]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xen/xen_pt_config_init.c
Add Error **errp for xen_pt_config_init()
[mirror_qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/timer.h"
16 #include "hw/xen/xen_backend.h"
17 #include "xen_pt.h"
18
19 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
20 (((value) & (val_mask)) | ((data) & ~(val_mask)))
21
22 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
23
24 /* prototype */
25
26 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
27 uint32_t real_offset, uint32_t *data);
28
29
30 /* helper */
31
32 /* A return value of 1 means the capability should NOT be exposed to guest. */
33 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
34 {
35 switch (grp_id) {
36 case PCI_CAP_ID_EXP:
37 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
38 * Controller looks trivial, e.g., the PCI Express Capabilities
39 * Register is 0. We should not try to expose it to guest.
40 *
41 * The datasheet is available at
42 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
43 *
44 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
45 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
46 * Controller looks trivial, e.g., the PCI Express Capabilities
47 * Register is 0, so the Capability Version is 0 and
48 * xen_pt_pcie_size_init() would fail.
49 */
50 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
51 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
52 return 1;
53 }
54 break;
55 }
56 return 0;
57 }
58
59 /* find emulate register group entry */
60 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
61 {
62 XenPTRegGroup *entry = NULL;
63
64 /* find register group entry */
65 QLIST_FOREACH(entry, &s->reg_grps, entries) {
66 /* check address */
67 if ((entry->base_offset <= address)
68 && ((entry->base_offset + entry->size) > address)) {
69 return entry;
70 }
71 }
72
73 /* group entry not found */
74 return NULL;
75 }
76
77 /* find emulate register entry */
78 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
79 {
80 XenPTReg *reg_entry = NULL;
81 XenPTRegInfo *reg = NULL;
82 uint32_t real_offset = 0;
83
84 /* find register entry */
85 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
86 reg = reg_entry->reg;
87 real_offset = reg_grp->base_offset + reg->offset;
88 /* check address */
89 if ((real_offset <= address)
90 && ((real_offset + reg->size) > address)) {
91 return reg_entry;
92 }
93 }
94
95 return NULL;
96 }
97
98 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
99 XenPTRegInfo *reg, uint32_t valid_mask)
100 {
101 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
102
103 if (!s->permissive) {
104 throughable_mask &= ~reg->res_mask;
105 }
106
107 return throughable_mask & valid_mask;
108 }
109
110 /****************
111 * general register functions
112 */
113
114 /* register initialization function */
115
116 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
117 XenPTRegInfo *reg, uint32_t real_offset,
118 uint32_t *data)
119 {
120 *data = reg->init_val;
121 return 0;
122 }
123
124 /* Read register functions */
125
126 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
127 uint8_t *value, uint8_t valid_mask)
128 {
129 XenPTRegInfo *reg = cfg_entry->reg;
130 uint8_t valid_emu_mask = 0;
131 uint8_t *data = cfg_entry->ptr.byte;
132
133 /* emulate byte register */
134 valid_emu_mask = reg->emu_mask & valid_mask;
135 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
136
137 return 0;
138 }
139 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
140 uint16_t *value, uint16_t valid_mask)
141 {
142 XenPTRegInfo *reg = cfg_entry->reg;
143 uint16_t valid_emu_mask = 0;
144 uint16_t *data = cfg_entry->ptr.half_word;
145
146 /* emulate word register */
147 valid_emu_mask = reg->emu_mask & valid_mask;
148 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
149
150 return 0;
151 }
152 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
153 uint32_t *value, uint32_t valid_mask)
154 {
155 XenPTRegInfo *reg = cfg_entry->reg;
156 uint32_t valid_emu_mask = 0;
157 uint32_t *data = cfg_entry->ptr.word;
158
159 /* emulate long register */
160 valid_emu_mask = reg->emu_mask & valid_mask;
161 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
162
163 return 0;
164 }
165
166 /* Write register functions */
167
168 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
169 uint8_t *val, uint8_t dev_value,
170 uint8_t valid_mask)
171 {
172 XenPTRegInfo *reg = cfg_entry->reg;
173 uint8_t writable_mask = 0;
174 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
175 uint8_t *data = cfg_entry->ptr.byte;
176
177 /* modify emulate register */
178 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
179 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
180
181 /* create value for writing to I/O device register */
182 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
183 throughable_mask);
184
185 return 0;
186 }
187 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
188 uint16_t *val, uint16_t dev_value,
189 uint16_t valid_mask)
190 {
191 XenPTRegInfo *reg = cfg_entry->reg;
192 uint16_t writable_mask = 0;
193 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
194 uint16_t *data = cfg_entry->ptr.half_word;
195
196 /* modify emulate register */
197 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
198 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
199
200 /* create value for writing to I/O device register */
201 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
202 throughable_mask);
203
204 return 0;
205 }
206 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
207 uint32_t *val, uint32_t dev_value,
208 uint32_t valid_mask)
209 {
210 XenPTRegInfo *reg = cfg_entry->reg;
211 uint32_t writable_mask = 0;
212 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
213 uint32_t *data = cfg_entry->ptr.word;
214
215 /* modify emulate register */
216 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
217 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
218
219 /* create value for writing to I/O device register */
220 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
221 throughable_mask);
222
223 return 0;
224 }
225
226
227 /* XenPTRegInfo declaration
228 * - only for emulated register (either a part or whole bit).
229 * - for passthrough register that need special behavior (like interacting with
230 * other component), set emu_mask to all 0 and specify r/w func properly.
231 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
232 */
233
234 /********************
235 * Header Type0
236 */
237
238 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
239 XenPTRegInfo *reg, uint32_t real_offset,
240 uint32_t *data)
241 {
242 *data = s->real_device.vendor_id;
243 return 0;
244 }
245 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
246 XenPTRegInfo *reg, uint32_t real_offset,
247 uint32_t *data)
248 {
249 *data = s->real_device.device_id;
250 return 0;
251 }
252 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
253 XenPTRegInfo *reg, uint32_t real_offset,
254 uint32_t *data)
255 {
256 XenPTRegGroup *reg_grp_entry = NULL;
257 XenPTReg *reg_entry = NULL;
258 uint32_t reg_field = 0;
259
260 /* find Header register group */
261 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
262 if (reg_grp_entry) {
263 /* find Capabilities Pointer register */
264 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
265 if (reg_entry) {
266 /* check Capabilities Pointer register */
267 if (*reg_entry->ptr.half_word) {
268 reg_field |= PCI_STATUS_CAP_LIST;
269 } else {
270 reg_field &= ~PCI_STATUS_CAP_LIST;
271 }
272 } else {
273 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
274 " for Capabilities Pointer register."
275 " (%s)\n", __func__);
276 return -1;
277 }
278 } else {
279 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
280 " for Header. (%s)\n", __func__);
281 return -1;
282 }
283
284 *data = reg_field;
285 return 0;
286 }
287 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
288 XenPTRegInfo *reg, uint32_t real_offset,
289 uint32_t *data)
290 {
291 /* read PCI_HEADER_TYPE */
292 *data = reg->init_val | 0x80;
293 return 0;
294 }
295
296 /* initialize Interrupt Pin register */
297 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
298 XenPTRegInfo *reg, uint32_t real_offset,
299 uint32_t *data)
300 {
301 *data = xen_pt_pci_read_intx(s);
302 return 0;
303 }
304
305 /* Command register */
306 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
307 uint16_t *val, uint16_t dev_value,
308 uint16_t valid_mask)
309 {
310 XenPTRegInfo *reg = cfg_entry->reg;
311 uint16_t writable_mask = 0;
312 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
313 uint16_t *data = cfg_entry->ptr.half_word;
314
315 /* modify emulate register */
316 writable_mask = ~reg->ro_mask & valid_mask;
317 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
318
319 /* create value for writing to I/O device register */
320 if (*val & PCI_COMMAND_INTX_DISABLE) {
321 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
322 } else {
323 if (s->machine_irq) {
324 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
325 }
326 }
327
328 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
329
330 return 0;
331 }
332
333 /* BAR */
334 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
335 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
336 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
337 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
338
339 static bool is_64bit_bar(PCIIORegion *r)
340 {
341 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
342 }
343
344 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
345 {
346 if (is_64bit_bar(r)) {
347 uint64_t size64;
348 size64 = (r + 1)->size;
349 size64 <<= 32;
350 size64 += r->size;
351 return size64;
352 }
353 return r->size;
354 }
355
356 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
357 int index)
358 {
359 PCIDevice *d = &s->dev;
360 XenPTRegion *region = NULL;
361 PCIIORegion *r;
362
363 /* check 64bit BAR */
364 if ((0 < index) && (index < PCI_ROM_SLOT)) {
365 int type = s->real_device.io_regions[index - 1].type;
366
367 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
368 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
369 region = &s->bases[index - 1];
370 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
371 return XEN_PT_BAR_FLAG_UPPER;
372 }
373 }
374 }
375
376 /* check unused BAR */
377 r = &d->io_regions[index];
378 if (!xen_pt_get_bar_size(r)) {
379 return XEN_PT_BAR_FLAG_UNUSED;
380 }
381
382 /* for ExpROM BAR */
383 if (index == PCI_ROM_SLOT) {
384 return XEN_PT_BAR_FLAG_MEM;
385 }
386
387 /* check BAR I/O indicator */
388 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
389 return XEN_PT_BAR_FLAG_IO;
390 } else {
391 return XEN_PT_BAR_FLAG_MEM;
392 }
393 }
394
395 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
396 {
397 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
398 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
399 } else {
400 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
401 }
402 }
403
404 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
405 uint32_t real_offset, uint32_t *data)
406 {
407 uint32_t reg_field = 0;
408 int index;
409
410 index = xen_pt_bar_offset_to_index(reg->offset);
411 if (index < 0 || index >= PCI_NUM_REGIONS) {
412 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
413 return -1;
414 }
415
416 /* set BAR flag */
417 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
418 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
419 reg_field = XEN_PT_INVALID_REG;
420 }
421
422 *data = reg_field;
423 return 0;
424 }
425 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
426 uint32_t *value, uint32_t valid_mask)
427 {
428 XenPTRegInfo *reg = cfg_entry->reg;
429 uint32_t valid_emu_mask = 0;
430 uint32_t bar_emu_mask = 0;
431 int index;
432
433 /* get BAR index */
434 index = xen_pt_bar_offset_to_index(reg->offset);
435 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
436 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
437 return -1;
438 }
439
440 /* use fixed-up value from kernel sysfs */
441 *value = base_address_with_flags(&s->real_device.io_regions[index]);
442
443 /* set emulate mask depend on BAR flag */
444 switch (s->bases[index].bar_flag) {
445 case XEN_PT_BAR_FLAG_MEM:
446 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
447 break;
448 case XEN_PT_BAR_FLAG_IO:
449 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
450 break;
451 case XEN_PT_BAR_FLAG_UPPER:
452 bar_emu_mask = XEN_PT_BAR_ALLF;
453 break;
454 default:
455 break;
456 }
457
458 /* emulate BAR */
459 valid_emu_mask = bar_emu_mask & valid_mask;
460 *value = XEN_PT_MERGE_VALUE(*value, *cfg_entry->ptr.word, ~valid_emu_mask);
461
462 return 0;
463 }
464 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
465 uint32_t *val, uint32_t dev_value,
466 uint32_t valid_mask)
467 {
468 XenPTRegInfo *reg = cfg_entry->reg;
469 XenPTRegion *base = NULL;
470 PCIDevice *d = &s->dev;
471 const PCIIORegion *r;
472 uint32_t writable_mask = 0;
473 uint32_t bar_emu_mask = 0;
474 uint32_t bar_ro_mask = 0;
475 uint32_t r_size = 0;
476 int index = 0;
477 uint32_t *data = cfg_entry->ptr.word;
478
479 index = xen_pt_bar_offset_to_index(reg->offset);
480 if (index < 0 || index >= PCI_NUM_REGIONS) {
481 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
482 return -1;
483 }
484
485 r = &d->io_regions[index];
486 base = &s->bases[index];
487 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
488
489 /* set emulate mask and read-only mask values depend on the BAR flag */
490 switch (s->bases[index].bar_flag) {
491 case XEN_PT_BAR_FLAG_MEM:
492 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
493 if (!r_size) {
494 /* low 32 bits mask for 64 bit bars */
495 bar_ro_mask = XEN_PT_BAR_ALLF;
496 } else {
497 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
498 }
499 break;
500 case XEN_PT_BAR_FLAG_IO:
501 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
502 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
503 break;
504 case XEN_PT_BAR_FLAG_UPPER:
505 bar_emu_mask = XEN_PT_BAR_ALLF;
506 bar_ro_mask = r_size ? r_size - 1 : 0;
507 break;
508 default:
509 break;
510 }
511
512 /* modify emulate register */
513 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
514 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
515
516 /* check whether we need to update the virtual region address or not */
517 switch (s->bases[index].bar_flag) {
518 case XEN_PT_BAR_FLAG_UPPER:
519 case XEN_PT_BAR_FLAG_MEM:
520 /* nothing to do */
521 break;
522 case XEN_PT_BAR_FLAG_IO:
523 /* nothing to do */
524 break;
525 default:
526 break;
527 }
528
529 /* create value for writing to I/O device register */
530 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
531
532 return 0;
533 }
534
535 /* write Exp ROM BAR */
536 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
537 XenPTReg *cfg_entry, uint32_t *val,
538 uint32_t dev_value, uint32_t valid_mask)
539 {
540 XenPTRegInfo *reg = cfg_entry->reg;
541 XenPTRegion *base = NULL;
542 PCIDevice *d = (PCIDevice *)&s->dev;
543 uint32_t writable_mask = 0;
544 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
545 pcibus_t r_size = 0;
546 uint32_t bar_ro_mask = 0;
547 uint32_t *data = cfg_entry->ptr.word;
548
549 r_size = d->io_regions[PCI_ROM_SLOT].size;
550 base = &s->bases[PCI_ROM_SLOT];
551 /* align memory type resource size */
552 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
553
554 /* set emulate mask and read-only mask */
555 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
556
557 /* modify emulate register */
558 writable_mask = ~bar_ro_mask & valid_mask;
559 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
560
561 /* create value for writing to I/O device register */
562 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
563
564 return 0;
565 }
566
567 static int xen_pt_intel_opregion_read(XenPCIPassthroughState *s,
568 XenPTReg *cfg_entry,
569 uint32_t *value, uint32_t valid_mask)
570 {
571 *value = igd_read_opregion(s);
572 return 0;
573 }
574
575 static int xen_pt_intel_opregion_write(XenPCIPassthroughState *s,
576 XenPTReg *cfg_entry, uint32_t *value,
577 uint32_t dev_value, uint32_t valid_mask)
578 {
579 igd_write_opregion(s, *value);
580 return 0;
581 }
582
583 /* Header Type0 reg static information table */
584 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
585 /* Vendor ID reg */
586 {
587 .offset = PCI_VENDOR_ID,
588 .size = 2,
589 .init_val = 0x0000,
590 .ro_mask = 0xFFFF,
591 .emu_mask = 0xFFFF,
592 .init = xen_pt_vendor_reg_init,
593 .u.w.read = xen_pt_word_reg_read,
594 .u.w.write = xen_pt_word_reg_write,
595 },
596 /* Device ID reg */
597 {
598 .offset = PCI_DEVICE_ID,
599 .size = 2,
600 .init_val = 0x0000,
601 .ro_mask = 0xFFFF,
602 .emu_mask = 0xFFFF,
603 .init = xen_pt_device_reg_init,
604 .u.w.read = xen_pt_word_reg_read,
605 .u.w.write = xen_pt_word_reg_write,
606 },
607 /* Command reg */
608 {
609 .offset = PCI_COMMAND,
610 .size = 2,
611 .init_val = 0x0000,
612 .res_mask = 0xF880,
613 .emu_mask = 0x0743,
614 .init = xen_pt_common_reg_init,
615 .u.w.read = xen_pt_word_reg_read,
616 .u.w.write = xen_pt_cmd_reg_write,
617 },
618 /* Capabilities Pointer reg */
619 {
620 .offset = PCI_CAPABILITY_LIST,
621 .size = 1,
622 .init_val = 0x00,
623 .ro_mask = 0xFF,
624 .emu_mask = 0xFF,
625 .init = xen_pt_ptr_reg_init,
626 .u.b.read = xen_pt_byte_reg_read,
627 .u.b.write = xen_pt_byte_reg_write,
628 },
629 /* Status reg */
630 /* use emulated Cap Ptr value to initialize,
631 * so need to be declared after Cap Ptr reg
632 */
633 {
634 .offset = PCI_STATUS,
635 .size = 2,
636 .init_val = 0x0000,
637 .res_mask = 0x0007,
638 .ro_mask = 0x06F8,
639 .rw1c_mask = 0xF900,
640 .emu_mask = 0x0010,
641 .init = xen_pt_status_reg_init,
642 .u.w.read = xen_pt_word_reg_read,
643 .u.w.write = xen_pt_word_reg_write,
644 },
645 /* Cache Line Size reg */
646 {
647 .offset = PCI_CACHE_LINE_SIZE,
648 .size = 1,
649 .init_val = 0x00,
650 .ro_mask = 0x00,
651 .emu_mask = 0xFF,
652 .init = xen_pt_common_reg_init,
653 .u.b.read = xen_pt_byte_reg_read,
654 .u.b.write = xen_pt_byte_reg_write,
655 },
656 /* Latency Timer reg */
657 {
658 .offset = PCI_LATENCY_TIMER,
659 .size = 1,
660 .init_val = 0x00,
661 .ro_mask = 0x00,
662 .emu_mask = 0xFF,
663 .init = xen_pt_common_reg_init,
664 .u.b.read = xen_pt_byte_reg_read,
665 .u.b.write = xen_pt_byte_reg_write,
666 },
667 /* Header Type reg */
668 {
669 .offset = PCI_HEADER_TYPE,
670 .size = 1,
671 .init_val = 0x00,
672 .ro_mask = 0xFF,
673 .emu_mask = 0x00,
674 .init = xen_pt_header_type_reg_init,
675 .u.b.read = xen_pt_byte_reg_read,
676 .u.b.write = xen_pt_byte_reg_write,
677 },
678 /* Interrupt Line reg */
679 {
680 .offset = PCI_INTERRUPT_LINE,
681 .size = 1,
682 .init_val = 0x00,
683 .ro_mask = 0x00,
684 .emu_mask = 0xFF,
685 .init = xen_pt_common_reg_init,
686 .u.b.read = xen_pt_byte_reg_read,
687 .u.b.write = xen_pt_byte_reg_write,
688 },
689 /* Interrupt Pin reg */
690 {
691 .offset = PCI_INTERRUPT_PIN,
692 .size = 1,
693 .init_val = 0x00,
694 .ro_mask = 0xFF,
695 .emu_mask = 0xFF,
696 .init = xen_pt_irqpin_reg_init,
697 .u.b.read = xen_pt_byte_reg_read,
698 .u.b.write = xen_pt_byte_reg_write,
699 },
700 /* BAR 0 reg */
701 /* mask of BAR need to be decided later, depends on IO/MEM type */
702 {
703 .offset = PCI_BASE_ADDRESS_0,
704 .size = 4,
705 .init_val = 0x00000000,
706 .init = xen_pt_bar_reg_init,
707 .u.dw.read = xen_pt_bar_reg_read,
708 .u.dw.write = xen_pt_bar_reg_write,
709 },
710 /* BAR 1 reg */
711 {
712 .offset = PCI_BASE_ADDRESS_1,
713 .size = 4,
714 .init_val = 0x00000000,
715 .init = xen_pt_bar_reg_init,
716 .u.dw.read = xen_pt_bar_reg_read,
717 .u.dw.write = xen_pt_bar_reg_write,
718 },
719 /* BAR 2 reg */
720 {
721 .offset = PCI_BASE_ADDRESS_2,
722 .size = 4,
723 .init_val = 0x00000000,
724 .init = xen_pt_bar_reg_init,
725 .u.dw.read = xen_pt_bar_reg_read,
726 .u.dw.write = xen_pt_bar_reg_write,
727 },
728 /* BAR 3 reg */
729 {
730 .offset = PCI_BASE_ADDRESS_3,
731 .size = 4,
732 .init_val = 0x00000000,
733 .init = xen_pt_bar_reg_init,
734 .u.dw.read = xen_pt_bar_reg_read,
735 .u.dw.write = xen_pt_bar_reg_write,
736 },
737 /* BAR 4 reg */
738 {
739 .offset = PCI_BASE_ADDRESS_4,
740 .size = 4,
741 .init_val = 0x00000000,
742 .init = xen_pt_bar_reg_init,
743 .u.dw.read = xen_pt_bar_reg_read,
744 .u.dw.write = xen_pt_bar_reg_write,
745 },
746 /* BAR 5 reg */
747 {
748 .offset = PCI_BASE_ADDRESS_5,
749 .size = 4,
750 .init_val = 0x00000000,
751 .init = xen_pt_bar_reg_init,
752 .u.dw.read = xen_pt_bar_reg_read,
753 .u.dw.write = xen_pt_bar_reg_write,
754 },
755 /* Expansion ROM BAR reg */
756 {
757 .offset = PCI_ROM_ADDRESS,
758 .size = 4,
759 .init_val = 0x00000000,
760 .ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
761 .emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
762 .init = xen_pt_bar_reg_init,
763 .u.dw.read = xen_pt_long_reg_read,
764 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
765 },
766 {
767 .size = 0,
768 },
769 };
770
771
772 /*********************************
773 * Vital Product Data Capability
774 */
775
776 /* Vital Product Data Capability Structure reg static information table */
777 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
778 {
779 .offset = PCI_CAP_LIST_NEXT,
780 .size = 1,
781 .init_val = 0x00,
782 .ro_mask = 0xFF,
783 .emu_mask = 0xFF,
784 .init = xen_pt_ptr_reg_init,
785 .u.b.read = xen_pt_byte_reg_read,
786 .u.b.write = xen_pt_byte_reg_write,
787 },
788 {
789 .offset = PCI_VPD_ADDR,
790 .size = 2,
791 .ro_mask = 0x0003,
792 .emu_mask = 0x0003,
793 .init = xen_pt_common_reg_init,
794 .u.w.read = xen_pt_word_reg_read,
795 .u.w.write = xen_pt_word_reg_write,
796 },
797 {
798 .size = 0,
799 },
800 };
801
802
803 /**************************************
804 * Vendor Specific Capability
805 */
806
807 /* Vendor Specific Capability Structure reg static information table */
808 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
809 {
810 .offset = PCI_CAP_LIST_NEXT,
811 .size = 1,
812 .init_val = 0x00,
813 .ro_mask = 0xFF,
814 .emu_mask = 0xFF,
815 .init = xen_pt_ptr_reg_init,
816 .u.b.read = xen_pt_byte_reg_read,
817 .u.b.write = xen_pt_byte_reg_write,
818 },
819 {
820 .size = 0,
821 },
822 };
823
824
825 /*****************************
826 * PCI Express Capability
827 */
828
829 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
830 uint32_t offset)
831 {
832 uint8_t flag;
833 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
834 return 0;
835 }
836 return flag & PCI_EXP_FLAGS_VERS;
837 }
838
839 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
840 uint32_t offset)
841 {
842 uint8_t flag;
843 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
844 return 0;
845 }
846 return (flag & PCI_EXP_FLAGS_TYPE) >> 4;
847 }
848
849 /* initialize Link Control register */
850 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
851 XenPTRegInfo *reg, uint32_t real_offset,
852 uint32_t *data)
853 {
854 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
855 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
856
857 /* no need to initialize in case of Root Complex Integrated Endpoint
858 * with cap_ver 1.x
859 */
860 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
861 *data = XEN_PT_INVALID_REG;
862 }
863
864 *data = reg->init_val;
865 return 0;
866 }
867 /* initialize Device Control 2 register */
868 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
869 XenPTRegInfo *reg, uint32_t real_offset,
870 uint32_t *data)
871 {
872 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
873
874 /* no need to initialize in case of cap_ver 1.x */
875 if (cap_ver == 1) {
876 *data = XEN_PT_INVALID_REG;
877 }
878
879 *data = reg->init_val;
880 return 0;
881 }
882 /* initialize Link Control 2 register */
883 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
884 XenPTRegInfo *reg, uint32_t real_offset,
885 uint32_t *data)
886 {
887 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
888 uint32_t reg_field = 0;
889
890 /* no need to initialize in case of cap_ver 1.x */
891 if (cap_ver == 1) {
892 reg_field = XEN_PT_INVALID_REG;
893 } else {
894 /* set Supported Link Speed */
895 uint8_t lnkcap;
896 int rc;
897 rc = xen_host_pci_get_byte(&s->real_device,
898 real_offset - reg->offset + PCI_EXP_LNKCAP,
899 &lnkcap);
900 if (rc) {
901 return rc;
902 }
903 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
904 }
905
906 *data = reg_field;
907 return 0;
908 }
909
910 /* PCI Express Capability Structure reg static information table */
911 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
912 /* Next Pointer reg */
913 {
914 .offset = PCI_CAP_LIST_NEXT,
915 .size = 1,
916 .init_val = 0x00,
917 .ro_mask = 0xFF,
918 .emu_mask = 0xFF,
919 .init = xen_pt_ptr_reg_init,
920 .u.b.read = xen_pt_byte_reg_read,
921 .u.b.write = xen_pt_byte_reg_write,
922 },
923 /* Device Capabilities reg */
924 {
925 .offset = PCI_EXP_DEVCAP,
926 .size = 4,
927 .init_val = 0x00000000,
928 .ro_mask = 0xFFFFFFFF,
929 .emu_mask = 0x10000000,
930 .init = xen_pt_common_reg_init,
931 .u.dw.read = xen_pt_long_reg_read,
932 .u.dw.write = xen_pt_long_reg_write,
933 },
934 /* Device Control reg */
935 {
936 .offset = PCI_EXP_DEVCTL,
937 .size = 2,
938 .init_val = 0x2810,
939 .ro_mask = 0x8400,
940 .emu_mask = 0xFFFF,
941 .init = xen_pt_common_reg_init,
942 .u.w.read = xen_pt_word_reg_read,
943 .u.w.write = xen_pt_word_reg_write,
944 },
945 /* Device Status reg */
946 {
947 .offset = PCI_EXP_DEVSTA,
948 .size = 2,
949 .res_mask = 0xFFC0,
950 .ro_mask = 0x0030,
951 .rw1c_mask = 0x000F,
952 .init = xen_pt_common_reg_init,
953 .u.w.read = xen_pt_word_reg_read,
954 .u.w.write = xen_pt_word_reg_write,
955 },
956 /* Link Control reg */
957 {
958 .offset = PCI_EXP_LNKCTL,
959 .size = 2,
960 .init_val = 0x0000,
961 .ro_mask = 0xFC34,
962 .emu_mask = 0xFFFF,
963 .init = xen_pt_linkctrl_reg_init,
964 .u.w.read = xen_pt_word_reg_read,
965 .u.w.write = xen_pt_word_reg_write,
966 },
967 /* Link Status reg */
968 {
969 .offset = PCI_EXP_LNKSTA,
970 .size = 2,
971 .ro_mask = 0x3FFF,
972 .rw1c_mask = 0xC000,
973 .init = xen_pt_common_reg_init,
974 .u.w.read = xen_pt_word_reg_read,
975 .u.w.write = xen_pt_word_reg_write,
976 },
977 /* Device Control 2 reg */
978 {
979 .offset = 0x28,
980 .size = 2,
981 .init_val = 0x0000,
982 .ro_mask = 0xFFE0,
983 .emu_mask = 0xFFFF,
984 .init = xen_pt_devctrl2_reg_init,
985 .u.w.read = xen_pt_word_reg_read,
986 .u.w.write = xen_pt_word_reg_write,
987 },
988 /* Link Control 2 reg */
989 {
990 .offset = 0x30,
991 .size = 2,
992 .init_val = 0x0000,
993 .ro_mask = 0xE040,
994 .emu_mask = 0xFFFF,
995 .init = xen_pt_linkctrl2_reg_init,
996 .u.w.read = xen_pt_word_reg_read,
997 .u.w.write = xen_pt_word_reg_write,
998 },
999 {
1000 .size = 0,
1001 },
1002 };
1003
1004
1005 /*********************************
1006 * Power Management Capability
1007 */
1008
1009 /* Power Management Capability reg static information table */
1010 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
1011 /* Next Pointer reg */
1012 {
1013 .offset = PCI_CAP_LIST_NEXT,
1014 .size = 1,
1015 .init_val = 0x00,
1016 .ro_mask = 0xFF,
1017 .emu_mask = 0xFF,
1018 .init = xen_pt_ptr_reg_init,
1019 .u.b.read = xen_pt_byte_reg_read,
1020 .u.b.write = xen_pt_byte_reg_write,
1021 },
1022 /* Power Management Capabilities reg */
1023 {
1024 .offset = PCI_CAP_FLAGS,
1025 .size = 2,
1026 .init_val = 0x0000,
1027 .ro_mask = 0xFFFF,
1028 .emu_mask = 0xF9C8,
1029 .init = xen_pt_common_reg_init,
1030 .u.w.read = xen_pt_word_reg_read,
1031 .u.w.write = xen_pt_word_reg_write,
1032 },
1033 /* PCI Power Management Control/Status reg */
1034 {
1035 .offset = PCI_PM_CTRL,
1036 .size = 2,
1037 .init_val = 0x0008,
1038 .res_mask = 0x00F0,
1039 .ro_mask = 0x610C,
1040 .rw1c_mask = 0x8000,
1041 .emu_mask = 0x810B,
1042 .init = xen_pt_common_reg_init,
1043 .u.w.read = xen_pt_word_reg_read,
1044 .u.w.write = xen_pt_word_reg_write,
1045 },
1046 {
1047 .size = 0,
1048 },
1049 };
1050
1051
1052 /********************************
1053 * MSI Capability
1054 */
1055
1056 /* Helper */
1057 #define xen_pt_msi_check_type(offset, flags, what) \
1058 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1059 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1060
1061 /* Message Control register */
1062 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1063 XenPTRegInfo *reg, uint32_t real_offset,
1064 uint32_t *data)
1065 {
1066 XenPTMSI *msi = s->msi;
1067 uint16_t reg_field;
1068 int rc;
1069
1070 /* use I/O device register's value as initial value */
1071 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1072 if (rc) {
1073 return rc;
1074 }
1075 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1076 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1077 xen_host_pci_set_word(&s->real_device, real_offset,
1078 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1079 }
1080 msi->flags |= reg_field;
1081 msi->ctrl_offset = real_offset;
1082 msi->initialized = false;
1083 msi->mapped = false;
1084
1085 *data = reg->init_val;
1086 return 0;
1087 }
1088 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1089 XenPTReg *cfg_entry, uint16_t *val,
1090 uint16_t dev_value, uint16_t valid_mask)
1091 {
1092 XenPTRegInfo *reg = cfg_entry->reg;
1093 XenPTMSI *msi = s->msi;
1094 uint16_t writable_mask = 0;
1095 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1096 uint16_t *data = cfg_entry->ptr.half_word;
1097
1098 /* Currently no support for multi-vector */
1099 if (*val & PCI_MSI_FLAGS_QSIZE) {
1100 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1101 }
1102
1103 /* modify emulate register */
1104 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1105 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1106 msi->flags |= *data & ~PCI_MSI_FLAGS_ENABLE;
1107
1108 /* create value for writing to I/O device register */
1109 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1110
1111 /* update MSI */
1112 if (*val & PCI_MSI_FLAGS_ENABLE) {
1113 /* setup MSI pirq for the first time */
1114 if (!msi->initialized) {
1115 /* Init physical one */
1116 XEN_PT_LOG(&s->dev, "setup MSI (register: %x).\n", *val);
1117 if (xen_pt_msi_setup(s)) {
1118 /* We do not broadcast the error to the framework code, so
1119 * that MSI errors are contained in MSI emulation code and
1120 * QEMU can go on running.
1121 * Guest MSI would be actually not working.
1122 */
1123 *val &= ~PCI_MSI_FLAGS_ENABLE;
1124 XEN_PT_WARN(&s->dev, "Can not map MSI (register: %x)!\n", *val);
1125 return 0;
1126 }
1127 if (xen_pt_msi_update(s)) {
1128 *val &= ~PCI_MSI_FLAGS_ENABLE;
1129 XEN_PT_WARN(&s->dev, "Can not bind MSI (register: %x)!\n", *val);
1130 return 0;
1131 }
1132 msi->initialized = true;
1133 msi->mapped = true;
1134 }
1135 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1136 } else if (msi->mapped) {
1137 xen_pt_msi_disable(s);
1138 }
1139
1140 return 0;
1141 }
1142
1143 /* initialize Message Upper Address register */
1144 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1145 XenPTRegInfo *reg, uint32_t real_offset,
1146 uint32_t *data)
1147 {
1148 /* no need to initialize in case of 32 bit type */
1149 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1150 *data = XEN_PT_INVALID_REG;
1151 } else {
1152 *data = reg->init_val;
1153 }
1154
1155 return 0;
1156 }
1157 /* this function will be called twice (for 32 bit and 64 bit type) */
1158 /* initialize Message Data register */
1159 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1160 XenPTRegInfo *reg, uint32_t real_offset,
1161 uint32_t *data)
1162 {
1163 uint32_t flags = s->msi->flags;
1164 uint32_t offset = reg->offset;
1165
1166 /* check the offset whether matches the type or not */
1167 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1168 *data = reg->init_val;
1169 } else {
1170 *data = XEN_PT_INVALID_REG;
1171 }
1172 return 0;
1173 }
1174
1175 /* this function will be called twice (for 32 bit and 64 bit type) */
1176 /* initialize Mask register */
1177 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1178 XenPTRegInfo *reg, uint32_t real_offset,
1179 uint32_t *data)
1180 {
1181 uint32_t flags = s->msi->flags;
1182
1183 /* check the offset whether matches the type or not */
1184 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1185 *data = XEN_PT_INVALID_REG;
1186 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1187 *data = reg->init_val;
1188 } else {
1189 *data = XEN_PT_INVALID_REG;
1190 }
1191 return 0;
1192 }
1193
1194 /* this function will be called twice (for 32 bit and 64 bit type) */
1195 /* initialize Pending register */
1196 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1197 XenPTRegInfo *reg, uint32_t real_offset,
1198 uint32_t *data)
1199 {
1200 uint32_t flags = s->msi->flags;
1201
1202 /* check the offset whether matches the type or not */
1203 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1204 *data = XEN_PT_INVALID_REG;
1205 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1206 *data = reg->init_val;
1207 } else {
1208 *data = XEN_PT_INVALID_REG;
1209 }
1210 return 0;
1211 }
1212
1213 /* write Message Address register */
1214 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1215 XenPTReg *cfg_entry, uint32_t *val,
1216 uint32_t dev_value, uint32_t valid_mask)
1217 {
1218 XenPTRegInfo *reg = cfg_entry->reg;
1219 uint32_t writable_mask = 0;
1220 uint32_t old_addr = *cfg_entry->ptr.word;
1221 uint32_t *data = cfg_entry->ptr.word;
1222
1223 /* modify emulate register */
1224 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1225 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1226 s->msi->addr_lo = *data;
1227
1228 /* create value for writing to I/O device register */
1229 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1230
1231 /* update MSI */
1232 if (*data != old_addr) {
1233 if (s->msi->mapped) {
1234 xen_pt_msi_update(s);
1235 }
1236 }
1237
1238 return 0;
1239 }
1240 /* write Message Upper Address register */
1241 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1242 XenPTReg *cfg_entry, uint32_t *val,
1243 uint32_t dev_value, uint32_t valid_mask)
1244 {
1245 XenPTRegInfo *reg = cfg_entry->reg;
1246 uint32_t writable_mask = 0;
1247 uint32_t old_addr = *cfg_entry->ptr.word;
1248 uint32_t *data = cfg_entry->ptr.word;
1249
1250 /* check whether the type is 64 bit or not */
1251 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1252 XEN_PT_ERR(&s->dev,
1253 "Can't write to the upper address without 64 bit support\n");
1254 return -1;
1255 }
1256
1257 /* modify emulate register */
1258 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1259 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1260 /* update the msi_info too */
1261 s->msi->addr_hi = *data;
1262
1263 /* create value for writing to I/O device register */
1264 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1265
1266 /* update MSI */
1267 if (*data != old_addr) {
1268 if (s->msi->mapped) {
1269 xen_pt_msi_update(s);
1270 }
1271 }
1272
1273 return 0;
1274 }
1275
1276
1277 /* this function will be called twice (for 32 bit and 64 bit type) */
1278 /* write Message Data register */
1279 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1280 XenPTReg *cfg_entry, uint16_t *val,
1281 uint16_t dev_value, uint16_t valid_mask)
1282 {
1283 XenPTRegInfo *reg = cfg_entry->reg;
1284 XenPTMSI *msi = s->msi;
1285 uint16_t writable_mask = 0;
1286 uint16_t old_data = *cfg_entry->ptr.half_word;
1287 uint32_t offset = reg->offset;
1288 uint16_t *data = cfg_entry->ptr.half_word;
1289
1290 /* check the offset whether matches the type or not */
1291 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1292 /* exit I/O emulator */
1293 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1294 return -1;
1295 }
1296
1297 /* modify emulate register */
1298 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1299 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1300 /* update the msi_info too */
1301 msi->data = *data;
1302
1303 /* create value for writing to I/O device register */
1304 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1305
1306 /* update MSI */
1307 if (*data != old_data) {
1308 if (msi->mapped) {
1309 xen_pt_msi_update(s);
1310 }
1311 }
1312
1313 return 0;
1314 }
1315
1316 /* MSI Capability Structure reg static information table */
1317 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1318 /* Next Pointer reg */
1319 {
1320 .offset = PCI_CAP_LIST_NEXT,
1321 .size = 1,
1322 .init_val = 0x00,
1323 .ro_mask = 0xFF,
1324 .emu_mask = 0xFF,
1325 .init = xen_pt_ptr_reg_init,
1326 .u.b.read = xen_pt_byte_reg_read,
1327 .u.b.write = xen_pt_byte_reg_write,
1328 },
1329 /* Message Control reg */
1330 {
1331 .offset = PCI_MSI_FLAGS,
1332 .size = 2,
1333 .init_val = 0x0000,
1334 .res_mask = 0xFE00,
1335 .ro_mask = 0x018E,
1336 .emu_mask = 0x017E,
1337 .init = xen_pt_msgctrl_reg_init,
1338 .u.w.read = xen_pt_word_reg_read,
1339 .u.w.write = xen_pt_msgctrl_reg_write,
1340 },
1341 /* Message Address reg */
1342 {
1343 .offset = PCI_MSI_ADDRESS_LO,
1344 .size = 4,
1345 .init_val = 0x00000000,
1346 .ro_mask = 0x00000003,
1347 .emu_mask = 0xFFFFFFFF,
1348 .init = xen_pt_common_reg_init,
1349 .u.dw.read = xen_pt_long_reg_read,
1350 .u.dw.write = xen_pt_msgaddr32_reg_write,
1351 },
1352 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1353 {
1354 .offset = PCI_MSI_ADDRESS_HI,
1355 .size = 4,
1356 .init_val = 0x00000000,
1357 .ro_mask = 0x00000000,
1358 .emu_mask = 0xFFFFFFFF,
1359 .init = xen_pt_msgaddr64_reg_init,
1360 .u.dw.read = xen_pt_long_reg_read,
1361 .u.dw.write = xen_pt_msgaddr64_reg_write,
1362 },
1363 /* Message Data reg (16 bits of data for 32-bit devices) */
1364 {
1365 .offset = PCI_MSI_DATA_32,
1366 .size = 2,
1367 .init_val = 0x0000,
1368 .ro_mask = 0x0000,
1369 .emu_mask = 0xFFFF,
1370 .init = xen_pt_msgdata_reg_init,
1371 .u.w.read = xen_pt_word_reg_read,
1372 .u.w.write = xen_pt_msgdata_reg_write,
1373 },
1374 /* Message Data reg (16 bits of data for 64-bit devices) */
1375 {
1376 .offset = PCI_MSI_DATA_64,
1377 .size = 2,
1378 .init_val = 0x0000,
1379 .ro_mask = 0x0000,
1380 .emu_mask = 0xFFFF,
1381 .init = xen_pt_msgdata_reg_init,
1382 .u.w.read = xen_pt_word_reg_read,
1383 .u.w.write = xen_pt_msgdata_reg_write,
1384 },
1385 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1386 {
1387 .offset = PCI_MSI_MASK_32,
1388 .size = 4,
1389 .init_val = 0x00000000,
1390 .ro_mask = 0xFFFFFFFF,
1391 .emu_mask = 0xFFFFFFFF,
1392 .init = xen_pt_mask_reg_init,
1393 .u.dw.read = xen_pt_long_reg_read,
1394 .u.dw.write = xen_pt_long_reg_write,
1395 },
1396 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1397 {
1398 .offset = PCI_MSI_MASK_64,
1399 .size = 4,
1400 .init_val = 0x00000000,
1401 .ro_mask = 0xFFFFFFFF,
1402 .emu_mask = 0xFFFFFFFF,
1403 .init = xen_pt_mask_reg_init,
1404 .u.dw.read = xen_pt_long_reg_read,
1405 .u.dw.write = xen_pt_long_reg_write,
1406 },
1407 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1408 {
1409 .offset = PCI_MSI_MASK_32 + 4,
1410 .size = 4,
1411 .init_val = 0x00000000,
1412 .ro_mask = 0xFFFFFFFF,
1413 .emu_mask = 0x00000000,
1414 .init = xen_pt_pending_reg_init,
1415 .u.dw.read = xen_pt_long_reg_read,
1416 .u.dw.write = xen_pt_long_reg_write,
1417 },
1418 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1419 {
1420 .offset = PCI_MSI_MASK_64 + 4,
1421 .size = 4,
1422 .init_val = 0x00000000,
1423 .ro_mask = 0xFFFFFFFF,
1424 .emu_mask = 0x00000000,
1425 .init = xen_pt_pending_reg_init,
1426 .u.dw.read = xen_pt_long_reg_read,
1427 .u.dw.write = xen_pt_long_reg_write,
1428 },
1429 {
1430 .size = 0,
1431 },
1432 };
1433
1434
1435 /**************************************
1436 * MSI-X Capability
1437 */
1438
1439 /* Message Control register for MSI-X */
1440 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1441 XenPTRegInfo *reg, uint32_t real_offset,
1442 uint32_t *data)
1443 {
1444 uint16_t reg_field;
1445 int rc;
1446
1447 /* use I/O device register's value as initial value */
1448 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1449 if (rc) {
1450 return rc;
1451 }
1452 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1453 XEN_PT_LOG(&s->dev, "MSIX already enabled, disabling it first\n");
1454 xen_host_pci_set_word(&s->real_device, real_offset,
1455 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1456 }
1457
1458 s->msix->ctrl_offset = real_offset;
1459
1460 *data = reg->init_val;
1461 return 0;
1462 }
1463 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1464 XenPTReg *cfg_entry, uint16_t *val,
1465 uint16_t dev_value, uint16_t valid_mask)
1466 {
1467 XenPTRegInfo *reg = cfg_entry->reg;
1468 uint16_t writable_mask = 0;
1469 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1470 int debug_msix_enabled_old;
1471 uint16_t *data = cfg_entry->ptr.half_word;
1472
1473 /* modify emulate register */
1474 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1475 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1476
1477 /* create value for writing to I/O device register */
1478 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1479
1480 /* update MSI-X */
1481 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1482 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1483 xen_pt_msix_update(s);
1484 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1485 xen_pt_msix_disable(s);
1486 }
1487
1488 s->msix->maskall = *val & PCI_MSIX_FLAGS_MASKALL;
1489
1490 debug_msix_enabled_old = s->msix->enabled;
1491 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1492 if (s->msix->enabled != debug_msix_enabled_old) {
1493 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1494 s->msix->enabled ? "enable" : "disable");
1495 }
1496
1497 return 0;
1498 }
1499
1500 /* MSI-X Capability Structure reg static information table */
1501 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1502 /* Next Pointer reg */
1503 {
1504 .offset = PCI_CAP_LIST_NEXT,
1505 .size = 1,
1506 .init_val = 0x00,
1507 .ro_mask = 0xFF,
1508 .emu_mask = 0xFF,
1509 .init = xen_pt_ptr_reg_init,
1510 .u.b.read = xen_pt_byte_reg_read,
1511 .u.b.write = xen_pt_byte_reg_write,
1512 },
1513 /* Message Control reg */
1514 {
1515 .offset = PCI_MSI_FLAGS,
1516 .size = 2,
1517 .init_val = 0x0000,
1518 .res_mask = 0x3800,
1519 .ro_mask = 0x07FF,
1520 .emu_mask = 0x0000,
1521 .init = xen_pt_msixctrl_reg_init,
1522 .u.w.read = xen_pt_word_reg_read,
1523 .u.w.write = xen_pt_msixctrl_reg_write,
1524 },
1525 {
1526 .size = 0,
1527 },
1528 };
1529
1530 static XenPTRegInfo xen_pt_emu_reg_igd_opregion[] = {
1531 /* Intel IGFX OpRegion reg */
1532 {
1533 .offset = 0x0,
1534 .size = 4,
1535 .init_val = 0,
1536 .u.dw.read = xen_pt_intel_opregion_read,
1537 .u.dw.write = xen_pt_intel_opregion_write,
1538 },
1539 {
1540 .size = 0,
1541 },
1542 };
1543
1544 /****************************
1545 * Capabilities
1546 */
1547
1548 /* capability structure register group size functions */
1549
1550 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1551 const XenPTRegGroupInfo *grp_reg,
1552 uint32_t base_offset, uint8_t *size)
1553 {
1554 *size = grp_reg->grp_size;
1555 return 0;
1556 }
1557 /* get Vendor Specific Capability Structure register group size */
1558 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1559 const XenPTRegGroupInfo *grp_reg,
1560 uint32_t base_offset, uint8_t *size)
1561 {
1562 return xen_host_pci_get_byte(&s->real_device, base_offset + 0x02, size);
1563 }
1564 /* get PCI Express Capability Structure register group size */
1565 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1566 const XenPTRegGroupInfo *grp_reg,
1567 uint32_t base_offset, uint8_t *size)
1568 {
1569 PCIDevice *d = &s->dev;
1570 uint8_t version = get_capability_version(s, base_offset);
1571 uint8_t type = get_device_type(s, base_offset);
1572 uint8_t pcie_size = 0;
1573
1574
1575 /* calculate size depend on capability version and device/port type */
1576 /* in case of PCI Express Base Specification Rev 1.x */
1577 if (version == 1) {
1578 /* The PCI Express Capabilities, Device Capabilities, and Device
1579 * Status/Control registers are required for all PCI Express devices.
1580 * The Link Capabilities and Link Status/Control are required for all
1581 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1582 * are not required to implement registers other than those listed
1583 * above and terminate the capability structure.
1584 */
1585 switch (type) {
1586 case PCI_EXP_TYPE_ENDPOINT:
1587 case PCI_EXP_TYPE_LEG_END:
1588 pcie_size = 0x14;
1589 break;
1590 case PCI_EXP_TYPE_RC_END:
1591 /* has no link */
1592 pcie_size = 0x0C;
1593 break;
1594 /* only EndPoint passthrough is supported */
1595 case PCI_EXP_TYPE_ROOT_PORT:
1596 case PCI_EXP_TYPE_UPSTREAM:
1597 case PCI_EXP_TYPE_DOWNSTREAM:
1598 case PCI_EXP_TYPE_PCI_BRIDGE:
1599 case PCI_EXP_TYPE_PCIE_BRIDGE:
1600 case PCI_EXP_TYPE_RC_EC:
1601 default:
1602 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1603 return -1;
1604 }
1605 }
1606 /* in case of PCI Express Base Specification Rev 2.0 */
1607 else if (version == 2) {
1608 switch (type) {
1609 case PCI_EXP_TYPE_ENDPOINT:
1610 case PCI_EXP_TYPE_LEG_END:
1611 case PCI_EXP_TYPE_RC_END:
1612 /* For Functions that do not implement the registers,
1613 * these spaces must be hardwired to 0b.
1614 */
1615 pcie_size = 0x3C;
1616 break;
1617 /* only EndPoint passthrough is supported */
1618 case PCI_EXP_TYPE_ROOT_PORT:
1619 case PCI_EXP_TYPE_UPSTREAM:
1620 case PCI_EXP_TYPE_DOWNSTREAM:
1621 case PCI_EXP_TYPE_PCI_BRIDGE:
1622 case PCI_EXP_TYPE_PCIE_BRIDGE:
1623 case PCI_EXP_TYPE_RC_EC:
1624 default:
1625 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1626 return -1;
1627 }
1628 } else {
1629 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1630 return -1;
1631 }
1632
1633 *size = pcie_size;
1634 return 0;
1635 }
1636 /* get MSI Capability Structure register group size */
1637 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1638 const XenPTRegGroupInfo *grp_reg,
1639 uint32_t base_offset, uint8_t *size)
1640 {
1641 uint16_t msg_ctrl = 0;
1642 uint8_t msi_size = 0xa;
1643 int rc;
1644
1645 rc = xen_host_pci_get_word(&s->real_device, base_offset + PCI_MSI_FLAGS,
1646 &msg_ctrl);
1647 if (rc) {
1648 return rc;
1649 }
1650 /* check if 64-bit address is capable of per-vector masking */
1651 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1652 msi_size += 4;
1653 }
1654 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1655 msi_size += 10;
1656 }
1657
1658 s->msi = g_new0(XenPTMSI, 1);
1659 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1660
1661 *size = msi_size;
1662 return 0;
1663 }
1664 /* get MSI-X Capability Structure register group size */
1665 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1666 const XenPTRegGroupInfo *grp_reg,
1667 uint32_t base_offset, uint8_t *size)
1668 {
1669 int rc = 0;
1670
1671 rc = xen_pt_msix_init(s, base_offset);
1672
1673 if (rc < 0) {
1674 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1675 return rc;
1676 }
1677
1678 *size = grp_reg->grp_size;
1679 return 0;
1680 }
1681
1682
1683 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1684 /* Header Type0 reg group */
1685 {
1686 .grp_id = 0xFF,
1687 .grp_type = XEN_PT_GRP_TYPE_EMU,
1688 .grp_size = 0x40,
1689 .size_init = xen_pt_reg_grp_size_init,
1690 .emu_regs = xen_pt_emu_reg_header0,
1691 },
1692 /* PCI PowerManagement Capability reg group */
1693 {
1694 .grp_id = PCI_CAP_ID_PM,
1695 .grp_type = XEN_PT_GRP_TYPE_EMU,
1696 .grp_size = PCI_PM_SIZEOF,
1697 .size_init = xen_pt_reg_grp_size_init,
1698 .emu_regs = xen_pt_emu_reg_pm,
1699 },
1700 /* AGP Capability Structure reg group */
1701 {
1702 .grp_id = PCI_CAP_ID_AGP,
1703 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1704 .grp_size = 0x30,
1705 .size_init = xen_pt_reg_grp_size_init,
1706 },
1707 /* Vital Product Data Capability Structure reg group */
1708 {
1709 .grp_id = PCI_CAP_ID_VPD,
1710 .grp_type = XEN_PT_GRP_TYPE_EMU,
1711 .grp_size = 0x08,
1712 .size_init = xen_pt_reg_grp_size_init,
1713 .emu_regs = xen_pt_emu_reg_vpd,
1714 },
1715 /* Slot Identification reg group */
1716 {
1717 .grp_id = PCI_CAP_ID_SLOTID,
1718 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1719 .grp_size = 0x04,
1720 .size_init = xen_pt_reg_grp_size_init,
1721 },
1722 /* MSI Capability Structure reg group */
1723 {
1724 .grp_id = PCI_CAP_ID_MSI,
1725 .grp_type = XEN_PT_GRP_TYPE_EMU,
1726 .grp_size = 0xFF,
1727 .size_init = xen_pt_msi_size_init,
1728 .emu_regs = xen_pt_emu_reg_msi,
1729 },
1730 /* PCI-X Capabilities List Item reg group */
1731 {
1732 .grp_id = PCI_CAP_ID_PCIX,
1733 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1734 .grp_size = 0x18,
1735 .size_init = xen_pt_reg_grp_size_init,
1736 },
1737 /* Vendor Specific Capability Structure reg group */
1738 {
1739 .grp_id = PCI_CAP_ID_VNDR,
1740 .grp_type = XEN_PT_GRP_TYPE_EMU,
1741 .grp_size = 0xFF,
1742 .size_init = xen_pt_vendor_size_init,
1743 .emu_regs = xen_pt_emu_reg_vendor,
1744 },
1745 /* SHPC Capability List Item reg group */
1746 {
1747 .grp_id = PCI_CAP_ID_SHPC,
1748 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1749 .grp_size = 0x08,
1750 .size_init = xen_pt_reg_grp_size_init,
1751 },
1752 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1753 {
1754 .grp_id = PCI_CAP_ID_SSVID,
1755 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1756 .grp_size = 0x08,
1757 .size_init = xen_pt_reg_grp_size_init,
1758 },
1759 /* AGP 8x Capability Structure reg group */
1760 {
1761 .grp_id = PCI_CAP_ID_AGP3,
1762 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1763 .grp_size = 0x30,
1764 .size_init = xen_pt_reg_grp_size_init,
1765 },
1766 /* PCI Express Capability Structure reg group */
1767 {
1768 .grp_id = PCI_CAP_ID_EXP,
1769 .grp_type = XEN_PT_GRP_TYPE_EMU,
1770 .grp_size = 0xFF,
1771 .size_init = xen_pt_pcie_size_init,
1772 .emu_regs = xen_pt_emu_reg_pcie,
1773 },
1774 /* MSI-X Capability Structure reg group */
1775 {
1776 .grp_id = PCI_CAP_ID_MSIX,
1777 .grp_type = XEN_PT_GRP_TYPE_EMU,
1778 .grp_size = 0x0C,
1779 .size_init = xen_pt_msix_size_init,
1780 .emu_regs = xen_pt_emu_reg_msix,
1781 },
1782 /* Intel IGD Opregion group */
1783 {
1784 .grp_id = XEN_PCI_INTEL_OPREGION,
1785 .grp_type = XEN_PT_GRP_TYPE_EMU,
1786 .grp_size = 0x4,
1787 .size_init = xen_pt_reg_grp_size_init,
1788 .emu_regs = xen_pt_emu_reg_igd_opregion,
1789 },
1790 {
1791 .grp_size = 0,
1792 },
1793 };
1794
1795 /* initialize Capabilities Pointer or Next Pointer register */
1796 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1797 XenPTRegInfo *reg, uint32_t real_offset,
1798 uint32_t *data)
1799 {
1800 int i, rc;
1801 uint8_t reg_field;
1802 uint8_t cap_id = 0;
1803
1804 rc = xen_host_pci_get_byte(&s->real_device, real_offset, &reg_field);
1805 if (rc) {
1806 return rc;
1807 }
1808 /* find capability offset */
1809 while (reg_field) {
1810 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1811 if (xen_pt_hide_dev_cap(&s->real_device,
1812 xen_pt_emu_reg_grps[i].grp_id)) {
1813 continue;
1814 }
1815
1816 rc = xen_host_pci_get_byte(&s->real_device,
1817 reg_field + PCI_CAP_LIST_ID, &cap_id);
1818 if (rc) {
1819 XEN_PT_ERR(&s->dev, "Failed to read capability @0x%x (rc:%d)\n",
1820 reg_field + PCI_CAP_LIST_ID, rc);
1821 return rc;
1822 }
1823 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1824 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1825 goto out;
1826 }
1827 /* ignore the 0 hardwired capability, find next one */
1828 break;
1829 }
1830 }
1831
1832 /* next capability */
1833 rc = xen_host_pci_get_byte(&s->real_device,
1834 reg_field + PCI_CAP_LIST_NEXT, &reg_field);
1835 if (rc) {
1836 return rc;
1837 }
1838 }
1839
1840 out:
1841 *data = reg_field;
1842 return 0;
1843 }
1844
1845
1846 /*************
1847 * Main
1848 */
1849
1850 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1851 {
1852 uint8_t id;
1853 unsigned max_cap = XEN_PCI_CAP_MAX;
1854 uint8_t pos = PCI_CAPABILITY_LIST;
1855 uint8_t status = 0;
1856
1857 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1858 return 0;
1859 }
1860 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1861 return 0;
1862 }
1863
1864 while (max_cap--) {
1865 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1866 break;
1867 }
1868 if (pos < PCI_CONFIG_HEADER_SIZE) {
1869 break;
1870 }
1871
1872 pos &= ~3;
1873 if (xen_host_pci_get_byte(&s->real_device,
1874 pos + PCI_CAP_LIST_ID, &id)) {
1875 break;
1876 }
1877
1878 if (id == 0xff) {
1879 break;
1880 }
1881 if (id == cap) {
1882 return pos;
1883 }
1884
1885 pos += PCI_CAP_LIST_NEXT;
1886 }
1887 return 0;
1888 }
1889
1890 static void xen_pt_config_reg_init(XenPCIPassthroughState *s,
1891 XenPTRegGroup *reg_grp, XenPTRegInfo *reg,
1892 Error **errp)
1893 {
1894 XenPTReg *reg_entry;
1895 uint32_t data = 0;
1896 int rc = 0;
1897
1898 reg_entry = g_new0(XenPTReg, 1);
1899 reg_entry->reg = reg;
1900
1901 if (reg->init) {
1902 uint32_t host_mask, size_mask;
1903 unsigned int offset;
1904 uint32_t val;
1905
1906 /* initialize emulate register */
1907 rc = reg->init(s, reg_entry->reg,
1908 reg_grp->base_offset + reg->offset, &data);
1909 if (rc < 0) {
1910 g_free(reg_entry);
1911 error_setg(errp, "Init emulate register fail");
1912 return;
1913 }
1914 if (data == XEN_PT_INVALID_REG) {
1915 /* free unused BAR register entry */
1916 g_free(reg_entry);
1917 return;
1918 }
1919 /* Sync up the data to dev.config */
1920 offset = reg_grp->base_offset + reg->offset;
1921 size_mask = 0xFFFFFFFF >> ((4 - reg->size) << 3);
1922
1923 switch (reg->size) {
1924 case 1: rc = xen_host_pci_get_byte(&s->real_device, offset, (uint8_t *)&val);
1925 break;
1926 case 2: rc = xen_host_pci_get_word(&s->real_device, offset, (uint16_t *)&val);
1927 break;
1928 case 4: rc = xen_host_pci_get_long(&s->real_device, offset, &val);
1929 break;
1930 default: abort();
1931 }
1932 if (rc) {
1933 /* Serious issues when we cannot read the host values! */
1934 g_free(reg_entry);
1935 error_setg(errp, "Cannot read host values");
1936 return;
1937 }
1938 /* Set bits in emu_mask are the ones we emulate. The dev.config shall
1939 * contain the emulated view of the guest - therefore we flip the mask
1940 * to mask out the host values (which dev.config initially has) . */
1941 host_mask = size_mask & ~reg->emu_mask;
1942
1943 if ((data & host_mask) != (val & host_mask)) {
1944 uint32_t new_val;
1945
1946 /* Mask out host (including past size). */
1947 new_val = val & host_mask;
1948 /* Merge emulated ones (excluding the non-emulated ones). */
1949 new_val |= data & host_mask;
1950 /* Leave intact host and emulated values past the size - even though
1951 * we do not care as we write per reg->size granularity, but for the
1952 * logging below lets have the proper value. */
1953 new_val |= ((val | data)) & ~size_mask;
1954 XEN_PT_LOG(&s->dev,"Offset 0x%04x mismatch! Emulated=0x%04x, host=0x%04x, syncing to 0x%04x.\n",
1955 offset, data, val, new_val);
1956 val = new_val;
1957 } else
1958 val = data;
1959
1960 if (val & ~size_mask) {
1961 error_setg(errp, "Offset 0x%04x:0x%04x expands past"
1962 " register size (%d)", offset, val, reg->size);
1963 g_free(reg_entry);
1964 return;
1965 }
1966 /* This could be just pci_set_long as we don't modify the bits
1967 * past reg->size, but in case this routine is run in parallel or the
1968 * init value is larger, we do not want to over-write registers. */
1969 switch (reg->size) {
1970 case 1: pci_set_byte(s->dev.config + offset, (uint8_t)val);
1971 break;
1972 case 2: pci_set_word(s->dev.config + offset, (uint16_t)val);
1973 break;
1974 case 4: pci_set_long(s->dev.config + offset, val);
1975 break;
1976 default: abort();
1977 }
1978 /* set register value pointer to the data. */
1979 reg_entry->ptr.byte = s->dev.config + offset;
1980
1981 }
1982 /* list add register entry */
1983 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
1984 }
1985
1986 void xen_pt_config_init(XenPCIPassthroughState *s, Error **errp)
1987 {
1988 int i, rc;
1989 Error *err = NULL;
1990
1991 QLIST_INIT(&s->reg_grps);
1992
1993 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1994 uint32_t reg_grp_offset = 0;
1995 XenPTRegGroup *reg_grp_entry = NULL;
1996
1997 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF
1998 && xen_pt_emu_reg_grps[i].grp_id != XEN_PCI_INTEL_OPREGION) {
1999 if (xen_pt_hide_dev_cap(&s->real_device,
2000 xen_pt_emu_reg_grps[i].grp_id)) {
2001 continue;
2002 }
2003
2004 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
2005
2006 if (!reg_grp_offset) {
2007 continue;
2008 }
2009 }
2010
2011 /*
2012 * By default we will trap up to 0x40 in the cfg space.
2013 * If an intel device is pass through we need to trap 0xfc,
2014 * therefore the size should be 0xff.
2015 */
2016 if (xen_pt_emu_reg_grps[i].grp_id == XEN_PCI_INTEL_OPREGION) {
2017 reg_grp_offset = XEN_PCI_INTEL_OPREGION;
2018 }
2019
2020 reg_grp_entry = g_new0(XenPTRegGroup, 1);
2021 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
2022 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
2023
2024 reg_grp_entry->base_offset = reg_grp_offset;
2025 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
2026 if (xen_pt_emu_reg_grps[i].size_init) {
2027 /* get register group size */
2028 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
2029 reg_grp_offset,
2030 &reg_grp_entry->size);
2031 if (rc < 0) {
2032 error_setg(&err, "Failed to initialize %d/%zu, type = 0x%x,"
2033 " rc: %d", i, ARRAY_SIZE(xen_pt_emu_reg_grps),
2034 xen_pt_emu_reg_grps[i].grp_type, rc);
2035 error_propagate(errp, err);
2036 xen_pt_config_delete(s);
2037 return;
2038 }
2039 }
2040
2041 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
2042 if (xen_pt_emu_reg_grps[i].emu_regs) {
2043 int j = 0;
2044 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
2045
2046 /* initialize capability register */
2047 for (j = 0; regs->size != 0; j++, regs++) {
2048 xen_pt_config_reg_init(s, reg_grp_entry, regs, &err);
2049 if (err) {
2050 error_append_hint(&err, "Failed to initialize %d/%zu"
2051 " reg 0x%x in grp_type = 0x%x (%d/%zu)",
2052 j, ARRAY_SIZE(xen_pt_emu_reg_grps[i].emu_regs),
2053 regs->offset, xen_pt_emu_reg_grps[i].grp_type,
2054 i, ARRAY_SIZE(xen_pt_emu_reg_grps));
2055 error_propagate(errp, err);
2056 xen_pt_config_delete(s);
2057 return;
2058 }
2059 }
2060 }
2061 }
2062 }
2063 }
2064
2065 /* delete all emulate register */
2066 void xen_pt_config_delete(XenPCIPassthroughState *s)
2067 {
2068 struct XenPTRegGroup *reg_group, *next_grp;
2069 struct XenPTReg *reg, *next_reg;
2070
2071 /* free MSI/MSI-X info table */
2072 if (s->msix) {
2073 xen_pt_msix_unmap(s);
2074 }
2075 g_free(s->msi);
2076
2077 /* free all register group entry */
2078 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
2079 /* free all register entry */
2080 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
2081 QLIST_REMOVE(reg, entries);
2082 g_free(reg);
2083 }
2084
2085 QLIST_REMOVE(reg_group, entries);
2086 g_free(reg_group);
2087 }
2088 }