]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xen/xen_pt_config_init.c
xen/pt: allow QEMU to request MSI unmasking at bind time
[mirror_qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "hw/xen/xen_backend.h"
19 #include "xen_pt.h"
20
21 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
22 (((value) & (val_mask)) | ((data) & ~(val_mask)))
23
24 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
25
26 /* prototype */
27
28 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
29 uint32_t real_offset, uint32_t *data);
30
31
32 /* helper */
33
34 /* A return value of 1 means the capability should NOT be exposed to guest. */
35 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
36 {
37 switch (grp_id) {
38 case PCI_CAP_ID_EXP:
39 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
40 * Controller looks trivial, e.g., the PCI Express Capabilities
41 * Register is 0. We should not try to expose it to guest.
42 *
43 * The datasheet is available at
44 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
45 *
46 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
47 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
48 * Controller looks trivial, e.g., the PCI Express Capabilities
49 * Register is 0, so the Capability Version is 0 and
50 * xen_pt_pcie_size_init() would fail.
51 */
52 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
53 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
54 return 1;
55 }
56 break;
57 }
58 return 0;
59 }
60
61 /* find emulate register group entry */
62 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
63 {
64 XenPTRegGroup *entry = NULL;
65
66 /* find register group entry */
67 QLIST_FOREACH(entry, &s->reg_grps, entries) {
68 /* check address */
69 if ((entry->base_offset <= address)
70 && ((entry->base_offset + entry->size) > address)) {
71 return entry;
72 }
73 }
74
75 /* group entry not found */
76 return NULL;
77 }
78
79 /* find emulate register entry */
80 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
81 {
82 XenPTReg *reg_entry = NULL;
83 XenPTRegInfo *reg = NULL;
84 uint32_t real_offset = 0;
85
86 /* find register entry */
87 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
88 reg = reg_entry->reg;
89 real_offset = reg_grp->base_offset + reg->offset;
90 /* check address */
91 if ((real_offset <= address)
92 && ((real_offset + reg->size) > address)) {
93 return reg_entry;
94 }
95 }
96
97 return NULL;
98 }
99
100 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
101 XenPTRegInfo *reg, uint32_t valid_mask)
102 {
103 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
104
105 if (!s->permissive) {
106 throughable_mask &= ~reg->res_mask;
107 }
108
109 return throughable_mask & valid_mask;
110 }
111
112 /****************
113 * general register functions
114 */
115
116 /* register initialization function */
117
118 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
119 XenPTRegInfo *reg, uint32_t real_offset,
120 uint32_t *data)
121 {
122 *data = reg->init_val;
123 return 0;
124 }
125
126 /* Read register functions */
127
128 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
129 uint8_t *value, uint8_t valid_mask)
130 {
131 XenPTRegInfo *reg = cfg_entry->reg;
132 uint8_t valid_emu_mask = 0;
133 uint8_t *data = cfg_entry->ptr.byte;
134
135 /* emulate byte register */
136 valid_emu_mask = reg->emu_mask & valid_mask;
137 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
138
139 return 0;
140 }
141 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
142 uint16_t *value, uint16_t valid_mask)
143 {
144 XenPTRegInfo *reg = cfg_entry->reg;
145 uint16_t valid_emu_mask = 0;
146 uint16_t *data = cfg_entry->ptr.half_word;
147
148 /* emulate word register */
149 valid_emu_mask = reg->emu_mask & valid_mask;
150 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
151
152 return 0;
153 }
154 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
155 uint32_t *value, uint32_t valid_mask)
156 {
157 XenPTRegInfo *reg = cfg_entry->reg;
158 uint32_t valid_emu_mask = 0;
159 uint32_t *data = cfg_entry->ptr.word;
160
161 /* emulate long register */
162 valid_emu_mask = reg->emu_mask & valid_mask;
163 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
164
165 return 0;
166 }
167
168 /* Write register functions */
169
170 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
171 uint8_t *val, uint8_t dev_value,
172 uint8_t valid_mask)
173 {
174 XenPTRegInfo *reg = cfg_entry->reg;
175 uint8_t writable_mask = 0;
176 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
177 uint8_t *data = cfg_entry->ptr.byte;
178
179 /* modify emulate register */
180 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
181 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
182
183 /* create value for writing to I/O device register */
184 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
185 throughable_mask);
186
187 return 0;
188 }
189 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
190 uint16_t *val, uint16_t dev_value,
191 uint16_t valid_mask)
192 {
193 XenPTRegInfo *reg = cfg_entry->reg;
194 uint16_t writable_mask = 0;
195 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
196 uint16_t *data = cfg_entry->ptr.half_word;
197
198 /* modify emulate register */
199 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
200 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
201
202 /* create value for writing to I/O device register */
203 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
204 throughable_mask);
205
206 return 0;
207 }
208 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
209 uint32_t *val, uint32_t dev_value,
210 uint32_t valid_mask)
211 {
212 XenPTRegInfo *reg = cfg_entry->reg;
213 uint32_t writable_mask = 0;
214 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
215 uint32_t *data = cfg_entry->ptr.word;
216
217 /* modify emulate register */
218 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
219 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
220
221 /* create value for writing to I/O device register */
222 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
223 throughable_mask);
224
225 return 0;
226 }
227
228
229 /* XenPTRegInfo declaration
230 * - only for emulated register (either a part or whole bit).
231 * - for passthrough register that need special behavior (like interacting with
232 * other component), set emu_mask to all 0 and specify r/w func properly.
233 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
234 */
235
236 /********************
237 * Header Type0
238 */
239
240 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
241 XenPTRegInfo *reg, uint32_t real_offset,
242 uint32_t *data)
243 {
244 *data = s->real_device.vendor_id;
245 return 0;
246 }
247 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
248 XenPTRegInfo *reg, uint32_t real_offset,
249 uint32_t *data)
250 {
251 *data = s->real_device.device_id;
252 return 0;
253 }
254 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
255 XenPTRegInfo *reg, uint32_t real_offset,
256 uint32_t *data)
257 {
258 XenPTRegGroup *reg_grp_entry = NULL;
259 XenPTReg *reg_entry = NULL;
260 uint32_t reg_field = 0;
261
262 /* find Header register group */
263 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
264 if (reg_grp_entry) {
265 /* find Capabilities Pointer register */
266 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
267 if (reg_entry) {
268 /* check Capabilities Pointer register */
269 if (*reg_entry->ptr.half_word) {
270 reg_field |= PCI_STATUS_CAP_LIST;
271 } else {
272 reg_field &= ~PCI_STATUS_CAP_LIST;
273 }
274 } else {
275 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
276 " for Capabilities Pointer register."
277 " (%s)\n", __func__);
278 return -1;
279 }
280 } else {
281 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
282 " for Header. (%s)\n", __func__);
283 return -1;
284 }
285
286 *data = reg_field;
287 return 0;
288 }
289 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
290 XenPTRegInfo *reg, uint32_t real_offset,
291 uint32_t *data)
292 {
293 /* read PCI_HEADER_TYPE */
294 *data = reg->init_val | 0x80;
295 return 0;
296 }
297
298 /* initialize Interrupt Pin register */
299 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
300 XenPTRegInfo *reg, uint32_t real_offset,
301 uint32_t *data)
302 {
303 *data = xen_pt_pci_read_intx(s);
304 return 0;
305 }
306
307 /* Command register */
308 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
309 uint16_t *val, uint16_t dev_value,
310 uint16_t valid_mask)
311 {
312 XenPTRegInfo *reg = cfg_entry->reg;
313 uint16_t writable_mask = 0;
314 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
315 uint16_t *data = cfg_entry->ptr.half_word;
316
317 /* modify emulate register */
318 writable_mask = ~reg->ro_mask & valid_mask;
319 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
320
321 /* create value for writing to I/O device register */
322 if (*val & PCI_COMMAND_INTX_DISABLE) {
323 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
324 } else {
325 if (s->machine_irq) {
326 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
327 }
328 }
329
330 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
331
332 return 0;
333 }
334
335 /* BAR */
336 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
337 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
338 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
339 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
340
341 static bool is_64bit_bar(PCIIORegion *r)
342 {
343 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
344 }
345
346 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
347 {
348 if (is_64bit_bar(r)) {
349 uint64_t size64;
350 size64 = (r + 1)->size;
351 size64 <<= 32;
352 size64 += r->size;
353 return size64;
354 }
355 return r->size;
356 }
357
358 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
359 int index)
360 {
361 PCIDevice *d = &s->dev;
362 XenPTRegion *region = NULL;
363 PCIIORegion *r;
364
365 /* check 64bit BAR */
366 if ((0 < index) && (index < PCI_ROM_SLOT)) {
367 int type = s->real_device.io_regions[index - 1].type;
368
369 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
370 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
371 region = &s->bases[index - 1];
372 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
373 return XEN_PT_BAR_FLAG_UPPER;
374 }
375 }
376 }
377
378 /* check unused BAR */
379 r = &d->io_regions[index];
380 if (!xen_pt_get_bar_size(r)) {
381 return XEN_PT_BAR_FLAG_UNUSED;
382 }
383
384 /* for ExpROM BAR */
385 if (index == PCI_ROM_SLOT) {
386 return XEN_PT_BAR_FLAG_MEM;
387 }
388
389 /* check BAR I/O indicator */
390 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
391 return XEN_PT_BAR_FLAG_IO;
392 } else {
393 return XEN_PT_BAR_FLAG_MEM;
394 }
395 }
396
397 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
398 {
399 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
400 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
401 } else {
402 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
403 }
404 }
405
406 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
407 uint32_t real_offset, uint32_t *data)
408 {
409 uint32_t reg_field = 0;
410 int index;
411
412 index = xen_pt_bar_offset_to_index(reg->offset);
413 if (index < 0 || index >= PCI_NUM_REGIONS) {
414 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
415 return -1;
416 }
417
418 /* set BAR flag */
419 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
420 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
421 reg_field = XEN_PT_INVALID_REG;
422 }
423
424 *data = reg_field;
425 return 0;
426 }
427 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
428 uint32_t *value, uint32_t valid_mask)
429 {
430 XenPTRegInfo *reg = cfg_entry->reg;
431 uint32_t valid_emu_mask = 0;
432 uint32_t bar_emu_mask = 0;
433 int index;
434
435 /* get BAR index */
436 index = xen_pt_bar_offset_to_index(reg->offset);
437 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
438 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
439 return -1;
440 }
441
442 /* use fixed-up value from kernel sysfs */
443 *value = base_address_with_flags(&s->real_device.io_regions[index]);
444
445 /* set emulate mask depend on BAR flag */
446 switch (s->bases[index].bar_flag) {
447 case XEN_PT_BAR_FLAG_MEM:
448 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
449 break;
450 case XEN_PT_BAR_FLAG_IO:
451 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
452 break;
453 case XEN_PT_BAR_FLAG_UPPER:
454 bar_emu_mask = XEN_PT_BAR_ALLF;
455 break;
456 default:
457 break;
458 }
459
460 /* emulate BAR */
461 valid_emu_mask = bar_emu_mask & valid_mask;
462 *value = XEN_PT_MERGE_VALUE(*value, *cfg_entry->ptr.word, ~valid_emu_mask);
463
464 return 0;
465 }
466 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
467 uint32_t *val, uint32_t dev_value,
468 uint32_t valid_mask)
469 {
470 XenPTRegInfo *reg = cfg_entry->reg;
471 XenPTRegion *base = NULL;
472 PCIDevice *d = &s->dev;
473 const PCIIORegion *r;
474 uint32_t writable_mask = 0;
475 uint32_t bar_emu_mask = 0;
476 uint32_t bar_ro_mask = 0;
477 uint32_t r_size = 0;
478 int index = 0;
479 uint32_t *data = cfg_entry->ptr.word;
480
481 index = xen_pt_bar_offset_to_index(reg->offset);
482 if (index < 0 || index >= PCI_NUM_REGIONS) {
483 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
484 return -1;
485 }
486
487 r = &d->io_regions[index];
488 base = &s->bases[index];
489 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
490
491 /* set emulate mask and read-only mask values depend on the BAR flag */
492 switch (s->bases[index].bar_flag) {
493 case XEN_PT_BAR_FLAG_MEM:
494 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
495 if (!r_size) {
496 /* low 32 bits mask for 64 bit bars */
497 bar_ro_mask = XEN_PT_BAR_ALLF;
498 } else {
499 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
500 }
501 break;
502 case XEN_PT_BAR_FLAG_IO:
503 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
504 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
505 break;
506 case XEN_PT_BAR_FLAG_UPPER:
507 bar_emu_mask = XEN_PT_BAR_ALLF;
508 bar_ro_mask = r_size ? r_size - 1 : 0;
509 break;
510 default:
511 break;
512 }
513
514 /* modify emulate register */
515 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
516 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
517
518 /* check whether we need to update the virtual region address or not */
519 switch (s->bases[index].bar_flag) {
520 case XEN_PT_BAR_FLAG_UPPER:
521 case XEN_PT_BAR_FLAG_MEM:
522 /* nothing to do */
523 break;
524 case XEN_PT_BAR_FLAG_IO:
525 /* nothing to do */
526 break;
527 default:
528 break;
529 }
530
531 /* create value for writing to I/O device register */
532 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
533
534 return 0;
535 }
536
537 /* write Exp ROM BAR */
538 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
539 XenPTReg *cfg_entry, uint32_t *val,
540 uint32_t dev_value, uint32_t valid_mask)
541 {
542 XenPTRegInfo *reg = cfg_entry->reg;
543 XenPTRegion *base = NULL;
544 PCIDevice *d = (PCIDevice *)&s->dev;
545 uint32_t writable_mask = 0;
546 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
547 pcibus_t r_size = 0;
548 uint32_t bar_ro_mask = 0;
549 uint32_t *data = cfg_entry->ptr.word;
550
551 r_size = d->io_regions[PCI_ROM_SLOT].size;
552 base = &s->bases[PCI_ROM_SLOT];
553 /* align memory type resource size */
554 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
555
556 /* set emulate mask and read-only mask */
557 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
558
559 /* modify emulate register */
560 writable_mask = ~bar_ro_mask & valid_mask;
561 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
562
563 /* create value for writing to I/O device register */
564 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
565
566 return 0;
567 }
568
569 static int xen_pt_intel_opregion_read(XenPCIPassthroughState *s,
570 XenPTReg *cfg_entry,
571 uint32_t *value, uint32_t valid_mask)
572 {
573 *value = igd_read_opregion(s);
574 return 0;
575 }
576
577 static int xen_pt_intel_opregion_write(XenPCIPassthroughState *s,
578 XenPTReg *cfg_entry, uint32_t *value,
579 uint32_t dev_value, uint32_t valid_mask)
580 {
581 igd_write_opregion(s, *value);
582 return 0;
583 }
584
585 /* Header Type0 reg static information table */
586 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
587 /* Vendor ID reg */
588 {
589 .offset = PCI_VENDOR_ID,
590 .size = 2,
591 .init_val = 0x0000,
592 .ro_mask = 0xFFFF,
593 .emu_mask = 0xFFFF,
594 .init = xen_pt_vendor_reg_init,
595 .u.w.read = xen_pt_word_reg_read,
596 .u.w.write = xen_pt_word_reg_write,
597 },
598 /* Device ID reg */
599 {
600 .offset = PCI_DEVICE_ID,
601 .size = 2,
602 .init_val = 0x0000,
603 .ro_mask = 0xFFFF,
604 .emu_mask = 0xFFFF,
605 .init = xen_pt_device_reg_init,
606 .u.w.read = xen_pt_word_reg_read,
607 .u.w.write = xen_pt_word_reg_write,
608 },
609 /* Command reg */
610 {
611 .offset = PCI_COMMAND,
612 .size = 2,
613 .init_val = 0x0000,
614 .res_mask = 0xF880,
615 .emu_mask = 0x0743,
616 .init = xen_pt_common_reg_init,
617 .u.w.read = xen_pt_word_reg_read,
618 .u.w.write = xen_pt_cmd_reg_write,
619 },
620 /* Capabilities Pointer reg */
621 {
622 .offset = PCI_CAPABILITY_LIST,
623 .size = 1,
624 .init_val = 0x00,
625 .ro_mask = 0xFF,
626 .emu_mask = 0xFF,
627 .init = xen_pt_ptr_reg_init,
628 .u.b.read = xen_pt_byte_reg_read,
629 .u.b.write = xen_pt_byte_reg_write,
630 },
631 /* Status reg */
632 /* use emulated Cap Ptr value to initialize,
633 * so need to be declared after Cap Ptr reg
634 */
635 {
636 .offset = PCI_STATUS,
637 .size = 2,
638 .init_val = 0x0000,
639 .res_mask = 0x0007,
640 .ro_mask = 0x06F8,
641 .rw1c_mask = 0xF900,
642 .emu_mask = 0x0010,
643 .init = xen_pt_status_reg_init,
644 .u.w.read = xen_pt_word_reg_read,
645 .u.w.write = xen_pt_word_reg_write,
646 },
647 /* Cache Line Size reg */
648 {
649 .offset = PCI_CACHE_LINE_SIZE,
650 .size = 1,
651 .init_val = 0x00,
652 .ro_mask = 0x00,
653 .emu_mask = 0xFF,
654 .init = xen_pt_common_reg_init,
655 .u.b.read = xen_pt_byte_reg_read,
656 .u.b.write = xen_pt_byte_reg_write,
657 },
658 /* Latency Timer reg */
659 {
660 .offset = PCI_LATENCY_TIMER,
661 .size = 1,
662 .init_val = 0x00,
663 .ro_mask = 0x00,
664 .emu_mask = 0xFF,
665 .init = xen_pt_common_reg_init,
666 .u.b.read = xen_pt_byte_reg_read,
667 .u.b.write = xen_pt_byte_reg_write,
668 },
669 /* Header Type reg */
670 {
671 .offset = PCI_HEADER_TYPE,
672 .size = 1,
673 .init_val = 0x00,
674 .ro_mask = 0xFF,
675 .emu_mask = 0x00,
676 .init = xen_pt_header_type_reg_init,
677 .u.b.read = xen_pt_byte_reg_read,
678 .u.b.write = xen_pt_byte_reg_write,
679 },
680 /* Interrupt Line reg */
681 {
682 .offset = PCI_INTERRUPT_LINE,
683 .size = 1,
684 .init_val = 0x00,
685 .ro_mask = 0x00,
686 .emu_mask = 0xFF,
687 .init = xen_pt_common_reg_init,
688 .u.b.read = xen_pt_byte_reg_read,
689 .u.b.write = xen_pt_byte_reg_write,
690 },
691 /* Interrupt Pin reg */
692 {
693 .offset = PCI_INTERRUPT_PIN,
694 .size = 1,
695 .init_val = 0x00,
696 .ro_mask = 0xFF,
697 .emu_mask = 0xFF,
698 .init = xen_pt_irqpin_reg_init,
699 .u.b.read = xen_pt_byte_reg_read,
700 .u.b.write = xen_pt_byte_reg_write,
701 },
702 /* BAR 0 reg */
703 /* mask of BAR need to be decided later, depends on IO/MEM type */
704 {
705 .offset = PCI_BASE_ADDRESS_0,
706 .size = 4,
707 .init_val = 0x00000000,
708 .init = xen_pt_bar_reg_init,
709 .u.dw.read = xen_pt_bar_reg_read,
710 .u.dw.write = xen_pt_bar_reg_write,
711 },
712 /* BAR 1 reg */
713 {
714 .offset = PCI_BASE_ADDRESS_1,
715 .size = 4,
716 .init_val = 0x00000000,
717 .init = xen_pt_bar_reg_init,
718 .u.dw.read = xen_pt_bar_reg_read,
719 .u.dw.write = xen_pt_bar_reg_write,
720 },
721 /* BAR 2 reg */
722 {
723 .offset = PCI_BASE_ADDRESS_2,
724 .size = 4,
725 .init_val = 0x00000000,
726 .init = xen_pt_bar_reg_init,
727 .u.dw.read = xen_pt_bar_reg_read,
728 .u.dw.write = xen_pt_bar_reg_write,
729 },
730 /* BAR 3 reg */
731 {
732 .offset = PCI_BASE_ADDRESS_3,
733 .size = 4,
734 .init_val = 0x00000000,
735 .init = xen_pt_bar_reg_init,
736 .u.dw.read = xen_pt_bar_reg_read,
737 .u.dw.write = xen_pt_bar_reg_write,
738 },
739 /* BAR 4 reg */
740 {
741 .offset = PCI_BASE_ADDRESS_4,
742 .size = 4,
743 .init_val = 0x00000000,
744 .init = xen_pt_bar_reg_init,
745 .u.dw.read = xen_pt_bar_reg_read,
746 .u.dw.write = xen_pt_bar_reg_write,
747 },
748 /* BAR 5 reg */
749 {
750 .offset = PCI_BASE_ADDRESS_5,
751 .size = 4,
752 .init_val = 0x00000000,
753 .init = xen_pt_bar_reg_init,
754 .u.dw.read = xen_pt_bar_reg_read,
755 .u.dw.write = xen_pt_bar_reg_write,
756 },
757 /* Expansion ROM BAR reg */
758 {
759 .offset = PCI_ROM_ADDRESS,
760 .size = 4,
761 .init_val = 0x00000000,
762 .ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
763 .emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
764 .init = xen_pt_bar_reg_init,
765 .u.dw.read = xen_pt_long_reg_read,
766 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
767 },
768 {
769 .size = 0,
770 },
771 };
772
773
774 /*********************************
775 * Vital Product Data Capability
776 */
777
778 /* Vital Product Data Capability Structure reg static information table */
779 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
780 {
781 .offset = PCI_CAP_LIST_NEXT,
782 .size = 1,
783 .init_val = 0x00,
784 .ro_mask = 0xFF,
785 .emu_mask = 0xFF,
786 .init = xen_pt_ptr_reg_init,
787 .u.b.read = xen_pt_byte_reg_read,
788 .u.b.write = xen_pt_byte_reg_write,
789 },
790 {
791 .offset = PCI_VPD_ADDR,
792 .size = 2,
793 .ro_mask = 0x0003,
794 .emu_mask = 0x0003,
795 .init = xen_pt_common_reg_init,
796 .u.w.read = xen_pt_word_reg_read,
797 .u.w.write = xen_pt_word_reg_write,
798 },
799 {
800 .size = 0,
801 },
802 };
803
804
805 /**************************************
806 * Vendor Specific Capability
807 */
808
809 /* Vendor Specific Capability Structure reg static information table */
810 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
811 {
812 .offset = PCI_CAP_LIST_NEXT,
813 .size = 1,
814 .init_val = 0x00,
815 .ro_mask = 0xFF,
816 .emu_mask = 0xFF,
817 .init = xen_pt_ptr_reg_init,
818 .u.b.read = xen_pt_byte_reg_read,
819 .u.b.write = xen_pt_byte_reg_write,
820 },
821 {
822 .size = 0,
823 },
824 };
825
826
827 /*****************************
828 * PCI Express Capability
829 */
830
831 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
832 uint32_t offset)
833 {
834 uint8_t flag;
835 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
836 return 0;
837 }
838 return flag & PCI_EXP_FLAGS_VERS;
839 }
840
841 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
842 uint32_t offset)
843 {
844 uint8_t flag;
845 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
846 return 0;
847 }
848 return (flag & PCI_EXP_FLAGS_TYPE) >> 4;
849 }
850
851 /* initialize Link Control register */
852 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
853 XenPTRegInfo *reg, uint32_t real_offset,
854 uint32_t *data)
855 {
856 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
857 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
858
859 /* no need to initialize in case of Root Complex Integrated Endpoint
860 * with cap_ver 1.x
861 */
862 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
863 *data = XEN_PT_INVALID_REG;
864 }
865
866 *data = reg->init_val;
867 return 0;
868 }
869 /* initialize Device Control 2 register */
870 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
871 XenPTRegInfo *reg, uint32_t real_offset,
872 uint32_t *data)
873 {
874 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
875
876 /* no need to initialize in case of cap_ver 1.x */
877 if (cap_ver == 1) {
878 *data = XEN_PT_INVALID_REG;
879 }
880
881 *data = reg->init_val;
882 return 0;
883 }
884 /* initialize Link Control 2 register */
885 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
886 XenPTRegInfo *reg, uint32_t real_offset,
887 uint32_t *data)
888 {
889 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
890 uint32_t reg_field = 0;
891
892 /* no need to initialize in case of cap_ver 1.x */
893 if (cap_ver == 1) {
894 reg_field = XEN_PT_INVALID_REG;
895 } else {
896 /* set Supported Link Speed */
897 uint8_t lnkcap;
898 int rc;
899 rc = xen_host_pci_get_byte(&s->real_device,
900 real_offset - reg->offset + PCI_EXP_LNKCAP,
901 &lnkcap);
902 if (rc) {
903 return rc;
904 }
905 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
906 }
907
908 *data = reg_field;
909 return 0;
910 }
911
912 /* PCI Express Capability Structure reg static information table */
913 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
914 /* Next Pointer reg */
915 {
916 .offset = PCI_CAP_LIST_NEXT,
917 .size = 1,
918 .init_val = 0x00,
919 .ro_mask = 0xFF,
920 .emu_mask = 0xFF,
921 .init = xen_pt_ptr_reg_init,
922 .u.b.read = xen_pt_byte_reg_read,
923 .u.b.write = xen_pt_byte_reg_write,
924 },
925 /* Device Capabilities reg */
926 {
927 .offset = PCI_EXP_DEVCAP,
928 .size = 4,
929 .init_val = 0x00000000,
930 .ro_mask = 0xFFFFFFFF,
931 .emu_mask = 0x10000000,
932 .init = xen_pt_common_reg_init,
933 .u.dw.read = xen_pt_long_reg_read,
934 .u.dw.write = xen_pt_long_reg_write,
935 },
936 /* Device Control reg */
937 {
938 .offset = PCI_EXP_DEVCTL,
939 .size = 2,
940 .init_val = 0x2810,
941 .ro_mask = 0x8400,
942 .emu_mask = 0xFFFF,
943 .init = xen_pt_common_reg_init,
944 .u.w.read = xen_pt_word_reg_read,
945 .u.w.write = xen_pt_word_reg_write,
946 },
947 /* Device Status reg */
948 {
949 .offset = PCI_EXP_DEVSTA,
950 .size = 2,
951 .res_mask = 0xFFC0,
952 .ro_mask = 0x0030,
953 .rw1c_mask = 0x000F,
954 .init = xen_pt_common_reg_init,
955 .u.w.read = xen_pt_word_reg_read,
956 .u.w.write = xen_pt_word_reg_write,
957 },
958 /* Link Control reg */
959 {
960 .offset = PCI_EXP_LNKCTL,
961 .size = 2,
962 .init_val = 0x0000,
963 .ro_mask = 0xFC34,
964 .emu_mask = 0xFFFF,
965 .init = xen_pt_linkctrl_reg_init,
966 .u.w.read = xen_pt_word_reg_read,
967 .u.w.write = xen_pt_word_reg_write,
968 },
969 /* Link Status reg */
970 {
971 .offset = PCI_EXP_LNKSTA,
972 .size = 2,
973 .ro_mask = 0x3FFF,
974 .rw1c_mask = 0xC000,
975 .init = xen_pt_common_reg_init,
976 .u.w.read = xen_pt_word_reg_read,
977 .u.w.write = xen_pt_word_reg_write,
978 },
979 /* Device Control 2 reg */
980 {
981 .offset = 0x28,
982 .size = 2,
983 .init_val = 0x0000,
984 .ro_mask = 0xFFE0,
985 .emu_mask = 0xFFFF,
986 .init = xen_pt_devctrl2_reg_init,
987 .u.w.read = xen_pt_word_reg_read,
988 .u.w.write = xen_pt_word_reg_write,
989 },
990 /* Link Control 2 reg */
991 {
992 .offset = 0x30,
993 .size = 2,
994 .init_val = 0x0000,
995 .ro_mask = 0xE040,
996 .emu_mask = 0xFFFF,
997 .init = xen_pt_linkctrl2_reg_init,
998 .u.w.read = xen_pt_word_reg_read,
999 .u.w.write = xen_pt_word_reg_write,
1000 },
1001 {
1002 .size = 0,
1003 },
1004 };
1005
1006
1007 /*********************************
1008 * Power Management Capability
1009 */
1010
1011 /* Power Management Capability reg static information table */
1012 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
1013 /* Next Pointer reg */
1014 {
1015 .offset = PCI_CAP_LIST_NEXT,
1016 .size = 1,
1017 .init_val = 0x00,
1018 .ro_mask = 0xFF,
1019 .emu_mask = 0xFF,
1020 .init = xen_pt_ptr_reg_init,
1021 .u.b.read = xen_pt_byte_reg_read,
1022 .u.b.write = xen_pt_byte_reg_write,
1023 },
1024 /* Power Management Capabilities reg */
1025 {
1026 .offset = PCI_CAP_FLAGS,
1027 .size = 2,
1028 .init_val = 0x0000,
1029 .ro_mask = 0xFFFF,
1030 .emu_mask = 0xF9C8,
1031 .init = xen_pt_common_reg_init,
1032 .u.w.read = xen_pt_word_reg_read,
1033 .u.w.write = xen_pt_word_reg_write,
1034 },
1035 /* PCI Power Management Control/Status reg */
1036 {
1037 .offset = PCI_PM_CTRL,
1038 .size = 2,
1039 .init_val = 0x0008,
1040 .res_mask = 0x00F0,
1041 .ro_mask = 0x610C,
1042 .rw1c_mask = 0x8000,
1043 .emu_mask = 0x810B,
1044 .init = xen_pt_common_reg_init,
1045 .u.w.read = xen_pt_word_reg_read,
1046 .u.w.write = xen_pt_word_reg_write,
1047 },
1048 {
1049 .size = 0,
1050 },
1051 };
1052
1053
1054 /********************************
1055 * MSI Capability
1056 */
1057
1058 /* Helper */
1059 #define xen_pt_msi_check_type(offset, flags, what) \
1060 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1061 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1062
1063 /* Message Control register */
1064 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1065 XenPTRegInfo *reg, uint32_t real_offset,
1066 uint32_t *data)
1067 {
1068 XenPTMSI *msi = s->msi;
1069 uint16_t reg_field;
1070 int rc;
1071
1072 /* use I/O device register's value as initial value */
1073 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1074 if (rc) {
1075 return rc;
1076 }
1077 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1078 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1079 xen_host_pci_set_word(&s->real_device, real_offset,
1080 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1081 }
1082 msi->flags |= reg_field;
1083 msi->ctrl_offset = real_offset;
1084 msi->initialized = false;
1085 msi->mapped = false;
1086
1087 *data = reg->init_val;
1088 return 0;
1089 }
1090 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1091 XenPTReg *cfg_entry, uint16_t *val,
1092 uint16_t dev_value, uint16_t valid_mask)
1093 {
1094 XenPTRegInfo *reg = cfg_entry->reg;
1095 XenPTMSI *msi = s->msi;
1096 uint16_t writable_mask = 0;
1097 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1098 uint16_t *data = cfg_entry->ptr.half_word;
1099
1100 /* Currently no support for multi-vector */
1101 if (*val & PCI_MSI_FLAGS_QSIZE) {
1102 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1103 }
1104
1105 /* modify emulate register */
1106 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1107 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1108 msi->flags |= *data & ~PCI_MSI_FLAGS_ENABLE;
1109
1110 /* create value for writing to I/O device register */
1111 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1112
1113 /* update MSI */
1114 if (*val & PCI_MSI_FLAGS_ENABLE) {
1115 /* setup MSI pirq for the first time */
1116 if (!msi->initialized) {
1117 /* Init physical one */
1118 XEN_PT_LOG(&s->dev, "setup MSI (register: %x).\n", *val);
1119 if (xen_pt_msi_setup(s)) {
1120 /* We do not broadcast the error to the framework code, so
1121 * that MSI errors are contained in MSI emulation code and
1122 * QEMU can go on running.
1123 * Guest MSI would be actually not working.
1124 */
1125 *val &= ~PCI_MSI_FLAGS_ENABLE;
1126 XEN_PT_WARN(&s->dev, "Can not map MSI (register: %x)!\n", *val);
1127 return 0;
1128 }
1129 if (xen_pt_msi_update(s)) {
1130 *val &= ~PCI_MSI_FLAGS_ENABLE;
1131 XEN_PT_WARN(&s->dev, "Can not bind MSI (register: %x)!\n", *val);
1132 return 0;
1133 }
1134 msi->initialized = true;
1135 msi->mapped = true;
1136 }
1137 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1138 } else if (msi->mapped) {
1139 xen_pt_msi_disable(s);
1140 }
1141
1142 return 0;
1143 }
1144
1145 /* initialize Message Upper Address register */
1146 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1147 XenPTRegInfo *reg, uint32_t real_offset,
1148 uint32_t *data)
1149 {
1150 /* no need to initialize in case of 32 bit type */
1151 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1152 *data = XEN_PT_INVALID_REG;
1153 } else {
1154 *data = reg->init_val;
1155 }
1156
1157 return 0;
1158 }
1159 /* this function will be called twice (for 32 bit and 64 bit type) */
1160 /* initialize Message Data register */
1161 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1162 XenPTRegInfo *reg, uint32_t real_offset,
1163 uint32_t *data)
1164 {
1165 uint32_t flags = s->msi->flags;
1166 uint32_t offset = reg->offset;
1167
1168 /* check the offset whether matches the type or not */
1169 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1170 *data = reg->init_val;
1171 } else {
1172 *data = XEN_PT_INVALID_REG;
1173 }
1174 return 0;
1175 }
1176
1177 /* this function will be called twice (for 32 bit and 64 bit type) */
1178 /* initialize Mask register */
1179 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1180 XenPTRegInfo *reg, uint32_t real_offset,
1181 uint32_t *data)
1182 {
1183 uint32_t flags = s->msi->flags;
1184
1185 /* check the offset whether matches the type or not */
1186 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1187 *data = XEN_PT_INVALID_REG;
1188 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1189 *data = reg->init_val;
1190 } else {
1191 *data = XEN_PT_INVALID_REG;
1192 }
1193 return 0;
1194 }
1195
1196 /* this function will be called twice (for 32 bit and 64 bit type) */
1197 /* initialize Pending register */
1198 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1199 XenPTRegInfo *reg, uint32_t real_offset,
1200 uint32_t *data)
1201 {
1202 uint32_t flags = s->msi->flags;
1203
1204 /* check the offset whether matches the type or not */
1205 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1206 *data = XEN_PT_INVALID_REG;
1207 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1208 *data = reg->init_val;
1209 } else {
1210 *data = XEN_PT_INVALID_REG;
1211 }
1212 return 0;
1213 }
1214
1215 /* write Message Address register */
1216 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1217 XenPTReg *cfg_entry, uint32_t *val,
1218 uint32_t dev_value, uint32_t valid_mask)
1219 {
1220 XenPTRegInfo *reg = cfg_entry->reg;
1221 uint32_t writable_mask = 0;
1222 uint32_t old_addr = *cfg_entry->ptr.word;
1223 uint32_t *data = cfg_entry->ptr.word;
1224
1225 /* modify emulate register */
1226 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1227 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1228 s->msi->addr_lo = *data;
1229
1230 /* create value for writing to I/O device register */
1231 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1232
1233 /* update MSI */
1234 if (*data != old_addr) {
1235 if (s->msi->mapped) {
1236 xen_pt_msi_update(s);
1237 }
1238 }
1239
1240 return 0;
1241 }
1242 /* write Message Upper Address register */
1243 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1244 XenPTReg *cfg_entry, uint32_t *val,
1245 uint32_t dev_value, uint32_t valid_mask)
1246 {
1247 XenPTRegInfo *reg = cfg_entry->reg;
1248 uint32_t writable_mask = 0;
1249 uint32_t old_addr = *cfg_entry->ptr.word;
1250 uint32_t *data = cfg_entry->ptr.word;
1251
1252 /* check whether the type is 64 bit or not */
1253 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1254 XEN_PT_ERR(&s->dev,
1255 "Can't write to the upper address without 64 bit support\n");
1256 return -1;
1257 }
1258
1259 /* modify emulate register */
1260 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1261 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1262 /* update the msi_info too */
1263 s->msi->addr_hi = *data;
1264
1265 /* create value for writing to I/O device register */
1266 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1267
1268 /* update MSI */
1269 if (*data != old_addr) {
1270 if (s->msi->mapped) {
1271 xen_pt_msi_update(s);
1272 }
1273 }
1274
1275 return 0;
1276 }
1277
1278
1279 /* this function will be called twice (for 32 bit and 64 bit type) */
1280 /* write Message Data register */
1281 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1282 XenPTReg *cfg_entry, uint16_t *val,
1283 uint16_t dev_value, uint16_t valid_mask)
1284 {
1285 XenPTRegInfo *reg = cfg_entry->reg;
1286 XenPTMSI *msi = s->msi;
1287 uint16_t writable_mask = 0;
1288 uint16_t old_data = *cfg_entry->ptr.half_word;
1289 uint32_t offset = reg->offset;
1290 uint16_t *data = cfg_entry->ptr.half_word;
1291
1292 /* check the offset whether matches the type or not */
1293 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1294 /* exit I/O emulator */
1295 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1296 return -1;
1297 }
1298
1299 /* modify emulate register */
1300 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1301 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1302 /* update the msi_info too */
1303 msi->data = *data;
1304
1305 /* create value for writing to I/O device register */
1306 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1307
1308 /* update MSI */
1309 if (*data != old_data) {
1310 if (msi->mapped) {
1311 xen_pt_msi_update(s);
1312 }
1313 }
1314
1315 return 0;
1316 }
1317
1318 static int xen_pt_mask_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
1319 uint32_t *val, uint32_t dev_value,
1320 uint32_t valid_mask)
1321 {
1322 int rc;
1323
1324 rc = xen_pt_long_reg_write(s, cfg_entry, val, dev_value, valid_mask);
1325 if (rc) {
1326 return rc;
1327 }
1328
1329 s->msi->mask = *val;
1330
1331 return 0;
1332 }
1333
1334 /* MSI Capability Structure reg static information table */
1335 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1336 /* Next Pointer reg */
1337 {
1338 .offset = PCI_CAP_LIST_NEXT,
1339 .size = 1,
1340 .init_val = 0x00,
1341 .ro_mask = 0xFF,
1342 .emu_mask = 0xFF,
1343 .init = xen_pt_ptr_reg_init,
1344 .u.b.read = xen_pt_byte_reg_read,
1345 .u.b.write = xen_pt_byte_reg_write,
1346 },
1347 /* Message Control reg */
1348 {
1349 .offset = PCI_MSI_FLAGS,
1350 .size = 2,
1351 .init_val = 0x0000,
1352 .res_mask = 0xFE00,
1353 .ro_mask = 0x018E,
1354 .emu_mask = 0x017E,
1355 .init = xen_pt_msgctrl_reg_init,
1356 .u.w.read = xen_pt_word_reg_read,
1357 .u.w.write = xen_pt_msgctrl_reg_write,
1358 },
1359 /* Message Address reg */
1360 {
1361 .offset = PCI_MSI_ADDRESS_LO,
1362 .size = 4,
1363 .init_val = 0x00000000,
1364 .ro_mask = 0x00000003,
1365 .emu_mask = 0xFFFFFFFF,
1366 .init = xen_pt_common_reg_init,
1367 .u.dw.read = xen_pt_long_reg_read,
1368 .u.dw.write = xen_pt_msgaddr32_reg_write,
1369 },
1370 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1371 {
1372 .offset = PCI_MSI_ADDRESS_HI,
1373 .size = 4,
1374 .init_val = 0x00000000,
1375 .ro_mask = 0x00000000,
1376 .emu_mask = 0xFFFFFFFF,
1377 .init = xen_pt_msgaddr64_reg_init,
1378 .u.dw.read = xen_pt_long_reg_read,
1379 .u.dw.write = xen_pt_msgaddr64_reg_write,
1380 },
1381 /* Message Data reg (16 bits of data for 32-bit devices) */
1382 {
1383 .offset = PCI_MSI_DATA_32,
1384 .size = 2,
1385 .init_val = 0x0000,
1386 .ro_mask = 0x0000,
1387 .emu_mask = 0xFFFF,
1388 .init = xen_pt_msgdata_reg_init,
1389 .u.w.read = xen_pt_word_reg_read,
1390 .u.w.write = xen_pt_msgdata_reg_write,
1391 },
1392 /* Message Data reg (16 bits of data for 64-bit devices) */
1393 {
1394 .offset = PCI_MSI_DATA_64,
1395 .size = 2,
1396 .init_val = 0x0000,
1397 .ro_mask = 0x0000,
1398 .emu_mask = 0xFFFF,
1399 .init = xen_pt_msgdata_reg_init,
1400 .u.w.read = xen_pt_word_reg_read,
1401 .u.w.write = xen_pt_msgdata_reg_write,
1402 },
1403 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1404 {
1405 .offset = PCI_MSI_MASK_32,
1406 .size = 4,
1407 .init_val = 0x00000000,
1408 .ro_mask = 0xFFFFFFFF,
1409 .emu_mask = 0xFFFFFFFF,
1410 .init = xen_pt_mask_reg_init,
1411 .u.dw.read = xen_pt_long_reg_read,
1412 .u.dw.write = xen_pt_mask_reg_write,
1413 },
1414 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1415 {
1416 .offset = PCI_MSI_MASK_64,
1417 .size = 4,
1418 .init_val = 0x00000000,
1419 .ro_mask = 0xFFFFFFFF,
1420 .emu_mask = 0xFFFFFFFF,
1421 .init = xen_pt_mask_reg_init,
1422 .u.dw.read = xen_pt_long_reg_read,
1423 .u.dw.write = xen_pt_mask_reg_write,
1424 },
1425 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1426 {
1427 .offset = PCI_MSI_MASK_32 + 4,
1428 .size = 4,
1429 .init_val = 0x00000000,
1430 .ro_mask = 0xFFFFFFFF,
1431 .emu_mask = 0x00000000,
1432 .init = xen_pt_pending_reg_init,
1433 .u.dw.read = xen_pt_long_reg_read,
1434 .u.dw.write = xen_pt_long_reg_write,
1435 },
1436 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1437 {
1438 .offset = PCI_MSI_MASK_64 + 4,
1439 .size = 4,
1440 .init_val = 0x00000000,
1441 .ro_mask = 0xFFFFFFFF,
1442 .emu_mask = 0x00000000,
1443 .init = xen_pt_pending_reg_init,
1444 .u.dw.read = xen_pt_long_reg_read,
1445 .u.dw.write = xen_pt_long_reg_write,
1446 },
1447 {
1448 .size = 0,
1449 },
1450 };
1451
1452
1453 /**************************************
1454 * MSI-X Capability
1455 */
1456
1457 /* Message Control register for MSI-X */
1458 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1459 XenPTRegInfo *reg, uint32_t real_offset,
1460 uint32_t *data)
1461 {
1462 uint16_t reg_field;
1463 int rc;
1464
1465 /* use I/O device register's value as initial value */
1466 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1467 if (rc) {
1468 return rc;
1469 }
1470 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1471 XEN_PT_LOG(&s->dev, "MSIX already enabled, disabling it first\n");
1472 xen_host_pci_set_word(&s->real_device, real_offset,
1473 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1474 }
1475
1476 s->msix->ctrl_offset = real_offset;
1477
1478 *data = reg->init_val;
1479 return 0;
1480 }
1481 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1482 XenPTReg *cfg_entry, uint16_t *val,
1483 uint16_t dev_value, uint16_t valid_mask)
1484 {
1485 XenPTRegInfo *reg = cfg_entry->reg;
1486 uint16_t writable_mask = 0;
1487 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1488 int debug_msix_enabled_old;
1489 uint16_t *data = cfg_entry->ptr.half_word;
1490
1491 /* modify emulate register */
1492 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1493 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1494
1495 /* create value for writing to I/O device register */
1496 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1497
1498 /* update MSI-X */
1499 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1500 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1501 xen_pt_msix_update(s);
1502 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1503 xen_pt_msix_disable(s);
1504 }
1505
1506 s->msix->maskall = *val & PCI_MSIX_FLAGS_MASKALL;
1507
1508 debug_msix_enabled_old = s->msix->enabled;
1509 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1510 if (s->msix->enabled != debug_msix_enabled_old) {
1511 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1512 s->msix->enabled ? "enable" : "disable");
1513 }
1514
1515 return 0;
1516 }
1517
1518 /* MSI-X Capability Structure reg static information table */
1519 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1520 /* Next Pointer reg */
1521 {
1522 .offset = PCI_CAP_LIST_NEXT,
1523 .size = 1,
1524 .init_val = 0x00,
1525 .ro_mask = 0xFF,
1526 .emu_mask = 0xFF,
1527 .init = xen_pt_ptr_reg_init,
1528 .u.b.read = xen_pt_byte_reg_read,
1529 .u.b.write = xen_pt_byte_reg_write,
1530 },
1531 /* Message Control reg */
1532 {
1533 .offset = PCI_MSI_FLAGS,
1534 .size = 2,
1535 .init_val = 0x0000,
1536 .res_mask = 0x3800,
1537 .ro_mask = 0x07FF,
1538 .emu_mask = 0x0000,
1539 .init = xen_pt_msixctrl_reg_init,
1540 .u.w.read = xen_pt_word_reg_read,
1541 .u.w.write = xen_pt_msixctrl_reg_write,
1542 },
1543 {
1544 .size = 0,
1545 },
1546 };
1547
1548 static XenPTRegInfo xen_pt_emu_reg_igd_opregion[] = {
1549 /* Intel IGFX OpRegion reg */
1550 {
1551 .offset = 0x0,
1552 .size = 4,
1553 .init_val = 0,
1554 .emu_mask = 0xFFFFFFFF,
1555 .u.dw.read = xen_pt_intel_opregion_read,
1556 .u.dw.write = xen_pt_intel_opregion_write,
1557 },
1558 {
1559 .size = 0,
1560 },
1561 };
1562
1563 /****************************
1564 * Capabilities
1565 */
1566
1567 /* capability structure register group size functions */
1568
1569 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1570 const XenPTRegGroupInfo *grp_reg,
1571 uint32_t base_offset, uint8_t *size)
1572 {
1573 *size = grp_reg->grp_size;
1574 return 0;
1575 }
1576 /* get Vendor Specific Capability Structure register group size */
1577 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1578 const XenPTRegGroupInfo *grp_reg,
1579 uint32_t base_offset, uint8_t *size)
1580 {
1581 return xen_host_pci_get_byte(&s->real_device, base_offset + 0x02, size);
1582 }
1583 /* get PCI Express Capability Structure register group size */
1584 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1585 const XenPTRegGroupInfo *grp_reg,
1586 uint32_t base_offset, uint8_t *size)
1587 {
1588 PCIDevice *d = &s->dev;
1589 uint8_t version = get_capability_version(s, base_offset);
1590 uint8_t type = get_device_type(s, base_offset);
1591 uint8_t pcie_size = 0;
1592
1593
1594 /* calculate size depend on capability version and device/port type */
1595 /* in case of PCI Express Base Specification Rev 1.x */
1596 if (version == 1) {
1597 /* The PCI Express Capabilities, Device Capabilities, and Device
1598 * Status/Control registers are required for all PCI Express devices.
1599 * The Link Capabilities and Link Status/Control are required for all
1600 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1601 * are not required to implement registers other than those listed
1602 * above and terminate the capability structure.
1603 */
1604 switch (type) {
1605 case PCI_EXP_TYPE_ENDPOINT:
1606 case PCI_EXP_TYPE_LEG_END:
1607 pcie_size = 0x14;
1608 break;
1609 case PCI_EXP_TYPE_RC_END:
1610 /* has no link */
1611 pcie_size = 0x0C;
1612 break;
1613 /* only EndPoint passthrough is supported */
1614 case PCI_EXP_TYPE_ROOT_PORT:
1615 case PCI_EXP_TYPE_UPSTREAM:
1616 case PCI_EXP_TYPE_DOWNSTREAM:
1617 case PCI_EXP_TYPE_PCI_BRIDGE:
1618 case PCI_EXP_TYPE_PCIE_BRIDGE:
1619 case PCI_EXP_TYPE_RC_EC:
1620 default:
1621 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1622 return -1;
1623 }
1624 }
1625 /* in case of PCI Express Base Specification Rev 2.0 */
1626 else if (version == 2) {
1627 switch (type) {
1628 case PCI_EXP_TYPE_ENDPOINT:
1629 case PCI_EXP_TYPE_LEG_END:
1630 case PCI_EXP_TYPE_RC_END:
1631 /* For Functions that do not implement the registers,
1632 * these spaces must be hardwired to 0b.
1633 */
1634 pcie_size = 0x3C;
1635 break;
1636 /* only EndPoint passthrough is supported */
1637 case PCI_EXP_TYPE_ROOT_PORT:
1638 case PCI_EXP_TYPE_UPSTREAM:
1639 case PCI_EXP_TYPE_DOWNSTREAM:
1640 case PCI_EXP_TYPE_PCI_BRIDGE:
1641 case PCI_EXP_TYPE_PCIE_BRIDGE:
1642 case PCI_EXP_TYPE_RC_EC:
1643 default:
1644 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1645 return -1;
1646 }
1647 } else {
1648 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1649 return -1;
1650 }
1651
1652 *size = pcie_size;
1653 return 0;
1654 }
1655 /* get MSI Capability Structure register group size */
1656 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1657 const XenPTRegGroupInfo *grp_reg,
1658 uint32_t base_offset, uint8_t *size)
1659 {
1660 uint16_t msg_ctrl = 0;
1661 uint8_t msi_size = 0xa;
1662 int rc;
1663
1664 rc = xen_host_pci_get_word(&s->real_device, base_offset + PCI_MSI_FLAGS,
1665 &msg_ctrl);
1666 if (rc) {
1667 return rc;
1668 }
1669 /* check if 64-bit address is capable of per-vector masking */
1670 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1671 msi_size += 4;
1672 }
1673 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1674 msi_size += 10;
1675 }
1676
1677 s->msi = g_new0(XenPTMSI, 1);
1678 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1679
1680 *size = msi_size;
1681 return 0;
1682 }
1683 /* get MSI-X Capability Structure register group size */
1684 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1685 const XenPTRegGroupInfo *grp_reg,
1686 uint32_t base_offset, uint8_t *size)
1687 {
1688 int rc = 0;
1689
1690 rc = xen_pt_msix_init(s, base_offset);
1691
1692 if (rc < 0) {
1693 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1694 return rc;
1695 }
1696
1697 *size = grp_reg->grp_size;
1698 return 0;
1699 }
1700
1701
1702 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1703 /* Header Type0 reg group */
1704 {
1705 .grp_id = 0xFF,
1706 .grp_type = XEN_PT_GRP_TYPE_EMU,
1707 .grp_size = 0x40,
1708 .size_init = xen_pt_reg_grp_size_init,
1709 .emu_regs = xen_pt_emu_reg_header0,
1710 },
1711 /* PCI PowerManagement Capability reg group */
1712 {
1713 .grp_id = PCI_CAP_ID_PM,
1714 .grp_type = XEN_PT_GRP_TYPE_EMU,
1715 .grp_size = PCI_PM_SIZEOF,
1716 .size_init = xen_pt_reg_grp_size_init,
1717 .emu_regs = xen_pt_emu_reg_pm,
1718 },
1719 /* AGP Capability Structure reg group */
1720 {
1721 .grp_id = PCI_CAP_ID_AGP,
1722 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1723 .grp_size = 0x30,
1724 .size_init = xen_pt_reg_grp_size_init,
1725 },
1726 /* Vital Product Data Capability Structure reg group */
1727 {
1728 .grp_id = PCI_CAP_ID_VPD,
1729 .grp_type = XEN_PT_GRP_TYPE_EMU,
1730 .grp_size = 0x08,
1731 .size_init = xen_pt_reg_grp_size_init,
1732 .emu_regs = xen_pt_emu_reg_vpd,
1733 },
1734 /* Slot Identification reg group */
1735 {
1736 .grp_id = PCI_CAP_ID_SLOTID,
1737 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1738 .grp_size = 0x04,
1739 .size_init = xen_pt_reg_grp_size_init,
1740 },
1741 /* MSI Capability Structure reg group */
1742 {
1743 .grp_id = PCI_CAP_ID_MSI,
1744 .grp_type = XEN_PT_GRP_TYPE_EMU,
1745 .grp_size = 0xFF,
1746 .size_init = xen_pt_msi_size_init,
1747 .emu_regs = xen_pt_emu_reg_msi,
1748 },
1749 /* PCI-X Capabilities List Item reg group */
1750 {
1751 .grp_id = PCI_CAP_ID_PCIX,
1752 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1753 .grp_size = 0x18,
1754 .size_init = xen_pt_reg_grp_size_init,
1755 },
1756 /* Vendor Specific Capability Structure reg group */
1757 {
1758 .grp_id = PCI_CAP_ID_VNDR,
1759 .grp_type = XEN_PT_GRP_TYPE_EMU,
1760 .grp_size = 0xFF,
1761 .size_init = xen_pt_vendor_size_init,
1762 .emu_regs = xen_pt_emu_reg_vendor,
1763 },
1764 /* SHPC Capability List Item reg group */
1765 {
1766 .grp_id = PCI_CAP_ID_SHPC,
1767 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1768 .grp_size = 0x08,
1769 .size_init = xen_pt_reg_grp_size_init,
1770 },
1771 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1772 {
1773 .grp_id = PCI_CAP_ID_SSVID,
1774 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1775 .grp_size = 0x08,
1776 .size_init = xen_pt_reg_grp_size_init,
1777 },
1778 /* AGP 8x Capability Structure reg group */
1779 {
1780 .grp_id = PCI_CAP_ID_AGP3,
1781 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1782 .grp_size = 0x30,
1783 .size_init = xen_pt_reg_grp_size_init,
1784 },
1785 /* PCI Express Capability Structure reg group */
1786 {
1787 .grp_id = PCI_CAP_ID_EXP,
1788 .grp_type = XEN_PT_GRP_TYPE_EMU,
1789 .grp_size = 0xFF,
1790 .size_init = xen_pt_pcie_size_init,
1791 .emu_regs = xen_pt_emu_reg_pcie,
1792 },
1793 /* MSI-X Capability Structure reg group */
1794 {
1795 .grp_id = PCI_CAP_ID_MSIX,
1796 .grp_type = XEN_PT_GRP_TYPE_EMU,
1797 .grp_size = 0x0C,
1798 .size_init = xen_pt_msix_size_init,
1799 .emu_regs = xen_pt_emu_reg_msix,
1800 },
1801 /* Intel IGD Opregion group */
1802 {
1803 .grp_id = XEN_PCI_INTEL_OPREGION,
1804 .grp_type = XEN_PT_GRP_TYPE_EMU,
1805 .grp_size = 0x4,
1806 .size_init = xen_pt_reg_grp_size_init,
1807 .emu_regs = xen_pt_emu_reg_igd_opregion,
1808 },
1809 {
1810 .grp_size = 0,
1811 },
1812 };
1813
1814 /* initialize Capabilities Pointer or Next Pointer register */
1815 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1816 XenPTRegInfo *reg, uint32_t real_offset,
1817 uint32_t *data)
1818 {
1819 int i, rc;
1820 uint8_t reg_field;
1821 uint8_t cap_id = 0;
1822
1823 rc = xen_host_pci_get_byte(&s->real_device, real_offset, &reg_field);
1824 if (rc) {
1825 return rc;
1826 }
1827 /* find capability offset */
1828 while (reg_field) {
1829 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1830 if (xen_pt_hide_dev_cap(&s->real_device,
1831 xen_pt_emu_reg_grps[i].grp_id)) {
1832 continue;
1833 }
1834
1835 rc = xen_host_pci_get_byte(&s->real_device,
1836 reg_field + PCI_CAP_LIST_ID, &cap_id);
1837 if (rc) {
1838 XEN_PT_ERR(&s->dev, "Failed to read capability @0x%x (rc:%d)\n",
1839 reg_field + PCI_CAP_LIST_ID, rc);
1840 return rc;
1841 }
1842 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1843 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1844 goto out;
1845 }
1846 /* ignore the 0 hardwired capability, find next one */
1847 break;
1848 }
1849 }
1850
1851 /* next capability */
1852 rc = xen_host_pci_get_byte(&s->real_device,
1853 reg_field + PCI_CAP_LIST_NEXT, &reg_field);
1854 if (rc) {
1855 return rc;
1856 }
1857 }
1858
1859 out:
1860 *data = reg_field;
1861 return 0;
1862 }
1863
1864
1865 /*************
1866 * Main
1867 */
1868
1869 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1870 {
1871 uint8_t id;
1872 unsigned max_cap = XEN_PCI_CAP_MAX;
1873 uint8_t pos = PCI_CAPABILITY_LIST;
1874 uint8_t status = 0;
1875
1876 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1877 return 0;
1878 }
1879 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1880 return 0;
1881 }
1882
1883 while (max_cap--) {
1884 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1885 break;
1886 }
1887 if (pos < PCI_CONFIG_HEADER_SIZE) {
1888 break;
1889 }
1890
1891 pos &= ~3;
1892 if (xen_host_pci_get_byte(&s->real_device,
1893 pos + PCI_CAP_LIST_ID, &id)) {
1894 break;
1895 }
1896
1897 if (id == 0xff) {
1898 break;
1899 }
1900 if (id == cap) {
1901 return pos;
1902 }
1903
1904 pos += PCI_CAP_LIST_NEXT;
1905 }
1906 return 0;
1907 }
1908
1909 static void xen_pt_config_reg_init(XenPCIPassthroughState *s,
1910 XenPTRegGroup *reg_grp, XenPTRegInfo *reg,
1911 Error **errp)
1912 {
1913 XenPTReg *reg_entry;
1914 uint32_t data = 0;
1915 int rc = 0;
1916
1917 reg_entry = g_new0(XenPTReg, 1);
1918 reg_entry->reg = reg;
1919
1920 if (reg->init) {
1921 uint32_t host_mask, size_mask;
1922 unsigned int offset;
1923 uint32_t val;
1924
1925 /* initialize emulate register */
1926 rc = reg->init(s, reg_entry->reg,
1927 reg_grp->base_offset + reg->offset, &data);
1928 if (rc < 0) {
1929 g_free(reg_entry);
1930 error_setg(errp, "Init emulate register fail");
1931 return;
1932 }
1933 if (data == XEN_PT_INVALID_REG) {
1934 /* free unused BAR register entry */
1935 g_free(reg_entry);
1936 return;
1937 }
1938 /* Sync up the data to dev.config */
1939 offset = reg_grp->base_offset + reg->offset;
1940 size_mask = 0xFFFFFFFF >> ((4 - reg->size) << 3);
1941
1942 switch (reg->size) {
1943 case 1: rc = xen_host_pci_get_byte(&s->real_device, offset, (uint8_t *)&val);
1944 break;
1945 case 2: rc = xen_host_pci_get_word(&s->real_device, offset, (uint16_t *)&val);
1946 break;
1947 case 4: rc = xen_host_pci_get_long(&s->real_device, offset, &val);
1948 break;
1949 default: abort();
1950 }
1951 if (rc) {
1952 /* Serious issues when we cannot read the host values! */
1953 g_free(reg_entry);
1954 error_setg(errp, "Cannot read host values");
1955 return;
1956 }
1957 /* Set bits in emu_mask are the ones we emulate. The dev.config shall
1958 * contain the emulated view of the guest - therefore we flip the mask
1959 * to mask out the host values (which dev.config initially has) . */
1960 host_mask = size_mask & ~reg->emu_mask;
1961
1962 if ((data & host_mask) != (val & host_mask)) {
1963 uint32_t new_val;
1964
1965 /* Mask out host (including past size). */
1966 new_val = val & host_mask;
1967 /* Merge emulated ones (excluding the non-emulated ones). */
1968 new_val |= data & host_mask;
1969 /* Leave intact host and emulated values past the size - even though
1970 * we do not care as we write per reg->size granularity, but for the
1971 * logging below lets have the proper value. */
1972 new_val |= ((val | data)) & ~size_mask;
1973 XEN_PT_LOG(&s->dev,"Offset 0x%04x mismatch! Emulated=0x%04x, host=0x%04x, syncing to 0x%04x.\n",
1974 offset, data, val, new_val);
1975 val = new_val;
1976 } else
1977 val = data;
1978
1979 if (val & ~size_mask) {
1980 error_setg(errp, "Offset 0x%04x:0x%04x expands past"
1981 " register size (%d)", offset, val, reg->size);
1982 g_free(reg_entry);
1983 return;
1984 }
1985 /* This could be just pci_set_long as we don't modify the bits
1986 * past reg->size, but in case this routine is run in parallel or the
1987 * init value is larger, we do not want to over-write registers. */
1988 switch (reg->size) {
1989 case 1: pci_set_byte(s->dev.config + offset, (uint8_t)val);
1990 break;
1991 case 2: pci_set_word(s->dev.config + offset, (uint16_t)val);
1992 break;
1993 case 4: pci_set_long(s->dev.config + offset, val);
1994 break;
1995 default: abort();
1996 }
1997 /* set register value pointer to the data. */
1998 reg_entry->ptr.byte = s->dev.config + offset;
1999
2000 }
2001 /* list add register entry */
2002 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
2003 }
2004
2005 void xen_pt_config_init(XenPCIPassthroughState *s, Error **errp)
2006 {
2007 int i, rc;
2008 Error *err = NULL;
2009
2010 QLIST_INIT(&s->reg_grps);
2011
2012 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
2013 uint32_t reg_grp_offset = 0;
2014 XenPTRegGroup *reg_grp_entry = NULL;
2015
2016 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF
2017 && xen_pt_emu_reg_grps[i].grp_id != XEN_PCI_INTEL_OPREGION) {
2018 if (xen_pt_hide_dev_cap(&s->real_device,
2019 xen_pt_emu_reg_grps[i].grp_id)) {
2020 continue;
2021 }
2022
2023 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
2024
2025 if (!reg_grp_offset) {
2026 continue;
2027 }
2028 }
2029
2030 /*
2031 * By default we will trap up to 0x40 in the cfg space.
2032 * If an intel device is pass through we need to trap 0xfc,
2033 * therefore the size should be 0xff.
2034 */
2035 if (xen_pt_emu_reg_grps[i].grp_id == XEN_PCI_INTEL_OPREGION) {
2036 reg_grp_offset = XEN_PCI_INTEL_OPREGION;
2037 }
2038
2039 reg_grp_entry = g_new0(XenPTRegGroup, 1);
2040 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
2041 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
2042
2043 reg_grp_entry->base_offset = reg_grp_offset;
2044 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
2045 if (xen_pt_emu_reg_grps[i].size_init) {
2046 /* get register group size */
2047 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
2048 reg_grp_offset,
2049 &reg_grp_entry->size);
2050 if (rc < 0) {
2051 error_setg(&err, "Failed to initialize %d/%zu, type = 0x%x,"
2052 " rc: %d", i, ARRAY_SIZE(xen_pt_emu_reg_grps),
2053 xen_pt_emu_reg_grps[i].grp_type, rc);
2054 error_propagate(errp, err);
2055 xen_pt_config_delete(s);
2056 return;
2057 }
2058 }
2059
2060 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
2061 if (xen_pt_emu_reg_grps[i].emu_regs) {
2062 int j = 0;
2063 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
2064
2065 /* initialize capability register */
2066 for (j = 0; regs->size != 0; j++, regs++) {
2067 xen_pt_config_reg_init(s, reg_grp_entry, regs, &err);
2068 if (err) {
2069 error_append_hint(&err, "Failed to init register %d"
2070 " offsets 0x%x in grp_type = 0x%x (%d/%zu)", j,
2071 regs->offset, xen_pt_emu_reg_grps[i].grp_type,
2072 i, ARRAY_SIZE(xen_pt_emu_reg_grps));
2073 error_propagate(errp, err);
2074 xen_pt_config_delete(s);
2075 return;
2076 }
2077 }
2078 }
2079 }
2080 }
2081 }
2082
2083 /* delete all emulate register */
2084 void xen_pt_config_delete(XenPCIPassthroughState *s)
2085 {
2086 struct XenPTRegGroup *reg_group, *next_grp;
2087 struct XenPTReg *reg, *next_reg;
2088
2089 /* free MSI/MSI-X info table */
2090 if (s->msix) {
2091 xen_pt_msix_unmap(s);
2092 }
2093 g_free(s->msi);
2094
2095 /* free all register group entry */
2096 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
2097 /* free all register entry */
2098 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
2099 QLIST_REMOVE(reg, entries);
2100 g_free(reg);
2101 }
2102
2103 QLIST_REMOVE(reg_group, entries);
2104 g_free(reg_group);
2105 }
2106 }