]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-generic/pgtable.h
thp: remove assumptions on pgtable_t type
[mirror_ubuntu-artful-kernel.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14 #endif
15
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
20 #endif
21
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26 {
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34 }
35 #endif
36
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42 {
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50 }
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55 {
56 BUG();
57 return 0;
58 }
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60 #endif
61
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65 #endif
66
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76 {
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80 }
81 #endif
82
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88 {
89 pmd_t pmd = *pmdp;
90 pmd_clear(mm, address, pmdp);
91 return pmd;
92 }
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
94 #endif
95
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100 {
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104 }
105 #endif
106
107 /*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117 {
118 pte_clear(mm, address, ptep);
119 }
120 #endif
121
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126 #endif
127
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
132 #endif
133
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135 struct mm_struct;
136 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137 {
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140 }
141 #endif
142
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147 {
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150 }
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154 {
155 BUG();
156 }
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #endif
159
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
163 #endif
164
165 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
167 #endif
168
169 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
171 #endif
172
173 #ifndef __HAVE_ARCH_PTE_SAME
174 static inline int pte_same(pte_t pte_a, pte_t pte_b)
175 {
176 return pte_val(pte_a) == pte_val(pte_b);
177 }
178 #endif
179
180 #ifndef __HAVE_ARCH_PMD_SAME
181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
182 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
183 {
184 return pmd_val(pmd_a) == pmd_val(pmd_b);
185 }
186 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
187 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
188 {
189 BUG();
190 return 0;
191 }
192 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
193 #endif
194
195 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
196 #define page_test_and_clear_dirty(pfn, mapped) (0)
197 #endif
198
199 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
200 #define pte_maybe_dirty(pte) pte_dirty(pte)
201 #else
202 #define pte_maybe_dirty(pte) (1)
203 #endif
204
205 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
206 #define page_test_and_clear_young(pfn) (0)
207 #endif
208
209 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
210 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
211 #endif
212
213 #ifndef __HAVE_ARCH_MOVE_PTE
214 #define move_pte(pte, prot, old_addr, new_addr) (pte)
215 #endif
216
217 #ifndef flush_tlb_fix_spurious_fault
218 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
219 #endif
220
221 #ifndef pgprot_noncached
222 #define pgprot_noncached(prot) (prot)
223 #endif
224
225 #ifndef pgprot_writecombine
226 #define pgprot_writecombine pgprot_noncached
227 #endif
228
229 /*
230 * When walking page tables, get the address of the next boundary,
231 * or the end address of the range if that comes earlier. Although no
232 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
233 */
234
235 #define pgd_addr_end(addr, end) \
236 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
237 (__boundary - 1 < (end) - 1)? __boundary: (end); \
238 })
239
240 #ifndef pud_addr_end
241 #define pud_addr_end(addr, end) \
242 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
243 (__boundary - 1 < (end) - 1)? __boundary: (end); \
244 })
245 #endif
246
247 #ifndef pmd_addr_end
248 #define pmd_addr_end(addr, end) \
249 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
250 (__boundary - 1 < (end) - 1)? __boundary: (end); \
251 })
252 #endif
253
254 /*
255 * When walking page tables, we usually want to skip any p?d_none entries;
256 * and any p?d_bad entries - reporting the error before resetting to none.
257 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
258 */
259 void pgd_clear_bad(pgd_t *);
260 void pud_clear_bad(pud_t *);
261 void pmd_clear_bad(pmd_t *);
262
263 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
264 {
265 if (pgd_none(*pgd))
266 return 1;
267 if (unlikely(pgd_bad(*pgd))) {
268 pgd_clear_bad(pgd);
269 return 1;
270 }
271 return 0;
272 }
273
274 static inline int pud_none_or_clear_bad(pud_t *pud)
275 {
276 if (pud_none(*pud))
277 return 1;
278 if (unlikely(pud_bad(*pud))) {
279 pud_clear_bad(pud);
280 return 1;
281 }
282 return 0;
283 }
284
285 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
286 {
287 if (pmd_none(*pmd))
288 return 1;
289 if (unlikely(pmd_bad(*pmd))) {
290 pmd_clear_bad(pmd);
291 return 1;
292 }
293 return 0;
294 }
295
296 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
297 unsigned long addr,
298 pte_t *ptep)
299 {
300 /*
301 * Get the current pte state, but zero it out to make it
302 * non-present, preventing the hardware from asynchronously
303 * updating it.
304 */
305 return ptep_get_and_clear(mm, addr, ptep);
306 }
307
308 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
309 unsigned long addr,
310 pte_t *ptep, pte_t pte)
311 {
312 /*
313 * The pte is non-present, so there's no hardware state to
314 * preserve.
315 */
316 set_pte_at(mm, addr, ptep, pte);
317 }
318
319 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
320 /*
321 * Start a pte protection read-modify-write transaction, which
322 * protects against asynchronous hardware modifications to the pte.
323 * The intention is not to prevent the hardware from making pte
324 * updates, but to prevent any updates it may make from being lost.
325 *
326 * This does not protect against other software modifications of the
327 * pte; the appropriate pte lock must be held over the transation.
328 *
329 * Note that this interface is intended to be batchable, meaning that
330 * ptep_modify_prot_commit may not actually update the pte, but merely
331 * queue the update to be done at some later time. The update must be
332 * actually committed before the pte lock is released, however.
333 */
334 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
335 unsigned long addr,
336 pte_t *ptep)
337 {
338 return __ptep_modify_prot_start(mm, addr, ptep);
339 }
340
341 /*
342 * Commit an update to a pte, leaving any hardware-controlled bits in
343 * the PTE unmodified.
344 */
345 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
346 unsigned long addr,
347 pte_t *ptep, pte_t pte)
348 {
349 __ptep_modify_prot_commit(mm, addr, ptep, pte);
350 }
351 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
352 #endif /* CONFIG_MMU */
353
354 /*
355 * A facility to provide lazy MMU batching. This allows PTE updates and
356 * page invalidations to be delayed until a call to leave lazy MMU mode
357 * is issued. Some architectures may benefit from doing this, and it is
358 * beneficial for both shadow and direct mode hypervisors, which may batch
359 * the PTE updates which happen during this window. Note that using this
360 * interface requires that read hazards be removed from the code. A read
361 * hazard could result in the direct mode hypervisor case, since the actual
362 * write to the page tables may not yet have taken place, so reads though
363 * a raw PTE pointer after it has been modified are not guaranteed to be
364 * up to date. This mode can only be entered and left under the protection of
365 * the page table locks for all page tables which may be modified. In the UP
366 * case, this is required so that preemption is disabled, and in the SMP case,
367 * it must synchronize the delayed page table writes properly on other CPUs.
368 */
369 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
370 #define arch_enter_lazy_mmu_mode() do {} while (0)
371 #define arch_leave_lazy_mmu_mode() do {} while (0)
372 #define arch_flush_lazy_mmu_mode() do {} while (0)
373 #endif
374
375 /*
376 * A facility to provide batching of the reload of page tables and
377 * other process state with the actual context switch code for
378 * paravirtualized guests. By convention, only one of the batched
379 * update (lazy) modes (CPU, MMU) should be active at any given time,
380 * entry should never be nested, and entry and exits should always be
381 * paired. This is for sanity of maintaining and reasoning about the
382 * kernel code. In this case, the exit (end of the context switch) is
383 * in architecture-specific code, and so doesn't need a generic
384 * definition.
385 */
386 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
387 #define arch_start_context_switch(prev) do {} while (0)
388 #endif
389
390 #ifndef __HAVE_PFNMAP_TRACKING
391 /*
392 * Interfaces that can be used by architecture code to keep track of
393 * memory type of pfn mappings specified by the remap_pfn_range,
394 * vm_insert_pfn.
395 */
396
397 /*
398 * track_pfn_remap is called when a _new_ pfn mapping is being established
399 * by remap_pfn_range() for physical range indicated by pfn and size.
400 */
401 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
402 unsigned long pfn, unsigned long addr,
403 unsigned long size)
404 {
405 return 0;
406 }
407
408 /*
409 * track_pfn_insert is called when a _new_ single pfn is established
410 * by vm_insert_pfn().
411 */
412 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
413 unsigned long pfn)
414 {
415 return 0;
416 }
417
418 /*
419 * track_pfn_copy is called when vma that is covering the pfnmap gets
420 * copied through copy_page_range().
421 */
422 static inline int track_pfn_copy(struct vm_area_struct *vma)
423 {
424 return 0;
425 }
426
427 /*
428 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
429 * untrack can be called for a specific region indicated by pfn and size or
430 * can be for the entire vma (in which case pfn, size are zero).
431 */
432 static inline void untrack_pfn(struct vm_area_struct *vma,
433 unsigned long pfn, unsigned long size)
434 {
435 }
436 #else
437 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
438 unsigned long pfn, unsigned long addr,
439 unsigned long size);
440 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
441 unsigned long pfn);
442 extern int track_pfn_copy(struct vm_area_struct *vma);
443 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
444 unsigned long size);
445 #endif
446
447 #ifdef CONFIG_MMU
448
449 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
450 static inline int pmd_trans_huge(pmd_t pmd)
451 {
452 return 0;
453 }
454 static inline int pmd_trans_splitting(pmd_t pmd)
455 {
456 return 0;
457 }
458 #ifndef __HAVE_ARCH_PMD_WRITE
459 static inline int pmd_write(pmd_t pmd)
460 {
461 BUG();
462 return 0;
463 }
464 #endif /* __HAVE_ARCH_PMD_WRITE */
465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
466
467 #ifndef pmd_read_atomic
468 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
469 {
470 /*
471 * Depend on compiler for an atomic pmd read. NOTE: this is
472 * only going to work, if the pmdval_t isn't larger than
473 * an unsigned long.
474 */
475 return *pmdp;
476 }
477 #endif
478
479 /*
480 * This function is meant to be used by sites walking pagetables with
481 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
482 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
483 * into a null pmd and the transhuge page fault can convert a null pmd
484 * into an hugepmd or into a regular pmd (if the hugepage allocation
485 * fails). While holding the mmap_sem in read mode the pmd becomes
486 * stable and stops changing under us only if it's not null and not a
487 * transhuge pmd. When those races occurs and this function makes a
488 * difference vs the standard pmd_none_or_clear_bad, the result is
489 * undefined so behaving like if the pmd was none is safe (because it
490 * can return none anyway). The compiler level barrier() is critically
491 * important to compute the two checks atomically on the same pmdval.
492 *
493 * For 32bit kernels with a 64bit large pmd_t this automatically takes
494 * care of reading the pmd atomically to avoid SMP race conditions
495 * against pmd_populate() when the mmap_sem is hold for reading by the
496 * caller (a special atomic read not done by "gcc" as in the generic
497 * version above, is also needed when THP is disabled because the page
498 * fault can populate the pmd from under us).
499 */
500 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
501 {
502 pmd_t pmdval = pmd_read_atomic(pmd);
503 /*
504 * The barrier will stabilize the pmdval in a register or on
505 * the stack so that it will stop changing under the code.
506 *
507 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
508 * pmd_read_atomic is allowed to return a not atomic pmdval
509 * (for example pointing to an hugepage that has never been
510 * mapped in the pmd). The below checks will only care about
511 * the low part of the pmd with 32bit PAE x86 anyway, with the
512 * exception of pmd_none(). So the important thing is that if
513 * the low part of the pmd is found null, the high part will
514 * be also null or the pmd_none() check below would be
515 * confused.
516 */
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 barrier();
519 #endif
520 if (pmd_none(pmdval))
521 return 1;
522 if (unlikely(pmd_bad(pmdval))) {
523 if (!pmd_trans_huge(pmdval))
524 pmd_clear_bad(pmd);
525 return 1;
526 }
527 return 0;
528 }
529
530 /*
531 * This is a noop if Transparent Hugepage Support is not built into
532 * the kernel. Otherwise it is equivalent to
533 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
534 * places that already verified the pmd is not none and they want to
535 * walk ptes while holding the mmap sem in read mode (write mode don't
536 * need this). If THP is not enabled, the pmd can't go away under the
537 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
538 * run a pmd_trans_unstable before walking the ptes after
539 * split_huge_page_pmd returns (because it may have run when the pmd
540 * become null, but then a page fault can map in a THP and not a
541 * regular page).
542 */
543 static inline int pmd_trans_unstable(pmd_t *pmd)
544 {
545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
546 return pmd_none_or_trans_huge_or_clear_bad(pmd);
547 #else
548 return 0;
549 #endif
550 }
551
552 #endif /* CONFIG_MMU */
553
554 #endif /* !__ASSEMBLY__ */
555
556 #endif /* _ASM_GENERIC_PGTABLE_H */