:
502 bar_emu_mask = XEN_PT_BAR_ALLF;
503 bar_ro_mask = r_size ? r_size - 1 : 0;
504 break;
505 default:
506 break;
507 }
508
509 /* modify emulate register */
510 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
511 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
512
513 /* check whether we need to update the virtual region address or not */
514 switch (s->bases[index].bar_flag) {
515 case XEN_PT_BAR_FLAG_UPPER:
516 case XEN_PT_BAR_FLAG_MEM:
517 /* nothing to do */
518 break;
519 case XEN_PT_BAR_FLAG_IO:
520 /* nothing to do */
521 break;
522 default:
523 break;
524 }
525
526 /* create value for writing to I/O device register */
527 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
528
529 return 0;
530 }
531
532 /* write Exp ROM BAR */
533 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
534 XenPTReg *cfg_entry, uint32_t *val,
535 uint32_t dev_value, uint32_t valid_mask)
536 {
537 XenPTRegInfo *reg = cfg_entry->reg;
538 XenPTRegion *base = NULL;
539 PCIDevice *d = (PCIDevice *)&s->dev;
540 uint32_t writable_mask = 0;
541 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
542 pcibus_t r_size = 0;
543 uint32_t bar_ro_mask = 0;
544 uint32_t *data = cfg_entry->ptr.word;
545
546 r_size = d->io_regions[PCI_ROM_SLOT].size;
547 base = &s->bases[PCI_ROM_SLOT];
548 /* align memory type resource size */
549 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
550
551 /* set emulate mask and read-only mask */
552 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
553
554 /* modify emulate register */
555 writable_mask = ~bar_ro_mask & valid_mask;
556 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
557
558 /* create value for writing to I/O device register */
559 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
560
561 return 0;
562 }
563
564 static int xen_pt_intel_opregion_read(XenPCIPassthroughState *s,
565 XenPTReg *cfg_entry,
566 uint32_t *value, uint32_t valid_mask)
567 {
568 *value = igd_read_opregion(s);
569 return 0;
570 }
571
572 static int xen_pt_intel_opregion_write(XenPCIPassthroughState *s,
573 XenPTReg *cfg_entry, uint32_t *value,
574 uint32_t dev_value, uint32_t valid_mask)
575 {
576 igd_write_opregion(s, *value);
577 return 0;
578 }
579
580 /* Header Type0 reg static information table */
581 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
582 /* Vendor ID reg */
583 {
584 .offset = PCI_VENDOR_ID,
585 .size = 2,
586 .init_val = 0x0000,
587 .ro_mask = 0xFFFF,
588 .emu_mask = 0xFFFF,
589 .init = xen_pt_vendor_reg_init,
590 .u.w.read = xen_pt_word_reg_read,
591 .u.w.write = xen_pt_word_reg_write,
592 },
593 /* Device ID reg */
594 {
595 .offset = PCI_DEVICE_ID,
596 .size = 2,
597 .init_val = 0x0000,
598 .ro_mask = 0xFFFF,
599 .emu_mask = 0xFFFF,
600 .init = xen_pt_device_reg_init,
601 .u.w.read = xen_pt_word_reg_read,
602 .u.w.write = xen_pt_word_reg_write,
603 },
604 /* Command reg */
605 {
606 .offset = PCI_COMMAND,
607 .size = 2,
608 .init_val = 0x0000,
609 .res_mask = 0xF880,
610 .emu_mask = 0x0743,
611 .init = xen_pt_common_reg_init,
612 .u.w.read = xen_pt_word_reg_read,
613 .u.w.write = xen_pt_cmd_reg_write,
614 },
615 /* Capabilities Pointer reg */
616 {
617 .offset = PCI_CAPABILITY_LIST,
618 .size = 1,
619 .init_val = 0x00,
620 .ro_mask = 0xFF,
621 .emu_mask = 0xFF,
622 .init = xen_pt_ptr_reg_init,
623 .u.b.read = xen_pt_byte_reg_read,
624 .u.b.write = xen_pt_byte_reg_write,
625 },
626 /* Status reg */
627 /* use emulated Cap Ptr value to initialize,
628 * so need to be declared after Cap Ptr reg
629 */
630 {
631 .offset = PCI_STATUS,
632 .size = 2,
633 .init_val = 0x0000,
634 .res_mask = 0x0007,
635 .ro_mask = 0x06F8,
636 .emu_mask = 0x0010,
637 .init = xen_pt_status_reg_init,
638 .u.w.read = xen_pt_word_reg_read,
639 .u.w.write = xen_pt_word_reg_write,
640 },
641 /* Cache Line Size reg */
642 {
643 .offset = PCI_CACHE_LINE_SIZE,
644 .size = 1,
645 .init_val = 0x00,
646 .ro_mask = 0x00,
647 .emu_mask = 0xFF,
648 .init = xen_pt_common_reg_init,
649 .u.b.read = xen_pt_byte_reg_read,
650 .u.b.write = xen_pt_byte_reg_write,
651 },
652 /* Latency Timer reg */
653 {
654 .offset = PCI_LATENCY_TIMER,
655 .size = 1,
656 .init_val = 0x00,
657 .ro_mask = 0x00,
658 .emu_mask = 0xFF,
659 .init = xen_pt_common_reg_init,
660 .u.b.read = xen_pt_byte_reg_read,
661 .u.b.write = xen_pt_byte_reg_write,
662 },
663 /* Header Type reg */
664 {
665 .offset = PCI_HEADER_TYPE,
666 .size = 1,
667 .init_val = 0x00,
668 .ro_mask = 0xFF,
669 .emu_mask = 0x00,
670 .init = xen_pt_header_type_reg_init,
671 .u.b.read = xen_pt_byte_reg_read,
672 .u.b.write = xen_pt_byte_reg_write,
673 },
674 /* Interrupt Line reg */
675 {
676 .offset = PCI_INTERRUPT_LINE,
677 .size = 1,
678 .init_val = 0x00,
679 .ro_mask = 0x00,
680 .emu_mask = 0xFF,
681 .init = xen_pt_common_reg_init,
682 .u.b.read = xen_pt_byte_reg_read,
683 .u.b.write = xen_pt_byte_reg_write,
684 },
685 /* Interrupt Pin reg */
686 {
687 .offset = PCI_INTERRUPT_PIN,
688 .size = 1,
689 .init_val = 0x00,
690 .ro_mask = 0xFF,
691 .emu_mask = 0xFF,
692 .init = xen_pt_irqpin_reg_init,
693 .u.b.read = xen_pt_byte_reg_read,
694 .u.b.write = xen_pt_byte_reg_write,
695 },
696 /* BAR 0 reg */
697 /* mask of BAR need to be decided later, depends on IO/MEM type */
698 {
699 .offset = PCI_BASE_ADDRESS_0,
700 .size = 4,
701 .init_val = 0x00000000,
702 .init = xen_pt_bar_reg_init,
703 .u.dw.read = xen_pt_bar_reg_read,
704 .u.dw.write = xen_pt_bar_reg_write,
705 },
706 /* BAR 1 reg */
707 {
708 .offset = PCI_BASE_ADDRESS_1,
709 .size = 4,
710 .init_val = 0x00000000,
711 .init = xen_pt_bar_reg_init,
712 .u.dw.read = xen_pt_bar_reg_read,
713 .u.dw.write = xen_pt_bar_reg_write,
714 },
715 /* BAR 2 reg */
716 {
717 .offset = PCI_BASE_ADDRESS_2,
718 .size = 4,
719 .init_val = 0x00000000,
720 .init = xen_pt_bar_reg_init,
721 .u.dw.read = xen_pt_bar_reg_read,
722 .u.dw.write = xen_pt_bar_reg_write,
723 },
724 /* BAR 3 reg */
725 {
726 .offset = PCI_BASE_ADDRESS_3,
727 .size = 4,
728 .init_val = 0x00000000,
729 .init = xen_pt_bar_reg_init,
730 .u.dw.read = xen_pt_bar_reg_read,
731 .u.dw.write = xen_pt_bar_reg_write,
732 },
733 /* BAR 4 reg */
734 {
735 .offset = PCI_BASE_ADDRESS_4,
736 .size = 4,
737 .init_val = 0x00000000,
738 .init = xen_pt_bar_reg_init,
739 .u.dw.read = xen_pt_bar_reg_read,
740 .u.dw.write = xen_pt_bar_reg_write,
741 },
742 /* BAR 5 reg */
743 {
744 .offset = PCI_BASE_ADDRESS_5,
745 .size = 4,
746 .init_val = 0x00000000,
747 .init = xen_pt_bar_reg_init,
748 .u.dw.read = xen_pt_bar_reg_read,
749 .u.dw.write = xen_pt_bar_reg_write,
750 },
751 /* Expansion ROM BAR reg */
752 {
753 .offset = PCI_ROM_ADDRESS,
754 .size = 4,
755 .init_val = 0x00000000,
756 .ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
757 .emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
758 .init = xen_pt_bar_reg_init,
759 .u.dw.read = xen_pt_long_reg_read,
760 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
761 },
762 {
763 .size = 0,
764 },
765 };
766
767
768 /*********************************
769 * Vital Product Data Capability
770 */
771
772 /* Vital Product Data Capability Structure reg static information table */
773 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
774 {
775 .offset = PCI_CAP_LIST_NEXT,
776 .size = 1,
777 .init_val = 0x00,
778 .ro_mask = 0xFF,
779 .emu_mask = 0xFF,
780 .init = xen_pt_ptr_reg_init,
781 .u.b.read = xen_pt_byte_reg_read,
782 .u.b.write = xen_pt_byte_reg_write,
783 },
784 {
785 .offset = PCI_VPD_ADDR,
786 .size = 2,
787 .ro_mask = 0x0003,
788 .emu_mask = 0x0003,
789 .init = xen_pt_common_reg_init,
790 .u.w.read = xen_pt_word_reg_read,
791 .u.w.write = xen_pt_word_reg_write,
792 },
793 {
794 .size = 0,
795 },
796 };
797
798
799 /**************************************
800 * Vendor Specific Capability
801 */
802
803 /* Vendor Specific Capability Structure reg static information table */
804 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
805 {
806 .offset = PCI_CAP_LIST_NEXT,
807 .size = 1,
808 .init_val = 0x00,
809 .ro_mask = 0xFF,
810 .emu_mask = 0xFF,
811 .init = xen_pt_ptr_reg_init,
812 .u.b.read = xen_pt_byte_reg_read,
813 .u.b.write = xen_pt_byte_reg_write,
814 },
815 {
816 .size = 0,
817 },
818 };
819
820
821 /*****************************
822 * PCI Express Capability
823 */
824
825 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
826 uint32_t offset)
827 {
828 uint8_t flag;
829 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
830 return 0;
831 }
832 return flag & PCI_EXP_FLAGS_VERS;
833 }
834
835 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
836 uint32_t offset)
837 {
838 uint8_t flag;
839 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
840 return 0;
841 }
842 return (flag & PCI_EXP_FLAGS_TYPE) >> 4;
843 }
844
845 /* initialize Link Control register */
846 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
847 XenPTRegInfo *reg, uint32_t real_offset,
848 uint32_t *data)
849 {
850 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
851 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
852
853 /* no need to initialize in case of Root Complex Integrated Endpoint
854 * with cap_ver 1.x
855 */
856 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
857 *data = XEN_PT_INVALID_REG;
858 }
859
860 *data = reg->init_val;
861 return 0;
862 }
863 /* initialize Device Control 2 register */
864 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
865 XenPTRegInfo *reg, uint32_t real_offset,
866 uint32_t *data)
867 {
868 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
869
870 /* no need to initialize in case of cap_ver 1.x */
871 if (cap_ver == 1) {
872 *data = XEN_PT_INVALID_REG;
873 }
874
875 *data = reg->init_val;
876 return 0;
877 }
878 /* initialize Link Control 2 register */
879 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
880 XenPTRegInfo *reg, uint32_t real_offset,
881 uint32_t *data)
882 {
883 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
884 uint32_t reg_field = 0;
885
886 /* no need to initialize in case of cap_ver 1.x */
887 if (cap_ver == 1) {
888 reg_field = XEN_PT_INVALID_REG;
889 } else {
890 /* set Supported Link Speed */
891 uint8_t lnkcap;
892 int rc;
893 rc = xen_host_pci_get_byte(&s->real_device,
894 real_offset - reg->offset + PCI_EXP_LNKCAP,
895 &lnkcap);
896 if (rc) {
897 return rc;
898 }
899 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
900 }
901
902 *data = reg_field;
903 return 0;
904 }
905
906 /* PCI Express Capability Structure reg static information table */
907 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
908 /* Next Pointer reg */
909 {
910 .offset = PCI_CAP_LIST_NEXT,
911 .size = 1,
912 .init_val = 0x00,
913 .ro_mask = 0xFF,
914 .emu_mask = 0xFF,
915 .init = xen_pt_ptr_reg_init,
916 .u.b.read = xen_pt_byte_reg_read,
917 .u.b.write = xen_pt_byte_reg_write,
918 },
919 /* Device Capabilities reg */
920 {
921 .offset = PCI_EXP_DEVCAP,
922 .size = 4,
923 .init_val = 0x00000000,
924 .ro_mask = 0xFFFFFFFF,
925 .emu_mask = 0x10000000,
926 .init = xen_pt_common_reg_init,
927 .u.dw.read = xen_pt_long_reg_read,
928 .u.dw.write = xen_pt_long_reg_write,
929 },
930 /* Device Control reg */
931 {
932 .offset = PCI_EXP_DEVCTL,
933 .size = 2,
934 .init_val = 0x2810,
935 .ro_mask = 0x8400,
936 .emu_mask = 0xFFFF,
937 .init = xen_pt_common_reg_init,
938 .u.w.read = xen_pt_word_reg_read,
939 .u.w.write = xen_pt_word_reg_write,
940 },
941 /* Device Status reg */
942 {
943 .offset = PCI_EXP_DEVSTA,
944 .size = 2,
945 .res_mask = 0xFFC0,
946 .ro_mask = 0x0030,
947 .init = xen_pt_common_reg_init,
948 .u.w.read = xen_pt_word_reg_read,
949 .u.w.write = xen_pt_word_reg_write,
950 },
951 /* Link Control reg */
952 {
953 .offset = PCI_EXP_LNKCTL,
954 .size = 2,
955 .init_val = 0x0000,
956 .ro_mask = 0xFC34,
957 .emu_mask = 0xFFFF,
958 .init = xen_pt_linkctrl_reg_init,
959 .u.w.read = xen_pt_word_reg_read,
960 .u.w.write = xen_pt_word_reg_write,
961 },
962 /* Link Status reg */
963 {
964 .offset = PCI_EXP_LNKSTA,
965 .size = 2,
966 .ro_mask = 0x3FFF,
967 .init = xen_pt_common_reg_init,
968 .u.w.read = xen_pt_word_reg_read,
969 .u.w.write = xen_pt_word_reg_write,
970 },
971 /* Device Control 2 reg */
972 {
973 .offset = 0x28,
974 .size = 2,
975 .init_val = 0x0000,
976 .ro_mask = 0xFFE0,
977 .emu_mask = 0xFFFF,
978 .init = xen_pt_devctrl2_reg_init,
979 .u.w.read = xen_pt_word_reg_read,
980 .u.w.write = xen_pt_word_reg_write,
981 },
982 /* Link Control 2 reg */
983 {
984 .offset = 0x30,
985 .size = 2,
986 .init_val = 0x0000,
987 .ro_mask = 0xE040,
988 .emu_mask = 0xFFFF,
989 .init = xen_pt_linkctrl2_reg_init,
990 .u.w.read = xen_pt_word_reg_read,
991 .u.w.write = xen_pt_word_reg_write,
992 },
993 {
994 .size = 0,
995 },
996 };
997
998
999 /*********************************
1000 * Power Management Capability
1001 */
1002
1003 /* write Power Management Control/Status register */
1004 static int xen_pt_pmcsr_reg_write(XenPCIPassthroughState *s,
1005 XenPTReg *cfg_entry, uint16_t *val,
1006 uint16_t dev_value, uint16_t valid_mask)
1007 {
1008 XenPTRegInfo *reg = cfg_entry->reg;
1009 uint16_t writable_mask = 0;
1010 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1011 uint16_t *data = cfg_entry->ptr.half_word;
1012
1013 /* modify emulate register */
1014 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1015 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1016
1017 /* create value for writing to I/O device register */
1018 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~PCI_PM_CTRL_PME_STATUS,
1019 throughable_mask);
1020
1021 return 0;
1022 }
1023
1024 /* Power Management Capability reg static information table */
1025 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
1026 /* Next Pointer reg */
1027 {
1028 .offset = PCI_CAP_LIST_NEXT,
1029 .size = 1,
1030 .init_val = 0x00,
1031 .ro_mask = 0xFF,
1032 .emu_mask = 0xFF,
1033 .init = xen_pt_ptr_reg_init,
1034 .u.b.read = xen_pt_byte_reg_read,
1035 .u.b.write = xen_pt_byte_reg_write,
1036 },
1037 /* Power Management Capabilities reg */
1038 {
1039 .offset = PCI_CAP_FLAGS,
1040 .size = 2,
1041 .init_val = 0x0000,
1042 .ro_mask = 0xFFFF,
1043 .emu_mask = 0xF9C8,
1044 .init = xen_pt_common_reg_init,
1045 .u.w.read = xen_pt_word_reg_read,
1046 .u.w.write = xen_pt_word_reg_write,
1047 },
1048 /* PCI Power Management Control/Status reg */
1049 {
1050 .offset = PCI_PM_CTRL,
1051 .size = 2,
1052 .init_val = 0x0008,
1053 .res_mask = 0x00F0,
1054 .ro_mask = 0xE10C,
1055 .emu_mask = 0x810B,
1056 .init = xen_pt_common_reg_init,
1057 .u.w.read = xen_pt_word_reg_read,
1058 .u.w.write = xen_pt_pmcsr_reg_write,
1059 },
1060 {
1061 .size = 0,
1062 },
1063 };
1064
1065
1066 /********************************
1067 * MSI Capability
1068 */
1069
1070 /* Helper */
1071 #define xen_pt_msi_check_type(offset, flags, what) \
1072 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1073 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1074
1075 /* Message Control register */
1076 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1077 XenPTRegInfo *reg, uint32_t real_offset,
1078 uint32_t *data)
1079 {
1080 XenPTMSI *msi = s->msi;
1081 uint16_t reg_field;
1082 int rc;
1083
1084 /* use I/O device register's value as initial value */
1085 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1086 if (rc) {
1087 return rc;
1088 }
1089 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1090 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1091 xen_host_pci_set_word(&s->real_device, real_offset,
1092 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1093 }
1094 msi->flags |= reg_field;
1095 msi->ctrl_offset = real_offset;
1096 msi->initialized = false;
1097 msi->mapped = false;
1098
1099 *data = reg->init_val;
1100 return 0;
1101 }
1102 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1103 XenPTReg *cfg_entry, uint16_t *val,
1104 uint16_t dev_value, uint16_t valid_mask)
1105 {
1106 XenPTRegInfo *reg = cfg_entry->reg;
1107 XenPTMSI *msi = s->msi;
1108 uint16_t writable_mask = 0;
1109 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1110 uint16_t *data = cfg_entry->ptr.half_word;
1111
1112 /* Currently no support for multi-vector */
1113 if (*val & PCI_MSI_FLAGS_QSIZE) {
1114 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1115 }
1116
1117 /* modify emulate register */
1118 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1119 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1120 msi->flags |= *data & ~PCI_MSI_FLAGS_ENABLE;
1121
1122 /* create value for writing to I/O device register */
1123 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1124
1125 /* update MSI */
1126 if (*val & PCI_MSI_FLAGS_ENABLE) {
1127 /* setup MSI pirq for the first time */
1128 if (!msi->initialized) {
1129 /* Init physical one */
1130 XEN_PT_LOG(&s->dev, "setup MSI (register: %x).\n", *val);
1131 if (xen_pt_msi_setup(s)) {
1132 /* We do not broadcast the error to the framework code, so
1133 * that MSI errors are contained in MSI emulation code and
1134 * QEMU can go on running.
1135 * Guest MSI would be actually not working.
1136 */
1137 *val &= ~PCI_MSI_FLAGS_ENABLE;
1138 XEN_PT_WARN(&s->dev, "Can not map MSI (register: %x)!\n", *val);
1139 return 0;
1140 }
1141 if (xen_pt_msi_update(s)) {
1142 *val &= ~PCI_MSI_FLAGS_ENABLE;
1143 XEN_PT_WARN(&s->dev, "Can not bind MSI (register: %x)!\n", *val);
1144 return 0;
1145 }
1146 msi->initialized = true;
1147 msi->mapped = true;
1148 }
1149 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1150 } else if (msi->mapped) {
1151 xen_pt_msi_disable(s);
1152 }
1153
1154 return 0;
1155 }
1156
1157 /* initialize Message Upper Address register */
1158 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1159 XenPTRegInfo *reg, uint32_t real_offset,
1160 uint32_t *data)
1161 {
1162 /* no need to initialize in case of 32 bit type */
1163 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1164 *data = XEN_PT_INVALID_REG;
1165 } else {
1166 *data = reg->init_val;
1167 }
1168
1169 return 0;
1170 }
1171 /* this function will be called twice (for 32 bit and 64 bit type) */
1172 /* initialize Message Data register */
1173 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1174 XenPTRegInfo *reg, uint32_t real_offset,
1175 uint32_t *data)
1176 {
1177 uint32_t flags = s->msi->flags;
1178 uint32_t offset = reg->offset;
1179
1180 /* check the offset whether matches the type or not */
1181 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1182 *data = reg->init_val;
1183 } else {
1184 *data = XEN_PT_INVALID_REG;
1185 }
1186 return 0;
1187 }
1188
1189 /* this function will be called twice (for 32 bit and 64 bit type) */
1190 /* initialize Mask register */
1191 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1192 XenPTRegInfo *reg, uint32_t real_offset,
1193 uint32_t *data)
1194 {
1195 uint32_t flags = s->msi->flags;
1196
1197 /* check the offset whether matches the type or not */
1198 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1199 *data = XEN_PT_INVALID_REG;
1200 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1201 *data = reg->init_val;
1202 } else {
1203 *data = XEN_PT_INVALID_REG;
1204 }
1205 return 0;
1206 }
1207
1208 /* this function will be called twice (for 32 bit and 64 bit type) */
1209 /* initialize Pending register */
1210 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1211 XenPTRegInfo *reg, uint32_t real_offset,
1212 uint32_t *data)
1213 {
1214 uint32_t flags = s->msi->flags;
1215
1216 /* check the offset whether matches the type or not */
1217 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1218 *data = XEN_PT_INVALID_REG;
1219 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1220 *data = reg->init_val;
1221 } else {
1222 *data = XEN_PT_INVALID_REG;
1223 }
1224 return 0;
1225 }
1226
1227 /* write Message Address register */
1228 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1229 XenPTReg *cfg_entry, uint32_t *val,
1230 uint32_t dev_value, uint32_t valid_mask)
1231 {
1232 XenPTRegInfo *reg = cfg_entry->reg;
1233 uint32_t writable_mask = 0;
1234 uint32_t old_addr = *cfg_entry->ptr.word;
1235 uint32_t *data = cfg_entry->ptr.word;
1236
1237 /* modify emulate register */
1238 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1239 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1240 s->msi->addr_lo = *data;
1241
1242 /* create value for writing to I/O device register */
1243 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1244
1245 /* update MSI */
1246 if (*data != old_addr) {
1247 if (s->msi->mapped) {
1248 xen_pt_msi_update(s);
1249 }
1250 }
1251
1252 return 0;
1253 }
1254 /* write Message Upper Address register */
1255 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1256 XenPTReg *cfg_entry, uint32_t *val,
1257 uint32_t dev_value, uint32_t valid_mask)
1258 {
1259 XenPTRegInfo *reg = cfg_entry->reg;
1260 uint32_t writable_mask = 0;
1261 uint32_t old_addr = *cfg_entry->ptr.word;
1262 uint32_t *data = cfg_entry->ptr.word;
1263
1264 /* check whether the type is 64 bit or not */
1265 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1266 XEN_PT_ERR(&s->dev,
1267 "Can't write to the upper address without 64 bit support\n");
1268 return -1;
1269 }
1270
1271 /* modify emulate register */
1272 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1273 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1274 /* update the msi_info too */
1275 s->msi->addr_hi = *data;
1276
1277 /* create value for writing to I/O device register */
1278 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1279
1280 /* update MSI */
1281 if (*data != old_addr) {
1282 if (s->msi->mapped) {
1283 xen_pt_msi_update(s);
1284 }
1285 }
1286
1287 return 0;
1288 }
1289
1290
1291 /* this function will be called twice (for 32 bit and 64 bit type) */
1292 /* write Message Data register */
1293 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1294 XenPTReg *cfg_entry, uint16_t *val,
1295 uint16_t dev_value, uint16_t valid_mask)
1296 {
1297 XenPTRegInfo *reg = cfg_entry->reg;
1298 XenPTMSI *msi = s->msi;
1299 uint16_t writable_mask = 0;
1300 uint16_t old_data = *cfg_entry->ptr.half_word;
1301 uint32_t offset = reg->offset;
1302 uint16_t *data = cfg_entry->ptr.half_word;
1303
1304 /* check the offset whether matches the type or not */
1305 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1306 /* exit I/O emulator */
1307 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1308 return -1;
1309 }
1310
1311 /* modify emulate register */
1312 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1313 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1314 /* update the msi_info too */
1315 msi->data = *data;
1316
1317 /* create value for writing to I/O device register */
1318 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1319
1320 /* update MSI */
1321 if (*data != old_data) {
1322 if (msi->mapped) {
1323 xen_pt_msi_update(s);
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 /* MSI Capability Structure reg static information table */
1331 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1332 /* Next Pointer reg */
1333 {
1334 .offset = PCI_CAP_LIST_NEXT,
1335 .size = 1,
1336 .init_val = 0x00,
1337 .ro_mask = 0xFF,
1338 .emu_mask = 0xFF,
1339 .init = xen_pt_ptr_reg_init,
1340 .u.b.read = xen_pt_byte_reg_read,
1341 .u.b.write = xen_pt_byte_reg_write,
1342 },
1343 /* Message Control reg */
1344 {
1345 .offset = PCI_MSI_FLAGS,
1346 .size = 2,
1347 .init_val = 0x0000,
1348 .res_mask = 0xFE00,
1349 .ro_mask = 0x018E,
1350 .emu_mask = 0x017E,
1351 .init = xen_pt_msgctrl_reg_init,
1352 .u.w.read = xen_pt_word_reg_read,
1353 .u.w.write = xen_pt_msgctrl_reg_write,
1354 },
1355 /* Message Address reg */
1356 {
1357 .offset = PCI_MSI_ADDRESS_LO,
1358 .size = 4,
1359 .init_val = 0x00000000,
1360 .ro_mask = 0x00000003,
1361 .emu_mask = 0xFFFFFFFF,
1362 .init = xen_pt_common_reg_init,
1363 .u.dw.read = xen_pt_long_reg_read,
1364 .u.dw.write = xen_pt_msgaddr32_reg_write,
1365 },
1366 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1367 {
1368 .offset = PCI_MSI_ADDRESS_HI,
1369 .size = 4,
1370 .init_val = 0x00000000,
1371 .ro_mask = 0x00000000,
1372 .emu_mask = 0xFFFFFFFF,
1373 .init = xen_pt_msgaddr64_reg_init,
1374 .u.dw.read = xen_pt_long_reg_read,
1375 .u.dw.write = xen_pt_msgaddr64_reg_write,
1376 },
1377 /* Message Data reg (16 bits of data for 32-bit devices) */
1378 {
1379 .offset = PCI_MSI_DATA_32,
1380 .size = 2,
1381 .init_val = 0x0000,
1382 .ro_mask = 0x0000,
1383 .emu_mask = 0xFFFF,
1384 .init = xen_pt_msgdata_reg_init,
1385 .u.w.read = xen_pt_word_reg_read,
1386 .u.w.write = xen_pt_msgdata_reg_write,
1387 },
1388 /* Message Data reg (16 bits of data for 64-bit devices) */
1389 {
1390 .offset = PCI_MSI_DATA_64,
1391 .size = 2,
1392 .init_val = 0x0000,
1393 .ro_mask = 0x0000,
1394 .emu_mask = 0xFFFF,
1395 .init = xen_pt_msgdata_reg_init,
1396 .u.w.read = xen_pt_word_reg_read,
1397 .u.w.write = xen_pt_msgdata_reg_write,
1398 },
1399 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1400 {
1401 .offset = PCI_MSI_MASK_32,
1402 .size = 4,
1403 .init_val = 0x00000000,
1404 .ro_mask = 0xFFFFFFFF,
1405 .emu_mask = 0xFFFFFFFF,
1406 .init = xen_pt_mask_reg_init,
1407 .u.dw.read = xen_pt_long_reg_read,
1408 .u.dw.write = xen_pt_long_reg_write,
1409 },
1410 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1411 {
1412 .offset = PCI_MSI_MASK_64,
1413 .size = 4,
1414 .init_val = 0x00000000,
1415 .ro_mask = 0xFFFFFFFF,
1416 .emu_mask = 0xFFFFFFFF,
1417 .init = xen_pt_mask_reg_init,
1418 .u.dw.read = xen_pt_long_reg_read,
1419 .u.dw.write = xen_pt_long_reg_write,
1420 },
1421 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1422 {
1423 .offset = PCI_MSI_MASK_32 + 4,
1424 .size = 4,
1425 .init_val = 0x00000000,
1426 .ro_mask = 0xFFFFFFFF,
1427 .emu_mask = 0x00000000,
1428 .init = xen_pt_pending_reg_init,
1429 .u.dw.read = xen_pt_long_reg_read,
1430 .u.dw.write = xen_pt_long_reg_write,
1431 },
1432 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1433 {
1434 .offset = PCI_MSI_MASK_64 + 4,
1435 .size = 4,
1436 .init_val = 0x00000000,
1437 .ro_mask = 0xFFFFFFFF,
1438 .emu_mask = 0x00000000,
1439 .init = xen_pt_pending_reg_init,
1440 .u.dw.read = xen_pt_long_reg_read,
1441 .u.dw.write = xen_pt_long_reg_write,
1442 },
1443 {
1444 .size = 0,
1445 },
1446 };
1447
1448
1449 /**************************************
1450 * MSI-X Capability
1451 */
1452
1453 /* Message Control register for MSI-X */
1454 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1455 XenPTRegInfo *reg, uint32_t real_offset,
1456 uint32_t *data)
1457 {
1458 uint16_t reg_field;
1459 int rc;
1460
1461 /* use I/O device register's value as initial value */
1462 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1463 if (rc) {
1464 return rc;
1465 }
1466 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1467 XEN_PT_LOG(&s->dev, "MSIX already enabled, disabling it first\n");
1468 xen_host_pci_set_word(&s->real_device, real_offset,
1469 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1470 }
1471
1472 s->msix->ctrl_offset = real_offset;
1473
1474 *data = reg->init_val;
1475 return 0;
1476 }
1477 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1478 XenPTReg *cfg_entry, uint16_t *val,
1479 uint16_t dev_value, uint16_t valid_mask)
1480 {
1481 XenPTRegInfo *reg = cfg_entry->reg;
1482 uint16_t writable_mask = 0;
1483 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1484 int debug_msix_enabled_old;
1485 uint16_t *data = cfg_entry->ptr.half_word;
1486
1487 /* modify emulate register */
1488 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1489 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1490
1491 /* create value for writing to I/O device register */
1492 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1493
1494 /* update MSI-X */
1495 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1496 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1497 xen_pt_msix_update(s);
1498 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1499 xen_pt_msix_disable(s);
1500 }
1501
1502 debug_msix_enabled_old = s->msix->enabled;
1503 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1504 if (s->msix->enabled != debug_msix_enabled_old) {
1505 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1506 s->msix->enabled ? "enable" : "disable");
1507 }
1508
1509 return 0;
1510 }
1511
1512 /* MSI-X Capability Structure reg static information table */
1513 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1514 /* Next Pointer reg */
1515 {
1516 .offset = PCI_CAP_LIST_NEXT,
1517 .size = 1,
1518 .init_val = 0x00,
1519 .ro_mask = 0xFF,
1520 .emu_mask = 0xFF,
1521 .init = xen_pt_ptr_reg_init,
1522 .u.b.read = xen_pt_byte_reg_read,
1523 .u.b.write = xen_pt_byte_reg_write,
1524 },
1525 /* Message Control reg */
1526 {
1527 .offset = PCI_MSI_FLAGS,
1528 .size = 2,
1529 .init_val = 0x0000,
1530 .res_mask = 0x3800,
1531 .ro_mask = 0x07FF,
1532 .emu_mask = 0x0000,
1533 .init = xen_pt_msixctrl_reg_init,
1534 .u.w.read = xen_pt_word_reg_read,
1535 .u.w.write = xen_pt_msixctrl_reg_write,
1536 },
1537 {
1538 .size = 0,
1539 },
1540 };
1541
1542 static XenPTRegInfo xen_pt_emu_reg_igd_opregion[] = {
1543 /* Intel IGFX OpRegion reg */
1544 {
1545 .offset = 0x0,
1546 .size = 4,
1547 .init_val = 0,
1548 .u.dw.read = xen_pt_intel_opregion_read,
1549 .u.dw.write = xen_pt_intel_opregion_write,
1550 },
1551 {
1552 .size = 0,
1553 },
1554 };
1555
1556 /****************************
1557 * Capabilities
1558 */
1559
1560 /* capability structure register group size functions */
1561
1562 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1563 const XenPTRegGroupInfo *grp_reg,
1564 uint32_t base_offset, uint8_t *size)
1565 {
1566 *size = grp_reg->grp_size;
1567 return 0;
1568 }
1569 /* get Vendor Specific Capability Structure register group size */
1570 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1571 const XenPTRegGroupInfo *grp_reg,
1572 uint32_t base_offset, uint8_t *size)
1573 {
1574 return xen_host_pci_get_byte(&s->real_device, base_offset + 0x02, size);
1575 }
1576 /* get PCI Express Capability Structure register group size */
1577 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1578 const XenPTRegGroupInfo *grp_reg,
1579 uint32_t base_offset, uint8_t *size)
1580 {
1581 PCIDevice *d = &s->dev;
1582 uint8_t version = get_capability_version(s, base_offset);
1583 uint8_t type = get_device_type(s, base_offset);
1584 uint8_t pcie_size = 0;
1585
1586
1587 /* calculate size depend on capability version and device/port type */
1588 /* in case of PCI Express Base Specification Rev 1.x */
1589 if (version == 1) {
1590 /* The PCI Express Capabilities, Device Capabilities, and Device
1591 * Status/Control registers are required for all PCI Express devices.
1592 * The Link Capabilities and Link Status/Control are required for all
1593 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1594 * are not required to implement registers other than those listed
1595 * above and terminate the capability structure.
1596 */
1597 switch (type) {
1598 case PCI_EXP_TYPE_ENDPOINT:
1599 case PCI_EXP_TYPE_LEG_END:
1600 pcie_size = 0x14;
1601 break;
1602 case PCI_EXP_TYPE_RC_END:
1603 /* has no link */
1604 pcie_size = 0x0C;
1605 break;
1606 /* only EndPoint passthrough is supported */
1607 case PCI_EXP_TYPE_ROOT_PORT:
1608 case PCI_EXP_TYPE_UPSTREAM:
1609 case PCI_EXP_TYPE_DOWNSTREAM:
1610 case PCI_EXP_TYPE_PCI_BRIDGE:
1611 case PCI_EXP_TYPE_PCIE_BRIDGE:
1612 case PCI_EXP_TYPE_RC_EC:
1613 default:
1614 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1615 return -1;
1616 }
1617 }
1618 /* in case of PCI Express Base Specification Rev 2.0 */
1619 else if (version == 2) {
1620 switch (type) {
1621 case PCI_EXP_TYPE_ENDPOINT:
1622 case PCI_EXP_TYPE_LEG_END:
1623 case PCI_EXP_TYPE_RC_END:
1624 /* For Functions that do not implement the registers,
1625 * these spaces must be hardwired to 0b.
1626 */
1627 pcie_size = 0x3C;
1628 break;
1629 /* only EndPoint passthrough is supported */
1630 case PCI_EXP_TYPE_ROOT_PORT:
1631 case PCI_EXP_TYPE_UPSTREAM:
1632 case PCI_EXP_TYPE_DOWNSTREAM:
1633 case PCI_EXP_TYPE_PCI_BRIDGE:
1634 case PCI_EXP_TYPE_PCIE_BRIDGE:
1635 case PCI_EXP_TYPE_RC_EC:
1636 default:
1637 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1638 return -1;
1639 }
1640 } else {
1641 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1642 return -1;
1643 }
1644
1645 *size = pcie_size;
1646 return 0;
1647 }
1648 /* get MSI Capability Structure register group size */
1649 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1650 const XenPTRegGroupInfo *grp_reg,
1651 uint32_t base_offset, uint8_t *size)
1652 {
1653 uint16_t msg_ctrl = 0;
1654 uint8_t msi_size = 0xa;
1655 int rc;
1656
1657 rc = xen_host_pci_get_word(&s->real_device, base_offset + PCI_MSI_FLAGS,
1658 &msg_ctrl);
1659 if (rc) {
1660 return rc;
1661 }
1662 /* check if 64-bit address is capable of per-vector masking */
1663 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1664 msi_size += 4;
1665 }
1666 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1667 msi_size += 10;
1668 }
1669
1670 s->msi = g_new0(XenPTMSI, 1);
1671 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1672
1673 *size = msi_size;
1674 return 0;
1675 }
1676 /* get MSI-X Capability Structure register group size */
1677 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1678 const XenPTRegGroupInfo *grp_reg,
1679 uint32_t base_offset, uint8_t *size)
1680 {
1681 int rc = 0;
1682
1683 rc = xen_pt_msix_init(s, base_offset);
1684
1685 if (rc < 0) {
1686 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1687 return rc;
1688 }
1689
1690 *size = grp_reg->grp_size;
1691 return 0;
1692 }
1693
1694
1695 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1696 /* Header Type0 reg group */
1697 {
1698 .grp_id = 0xFF,
1699 .grp_type = XEN_PT_GRP_TYPE_EMU,
1700 .grp_size = 0x40,
1701 .size_init = xen_pt_reg_grp_size_init,
1702 .emu_regs = xen_pt_emu_reg_header0,
1703 },
1704 /* PCI PowerManagement Capability reg group */
1705 {
1706 .grp_id = PCI_CAP_ID_PM,
1707 .grp_type = XEN_PT_GRP_TYPE_EMU,
1708 .grp_size = PCI_PM_SIZEOF,
1709 .size_init = xen_pt_reg_grp_size_init,
1710 .emu_regs = xen_pt_emu_reg_pm,
1711 },
1712 /* AGP Capability Structure reg group */
1713 {
1714 .grp_id = PCI_CAP_ID_AGP,
1715 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1716 .grp_size = 0x30,
1717 .size_init = xen_pt_reg_grp_size_init,
1718 },
1719 /* Vital Product Data Capability Structure reg group */
1720 {
1721 .grp_id = PCI_CAP_ID_VPD,
1722 .grp_type = XEN_PT_GRP_TYPE_EMU,
1723 .grp_size = 0x08,
1724 .size_init = xen_pt_reg_grp_size_init,
1725 .emu_regs = xen_pt_emu_reg_vpd,
1726 },
1727 /* Slot Identification reg group */
1728 {
1729 .grp_id = PCI_CAP_ID_SLOTID,
1730 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1731 .grp_size = 0x04,
1732 .size_init = xen_pt_reg_grp_size_init,
1733 },
1734 /* MSI Capability Structure reg group */
1735 {
1736 .grp_id = PCI_CAP_ID_MSI,
1737 .grp_type = XEN_PT_GRP_TYPE_EMU,
1738 .grp_size = 0xFF,
1739 .size_init = xen_pt_msi_size_init,
1740 .emu_regs = xen_pt_emu_reg_msi,
1741 },
1742 /* PCI-X Capabilities List Item reg group */
1743 {
1744 .grp_id = PCI_CAP_ID_PCIX,
1745 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1746 .grp_size = 0x18,
1747 .size_init = xen_pt_reg_grp_size_init,
1748 },
1749 /* Vendor Specific Capability Structure reg group */
1750 {
1751 .grp_id = PCI_CAP_ID_VNDR,
1752 .grp_type = XEN_PT_GRP_TYPE_EMU,
1753 .grp_size = 0xFF,
1754 .size_init = xen_pt_vendor_size_init,
1755 .emu_regs = xen_pt_emu_reg_vendor,
1756 },
1757 /* SHPC Capability List Item reg group */
1758 {
1759 .grp_id = PCI_CAP_ID_SHPC,
1760 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1761 .grp_size = 0x08,
1762 .size_init = xen_pt_reg_grp_size_init,
1763 },
1764 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1765 {
1766 .grp_id = PCI_CAP_ID_SSVID,
1767 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1768 .grp_size = 0x08,
1769 .size_init = xen_pt_reg_grp_size_init,
1770 },
1771 /* AGP 8x Capability Structure reg group */
1772 {
1773 .grp_id = PCI_CAP_ID_AGP3,
1774 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1775 .grp_size = 0x30,
1776 .size_init = xen_pt_reg_grp_size_init,
1777 },
1778 /* PCI Express Capability Structure reg group */
1779 {
1780 .grp_id = PCI_CAP_ID_EXP,
1781 .grp_type = XEN_PT_GRP_TYPE_EMU,
1782 .grp_size = 0xFF,
1783 .size_init = xen_pt_pcie_size_init,
1784 .emu_regs = xen_pt_emu_reg_pcie,
1785 },
1786 /* MSI-X Capability Structure reg group */
1787 {
1788 .grp_id = PCI_CAP_ID_MSIX,
1789 .grp_type = XEN_PT_GRP_TYPE_EMU,
1790 .grp_size = 0x0C,
1791 .size_init = xen_pt_msix_size_init,
1792 .emu_regs = xen_pt_emu_reg_msix,
1793 },
1794 /* Intel IGD Opregion group */
1795 {
1796 .grp_id = XEN_PCI_INTEL_OPREGION,
1797 .grp_type = XEN_PT_GRP_TYPE_EMU,
1798 .grp_size = 0x4,
1799 .size_init = xen_pt_reg_grp_size_init,
1800 .emu_regs = xen_pt_emu_reg_igd_opregion,
1801 },
1802 {
1803 .grp_size = 0,
1804 },
1805 };
1806
1807 /* initialize Capabilities Pointer or Next Pointer register */
1808 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1809 XenPTRegInfo *reg, uint32_t real_offset,
1810 uint32_t *data)
1811 {
1812 int i, rc;
1813 uint8_t reg_field;
1814 uint8_t cap_id = 0;
1815
1816 rc = xen_host_pci_get_byte(&s->real_device, real_offset, &reg_field);
1817 if (rc) {
1818 return rc;
1819 }
1820 /* find capability offset */
1821 while (reg_field) {
1822 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1823 if (xen_pt_hide_dev_cap(&s->real_device,
1824 xen_pt_emu_reg_grps[i].grp_id)) {
1825 continue;
1826 }
1827
1828 rc = xen_host_pci_get_byte(&s->real_device,
1829 reg_field + PCI_CAP_LIST_ID, &cap_id);
1830 if (rc) {
1831 XEN_PT_ERR(&s->dev, "Failed to read capability @0x%x (rc:%d)\n",
1832 reg_field + PCI_CAP_LIST_ID, rc);
1833 return rc;
1834 }
1835 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1836 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1837 goto out;
1838 }
1839 /* ignore the 0 hardwired capability, find next one */
1840 break;
1841 }
1842 }
1843
1844 /* next capability */
1845 rc = xen_host_pci_get_byte(&s->real_device,
1846 reg_field + PCI_CAP_LIST_NEXT, &reg_field);
1847 if (rc) {
1848 return rc;
1849 }
1850 }
1851
1852 out:
1853 *data = reg_field;
1854 return 0;
1855 }
1856
1857
1858 /*************
1859 * Main
1860 */
1861
1862 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1863 {
1864 uint8_t id;
1865 unsigned max_cap = XEN_PCI_CAP_MAX;
1866 uint8_t pos = PCI_CAPABILITY_LIST;
1867 uint8_t status = 0;
1868
1869 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1870 return 0;
1871 }
1872 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1873 return 0;
1874 }
1875
1876 while (max_cap--) {
1877 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1878 break;
1879 }
1880 if (pos < PCI_CONFIG_HEADER_SIZE) {
1881 break;
1882 }
1883
1884 pos &= ~3;
1885 if (xen_host_pci_get_byte(&s->real_device,
1886 pos + PCI_CAP_LIST_ID, &id)) {
1887 break;
1888 }
1889
1890 if (id == 0xff) {
1891 break;
1892 }
1893 if (id == cap) {
1894 return pos;
1895 }
1896
1897 pos += PCI_CAP_LIST_NEXT;
1898 }
1899 return 0;
1900 }
1901
1902 static int xen_pt_config_reg_init(XenPCIPassthroughState *s,
1903 XenPTRegGroup *reg_grp, XenPTRegInfo *reg)
1904 {
1905 XenPTReg *reg_entry;
1906 uint32_t data = 0;
1907 int rc = 0;
1908
1909 reg_entry = g_new0(XenPTReg, 1);
1910 reg_entry->reg = reg;
1911
1912 if (reg->init) {
1913 uint32_t host_mask, size_mask;
1914 unsigned int offset;
1915 uint32_t val;
1916
1917 /* initialize emulate register */
1918 rc = reg->init(s, reg_entry->reg,
1919 reg_grp->base_offset + reg->offset, &data);
1920 if (rc < 0) {
1921 g_free(reg_entry);
1922 return rc;
1923 }
1924 if (data == XEN_PT_INVALID_REG) {
1925 /* free unused BAR register entry */
1926 g_free(reg_entry);
1927 return 0;
1928 }
1929 /* Sync up the data to dev.config */
1930 offset = reg_grp->base_offset + reg->offset;
1931 size_mask = 0xFFFFFFFF >> ((4 - reg->size) << 3);
1932
1933 switch (reg->size) {
1934 case 1: rc = xen_host_pci_get_byte(&s->real_device, offset, (uint8_t *)&val);
1935 break;
1936 case 2: rc = xen_host_pci_get_word(&s->real_device, offset, (uint16_t *)&val);
1937 break;
1938 case 4: rc = xen_host_pci_get_long(&s->real_device, offset, &val);
1939 break;
1940 default: assert(1);
1941 }
1942 if (rc) {
1943 /* Serious issues when we cannot read the host values! */
1944 g_free(reg_entry);
1945 return rc;
1946 }
1947 /* Set bits in emu_mask are the ones we emulate. The dev.config shall
1948 * contain the emulated view of the guest - therefore we flip the mask
1949 * to mask out the host values (which dev.config initially has) . */
1950 host_mask = size_mask & ~reg->emu_mask;
1951
1952 if ((data & host_mask) != (val & host_mask)) {
1953 uint32_t new_val;
1954
1955 /* Mask out host (including past size). */
1956 new_val = val & host_mask;
1957 /* Merge emulated ones (excluding the non-emulated ones). */
1958 new_val |= data & host_mask;
1959 /* Leave intact host and emulated values past the size - even though
1960 * we do not care as we write per reg->size granularity, but for the
1961 * logging below lets have the proper value. */
1962 new_val |= ((val | data)) & ~size_mask;
1963 XEN_PT_LOG(&s->dev,"Offset 0x%04x mismatch! Emulated=0x%04x, host=0x%04x, syncing to 0x%04x.\n",
1964 offset, data, val, new_val);
1965 val = new_val;
1966 } else
1967 val = data;
1968
1969 if (val & ~size_mask) {
1970 XEN_PT_ERR(&s->dev,"Offset 0x%04x:0x%04x expands past register size(%d)!\n",
1971 offset, val, reg->size);
1972 g_free(reg_entry);
1973 return -ENXIO;
1974 }
1975 /* This could be just pci_set_long as we don't modify the bits
1976 * past reg->size, but in case this routine is run in parallel or the
1977 * init value is larger, we do not want to over-write registers. */
1978 switch (reg->size) {
1979 case 1: pci_set_byte(s->dev.config + offset, (uint8_t)val);
1980 break;
1981 case 2: pci_set_word(s->dev.config + offset, (uint16_t)val);
1982 break;
1983 case 4: pci_set_long(s->dev.config + offset, val);
1984 break;
1985 default: assert(1);
1986 }
1987 /* set register value pointer to the data. */
1988 reg_entry->ptr.byte = s->dev.config + offset;
1989
1990 }
1991 /* list add register entry */
1992 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
1993
1994 return 0;
1995 }
1996
1997 int xen_pt_config_init(XenPCIPassthroughState *s)
1998 {
1999 int i, rc;
2000
2001 QLIST_INIT(&s->reg_grps);
2002
2003 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
2004 uint32_t reg_grp_offset = 0;
2005 XenPTRegGroup *reg_grp_entry = NULL;
2006
2007 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF
2008 && xen_pt_emu_reg_grps[i].grp_id != XEN_PCI_INTEL_OPREGION) {
2009 if (xen_pt_hide_dev_cap(&s->real_device,
2010 xen_pt_emu_reg_grps[i].grp_id)) {
2011 continue;
2012 }
2013
2014 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
2015
2016 if (!reg_grp_offset) {
2017 continue;
2018 }
2019 }
2020
2021 /*
2022 * By default we will trap up to 0x40 in the cfg space.
2023 * If an intel device is pass through we need to trap 0xfc,
2024 * therefore the size should be 0xff.
2025 */
2026 if (xen_pt_emu_reg_grps[i].grp_id == XEN_PCI_INTEL_OPREGION) {
2027 reg_grp_offset = XEN_PCI_INTEL_OPREGION;
2028 }
2029
2030 reg_grp_entry = g_new0(XenPTRegGroup, 1);
2031 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
2032 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
2033
2034 reg_grp_entry->base_offset = reg_grp_offset;
2035 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
2036 if (xen_pt_emu_reg_grps[i].size_init) {
2037 /* get register group size */
2038 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
2039 reg_grp_offset,
2040 &reg_grp_entry->size);
2041 if (rc < 0) {
2042 XEN_PT_LOG(&s->dev, "Failed to initialize %d/%ld, type=0x%x, rc:%d\n",
2043 i, ARRAY_SIZE(xen_pt_emu_reg_grps),
2044 xen_pt_emu_reg_grps[i].grp_type, rc);
2045 xen_pt_config_delete(s);
2046 return rc;
2047 }
2048 }
2049
2050 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
2051 if (xen_pt_emu_reg_grps[i].emu_regs) {
2052 int j = 0;
2053 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
2054 /* initialize capability register */
2055 for (j = 0; regs->size != 0; j++, regs++) {
2056 /* initialize capability register */
2057 rc = xen_pt_config_reg_init(s, reg_grp_entry, regs);
2058 if (rc < 0) {
2059 XEN_PT_LOG(&s->dev, "Failed to initialize %d/%ld reg 0x%x in grp_type=0x%x (%d/%ld), rc=%d\n",
2060 j, ARRAY_SIZE(xen_pt_emu_reg_grps[i].emu_regs),
2061 regs->offset, xen_pt_emu_reg_grps[i].grp_type,
2062 i, ARRAY_SIZE(xen_pt_emu_reg_grps), rc);
2063 xen_pt_config_delete(s);
2064 return rc;
2065 }
2066 }
2067 }
2068 }
2069 }
2070
2071 return 0;
2072 }
2073
2074 /* delete all emulate register */
2075 void xen_pt_config_delete(XenPCIPassthroughState *s)
2076 {
2077 struct XenPTRegGroup *reg_group, *next_grp;
2078 struct XenPTReg *reg, *next_reg;
2079
2080 /* free MSI/MSI-X info table */
2081 if (s->msix) {
2082 xen_pt_msix_delete(s);
2083 }
2084 g_free(s->msi);
2085
2086 /* free all register group entry */
2087 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
2088 /* free all register entry */
2089 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
2090 QLIST_REMOVE(reg, entries);
2091 g_free(reg);
2092 }
2093
2094 QLIST_REMOVE(reg_group, entries);
2095 g_free(reg_group);
2096 }
2097 }