]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-generic/pgtable.h
mm/autonuma: let architecture override how the write bit should be stashed in a protn...
[mirror_ubuntu-artful-kernel.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #include <linux/pfn.h>
5
6 #ifndef __ASSEMBLY__
7 #ifdef CONFIG_MMU
8
9 #include <linux/mm_types.h>
10 #include <linux/bug.h>
11 #include <linux/errno.h>
12
13 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
14 CONFIG_PGTABLE_LEVELS
15 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
16 #endif
17
18 /*
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
23 */
24 #ifndef USER_PGTABLES_CEILING
25 #define USER_PGTABLES_CEILING 0UL
26 #endif
27
28 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
29 extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32 #endif
33
34 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
36 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
39 extern int pudp_set_access_flags(struct vm_area_struct *vma,
40 unsigned long address, pud_t *pudp,
41 pud_t entry, int dirty);
42 #else
43 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
44 unsigned long address, pmd_t *pmdp,
45 pmd_t entry, int dirty)
46 {
47 BUILD_BUG();
48 return 0;
49 }
50 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
51 unsigned long address, pud_t *pudp,
52 pud_t entry, int dirty)
53 {
54 BUILD_BUG();
55 return 0;
56 }
57 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
58 #endif
59
60 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
61 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
62 unsigned long address,
63 pte_t *ptep)
64 {
65 pte_t pte = *ptep;
66 int r = 1;
67 if (!pte_young(pte))
68 r = 0;
69 else
70 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
71 return r;
72 }
73 #endif
74
75 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
77 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
78 unsigned long address,
79 pmd_t *pmdp)
80 {
81 pmd_t pmd = *pmdp;
82 int r = 1;
83 if (!pmd_young(pmd))
84 r = 0;
85 else
86 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
87 return r;
88 }
89 #else
90 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
91 unsigned long address,
92 pmd_t *pmdp)
93 {
94 BUILD_BUG();
95 return 0;
96 }
97 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
98 #endif
99
100 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
101 int ptep_clear_flush_young(struct vm_area_struct *vma,
102 unsigned long address, pte_t *ptep);
103 #endif
104
105 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
107 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
108 unsigned long address, pmd_t *pmdp);
109 #else
110 /*
111 * Despite relevant to THP only, this API is called from generic rmap code
112 * under PageTransHuge(), hence needs a dummy implementation for !THP
113 */
114 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
115 unsigned long address, pmd_t *pmdp)
116 {
117 BUILD_BUG();
118 return 0;
119 }
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121 #endif
122
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
124 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
125 unsigned long address,
126 pte_t *ptep)
127 {
128 pte_t pte = *ptep;
129 pte_clear(mm, address, ptep);
130 return pte;
131 }
132 #endif
133
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
136 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
137 unsigned long address,
138 pmd_t *pmdp)
139 {
140 pmd_t pmd = *pmdp;
141 pmd_clear(pmdp);
142 return pmd;
143 }
144 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
145 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
146 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
147 unsigned long address,
148 pud_t *pudp)
149 {
150 pud_t pud = *pudp;
151
152 pud_clear(pudp);
153 return pud;
154 }
155 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
157
158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
159 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
160 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
161 unsigned long address, pmd_t *pmdp,
162 int full)
163 {
164 return pmdp_huge_get_and_clear(mm, address, pmdp);
165 }
166 #endif
167
168 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
169 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
170 unsigned long address, pud_t *pudp,
171 int full)
172 {
173 return pudp_huge_get_and_clear(mm, address, pudp);
174 }
175 #endif
176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
177
178 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
179 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
180 unsigned long address, pte_t *ptep,
181 int full)
182 {
183 pte_t pte;
184 pte = ptep_get_and_clear(mm, address, ptep);
185 return pte;
186 }
187 #endif
188
189 /*
190 * Some architectures may be able to avoid expensive synchronization
191 * primitives when modifications are made to PTE's which are already
192 * not present, or in the process of an address space destruction.
193 */
194 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
195 static inline void pte_clear_not_present_full(struct mm_struct *mm,
196 unsigned long address,
197 pte_t *ptep,
198 int full)
199 {
200 pte_clear(mm, address, ptep);
201 }
202 #endif
203
204 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
205 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
206 unsigned long address,
207 pte_t *ptep);
208 #endif
209
210 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
211 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
212 unsigned long address,
213 pmd_t *pmdp);
214 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
215 unsigned long address,
216 pud_t *pudp);
217 #endif
218
219 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
220 struct mm_struct;
221 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
222 {
223 pte_t old_pte = *ptep;
224 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
225 }
226 #endif
227
228 #ifndef pte_savedwrite
229 #define pte_savedwrite pte_write
230 #endif
231
232 #ifndef pte_mk_savedwrite
233 #define pte_mk_savedwrite pte_mkwrite
234 #endif
235
236 #ifndef pmd_savedwrite
237 #define pmd_savedwrite pmd_write
238 #endif
239
240 #ifndef pmd_mk_savedwrite
241 #define pmd_mk_savedwrite pmd_mkwrite
242 #endif
243
244 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
247 unsigned long address, pmd_t *pmdp)
248 {
249 pmd_t old_pmd = *pmdp;
250 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
251 }
252 #else
253 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
254 unsigned long address, pmd_t *pmdp)
255 {
256 BUILD_BUG();
257 }
258 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
259 #endif
260 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
261 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
262 static inline void pudp_set_wrprotect(struct mm_struct *mm,
263 unsigned long address, pud_t *pudp)
264 {
265 pud_t old_pud = *pudp;
266
267 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
268 }
269 #else
270 static inline void pudp_set_wrprotect(struct mm_struct *mm,
271 unsigned long address, pud_t *pudp)
272 {
273 BUILD_BUG();
274 }
275 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
276 #endif
277
278 #ifndef pmdp_collapse_flush
279 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
280 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
281 unsigned long address, pmd_t *pmdp);
282 #else
283 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
284 unsigned long address,
285 pmd_t *pmdp)
286 {
287 BUILD_BUG();
288 return *pmdp;
289 }
290 #define pmdp_collapse_flush pmdp_collapse_flush
291 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
292 #endif
293
294 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
295 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
296 pgtable_t pgtable);
297 #endif
298
299 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
300 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
301 #endif
302
303 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
304 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
305 pmd_t *pmdp);
306 #endif
307
308 #ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
309 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
310 unsigned long address, pmd_t *pmdp)
311 {
312
313 }
314 #endif
315
316 #ifndef __HAVE_ARCH_PTE_SAME
317 static inline int pte_same(pte_t pte_a, pte_t pte_b)
318 {
319 return pte_val(pte_a) == pte_val(pte_b);
320 }
321 #endif
322
323 #ifndef __HAVE_ARCH_PTE_UNUSED
324 /*
325 * Some architectures provide facilities to virtualization guests
326 * so that they can flag allocated pages as unused. This allows the
327 * host to transparently reclaim unused pages. This function returns
328 * whether the pte's page is unused.
329 */
330 static inline int pte_unused(pte_t pte)
331 {
332 return 0;
333 }
334 #endif
335
336 #ifndef __HAVE_ARCH_PMD_SAME
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
339 {
340 return pmd_val(pmd_a) == pmd_val(pmd_b);
341 }
342
343 static inline int pud_same(pud_t pud_a, pud_t pud_b)
344 {
345 return pud_val(pud_a) == pud_val(pud_b);
346 }
347 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
348 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
349 {
350 BUILD_BUG();
351 return 0;
352 }
353
354 static inline int pud_same(pud_t pud_a, pud_t pud_b)
355 {
356 BUILD_BUG();
357 return 0;
358 }
359 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
360 #endif
361
362 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
363 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
364 #endif
365
366 #ifndef __HAVE_ARCH_MOVE_PTE
367 #define move_pte(pte, prot, old_addr, new_addr) (pte)
368 #endif
369
370 #ifndef pte_accessible
371 # define pte_accessible(mm, pte) ((void)(pte), 1)
372 #endif
373
374 #ifndef flush_tlb_fix_spurious_fault
375 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
376 #endif
377
378 #ifndef pgprot_noncached
379 #define pgprot_noncached(prot) (prot)
380 #endif
381
382 #ifndef pgprot_writecombine
383 #define pgprot_writecombine pgprot_noncached
384 #endif
385
386 #ifndef pgprot_writethrough
387 #define pgprot_writethrough pgprot_noncached
388 #endif
389
390 #ifndef pgprot_device
391 #define pgprot_device pgprot_noncached
392 #endif
393
394 #ifndef pgprot_modify
395 #define pgprot_modify pgprot_modify
396 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
397 {
398 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
399 newprot = pgprot_noncached(newprot);
400 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
401 newprot = pgprot_writecombine(newprot);
402 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
403 newprot = pgprot_device(newprot);
404 return newprot;
405 }
406 #endif
407
408 /*
409 * When walking page tables, get the address of the next boundary,
410 * or the end address of the range if that comes earlier. Although no
411 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
412 */
413
414 #define pgd_addr_end(addr, end) \
415 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
416 (__boundary - 1 < (end) - 1)? __boundary: (end); \
417 })
418
419 #ifndef pud_addr_end
420 #define pud_addr_end(addr, end) \
421 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
422 (__boundary - 1 < (end) - 1)? __boundary: (end); \
423 })
424 #endif
425
426 #ifndef pmd_addr_end
427 #define pmd_addr_end(addr, end) \
428 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
429 (__boundary - 1 < (end) - 1)? __boundary: (end); \
430 })
431 #endif
432
433 /*
434 * When walking page tables, we usually want to skip any p?d_none entries;
435 * and any p?d_bad entries - reporting the error before resetting to none.
436 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
437 */
438 void pgd_clear_bad(pgd_t *);
439 void pud_clear_bad(pud_t *);
440 void pmd_clear_bad(pmd_t *);
441
442 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
443 {
444 if (pgd_none(*pgd))
445 return 1;
446 if (unlikely(pgd_bad(*pgd))) {
447 pgd_clear_bad(pgd);
448 return 1;
449 }
450 return 0;
451 }
452
453 static inline int pud_none_or_clear_bad(pud_t *pud)
454 {
455 if (pud_none(*pud))
456 return 1;
457 if (unlikely(pud_bad(*pud))) {
458 pud_clear_bad(pud);
459 return 1;
460 }
461 return 0;
462 }
463
464 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
465 {
466 if (pmd_none(*pmd))
467 return 1;
468 if (unlikely(pmd_bad(*pmd))) {
469 pmd_clear_bad(pmd);
470 return 1;
471 }
472 return 0;
473 }
474
475 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
476 unsigned long addr,
477 pte_t *ptep)
478 {
479 /*
480 * Get the current pte state, but zero it out to make it
481 * non-present, preventing the hardware from asynchronously
482 * updating it.
483 */
484 return ptep_get_and_clear(mm, addr, ptep);
485 }
486
487 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
488 unsigned long addr,
489 pte_t *ptep, pte_t pte)
490 {
491 /*
492 * The pte is non-present, so there's no hardware state to
493 * preserve.
494 */
495 set_pte_at(mm, addr, ptep, pte);
496 }
497
498 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
499 /*
500 * Start a pte protection read-modify-write transaction, which
501 * protects against asynchronous hardware modifications to the pte.
502 * The intention is not to prevent the hardware from making pte
503 * updates, but to prevent any updates it may make from being lost.
504 *
505 * This does not protect against other software modifications of the
506 * pte; the appropriate pte lock must be held over the transation.
507 *
508 * Note that this interface is intended to be batchable, meaning that
509 * ptep_modify_prot_commit may not actually update the pte, but merely
510 * queue the update to be done at some later time. The update must be
511 * actually committed before the pte lock is released, however.
512 */
513 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
514 unsigned long addr,
515 pte_t *ptep)
516 {
517 return __ptep_modify_prot_start(mm, addr, ptep);
518 }
519
520 /*
521 * Commit an update to a pte, leaving any hardware-controlled bits in
522 * the PTE unmodified.
523 */
524 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
525 unsigned long addr,
526 pte_t *ptep, pte_t pte)
527 {
528 __ptep_modify_prot_commit(mm, addr, ptep, pte);
529 }
530 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
531 #endif /* CONFIG_MMU */
532
533 /*
534 * A facility to provide lazy MMU batching. This allows PTE updates and
535 * page invalidations to be delayed until a call to leave lazy MMU mode
536 * is issued. Some architectures may benefit from doing this, and it is
537 * beneficial for both shadow and direct mode hypervisors, which may batch
538 * the PTE updates which happen during this window. Note that using this
539 * interface requires that read hazards be removed from the code. A read
540 * hazard could result in the direct mode hypervisor case, since the actual
541 * write to the page tables may not yet have taken place, so reads though
542 * a raw PTE pointer after it has been modified are not guaranteed to be
543 * up to date. This mode can only be entered and left under the protection of
544 * the page table locks for all page tables which may be modified. In the UP
545 * case, this is required so that preemption is disabled, and in the SMP case,
546 * it must synchronize the delayed page table writes properly on other CPUs.
547 */
548 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
549 #define arch_enter_lazy_mmu_mode() do {} while (0)
550 #define arch_leave_lazy_mmu_mode() do {} while (0)
551 #define arch_flush_lazy_mmu_mode() do {} while (0)
552 #endif
553
554 /*
555 * A facility to provide batching of the reload of page tables and
556 * other process state with the actual context switch code for
557 * paravirtualized guests. By convention, only one of the batched
558 * update (lazy) modes (CPU, MMU) should be active at any given time,
559 * entry should never be nested, and entry and exits should always be
560 * paired. This is for sanity of maintaining and reasoning about the
561 * kernel code. In this case, the exit (end of the context switch) is
562 * in architecture-specific code, and so doesn't need a generic
563 * definition.
564 */
565 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
566 #define arch_start_context_switch(prev) do {} while (0)
567 #endif
568
569 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
570 static inline int pte_soft_dirty(pte_t pte)
571 {
572 return 0;
573 }
574
575 static inline int pmd_soft_dirty(pmd_t pmd)
576 {
577 return 0;
578 }
579
580 static inline pte_t pte_mksoft_dirty(pte_t pte)
581 {
582 return pte;
583 }
584
585 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
586 {
587 return pmd;
588 }
589
590 static inline pte_t pte_clear_soft_dirty(pte_t pte)
591 {
592 return pte;
593 }
594
595 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
596 {
597 return pmd;
598 }
599
600 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
601 {
602 return pte;
603 }
604
605 static inline int pte_swp_soft_dirty(pte_t pte)
606 {
607 return 0;
608 }
609
610 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
611 {
612 return pte;
613 }
614 #endif
615
616 #ifndef __HAVE_PFNMAP_TRACKING
617 /*
618 * Interfaces that can be used by architecture code to keep track of
619 * memory type of pfn mappings specified by the remap_pfn_range,
620 * vm_insert_pfn.
621 */
622
623 /*
624 * track_pfn_remap is called when a _new_ pfn mapping is being established
625 * by remap_pfn_range() for physical range indicated by pfn and size.
626 */
627 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
628 unsigned long pfn, unsigned long addr,
629 unsigned long size)
630 {
631 return 0;
632 }
633
634 /*
635 * track_pfn_insert is called when a _new_ single pfn is established
636 * by vm_insert_pfn().
637 */
638 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
639 pfn_t pfn)
640 {
641 }
642
643 /*
644 * track_pfn_copy is called when vma that is covering the pfnmap gets
645 * copied through copy_page_range().
646 */
647 static inline int track_pfn_copy(struct vm_area_struct *vma)
648 {
649 return 0;
650 }
651
652 /*
653 * untrack_pfn is called while unmapping a pfnmap for a region.
654 * untrack can be called for a specific region indicated by pfn and size or
655 * can be for the entire vma (in which case pfn, size are zero).
656 */
657 static inline void untrack_pfn(struct vm_area_struct *vma,
658 unsigned long pfn, unsigned long size)
659 {
660 }
661
662 /*
663 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
664 */
665 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
666 {
667 }
668 #else
669 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
670 unsigned long pfn, unsigned long addr,
671 unsigned long size);
672 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
673 pfn_t pfn);
674 extern int track_pfn_copy(struct vm_area_struct *vma);
675 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
676 unsigned long size);
677 extern void untrack_pfn_moved(struct vm_area_struct *vma);
678 #endif
679
680 #ifdef __HAVE_COLOR_ZERO_PAGE
681 static inline int is_zero_pfn(unsigned long pfn)
682 {
683 extern unsigned long zero_pfn;
684 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
685 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
686 }
687
688 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
689
690 #else
691 static inline int is_zero_pfn(unsigned long pfn)
692 {
693 extern unsigned long zero_pfn;
694 return pfn == zero_pfn;
695 }
696
697 static inline unsigned long my_zero_pfn(unsigned long addr)
698 {
699 extern unsigned long zero_pfn;
700 return zero_pfn;
701 }
702 #endif
703
704 #ifdef CONFIG_MMU
705
706 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
707 static inline int pmd_trans_huge(pmd_t pmd)
708 {
709 return 0;
710 }
711 #ifndef __HAVE_ARCH_PMD_WRITE
712 static inline int pmd_write(pmd_t pmd)
713 {
714 BUG();
715 return 0;
716 }
717 #endif /* __HAVE_ARCH_PMD_WRITE */
718 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
719
720 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
721 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
722 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
723 static inline int pud_trans_huge(pud_t pud)
724 {
725 return 0;
726 }
727 #endif
728
729 #ifndef pmd_read_atomic
730 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
731 {
732 /*
733 * Depend on compiler for an atomic pmd read. NOTE: this is
734 * only going to work, if the pmdval_t isn't larger than
735 * an unsigned long.
736 */
737 return *pmdp;
738 }
739 #endif
740
741 #ifndef arch_needs_pgtable_deposit
742 #define arch_needs_pgtable_deposit() (false)
743 #endif
744 /*
745 * This function is meant to be used by sites walking pagetables with
746 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
747 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
748 * into a null pmd and the transhuge page fault can convert a null pmd
749 * into an hugepmd or into a regular pmd (if the hugepage allocation
750 * fails). While holding the mmap_sem in read mode the pmd becomes
751 * stable and stops changing under us only if it's not null and not a
752 * transhuge pmd. When those races occurs and this function makes a
753 * difference vs the standard pmd_none_or_clear_bad, the result is
754 * undefined so behaving like if the pmd was none is safe (because it
755 * can return none anyway). The compiler level barrier() is critically
756 * important to compute the two checks atomically on the same pmdval.
757 *
758 * For 32bit kernels with a 64bit large pmd_t this automatically takes
759 * care of reading the pmd atomically to avoid SMP race conditions
760 * against pmd_populate() when the mmap_sem is hold for reading by the
761 * caller (a special atomic read not done by "gcc" as in the generic
762 * version above, is also needed when THP is disabled because the page
763 * fault can populate the pmd from under us).
764 */
765 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
766 {
767 pmd_t pmdval = pmd_read_atomic(pmd);
768 /*
769 * The barrier will stabilize the pmdval in a register or on
770 * the stack so that it will stop changing under the code.
771 *
772 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
773 * pmd_read_atomic is allowed to return a not atomic pmdval
774 * (for example pointing to an hugepage that has never been
775 * mapped in the pmd). The below checks will only care about
776 * the low part of the pmd with 32bit PAE x86 anyway, with the
777 * exception of pmd_none(). So the important thing is that if
778 * the low part of the pmd is found null, the high part will
779 * be also null or the pmd_none() check below would be
780 * confused.
781 */
782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
783 barrier();
784 #endif
785 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
786 return 1;
787 if (unlikely(pmd_bad(pmdval))) {
788 pmd_clear_bad(pmd);
789 return 1;
790 }
791 return 0;
792 }
793
794 /*
795 * This is a noop if Transparent Hugepage Support is not built into
796 * the kernel. Otherwise it is equivalent to
797 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
798 * places that already verified the pmd is not none and they want to
799 * walk ptes while holding the mmap sem in read mode (write mode don't
800 * need this). If THP is not enabled, the pmd can't go away under the
801 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
802 * run a pmd_trans_unstable before walking the ptes after
803 * split_huge_page_pmd returns (because it may have run when the pmd
804 * become null, but then a page fault can map in a THP and not a
805 * regular page).
806 */
807 static inline int pmd_trans_unstable(pmd_t *pmd)
808 {
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 return pmd_none_or_trans_huge_or_clear_bad(pmd);
811 #else
812 return 0;
813 #endif
814 }
815
816 #ifndef CONFIG_NUMA_BALANCING
817 /*
818 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
819 * the only case the kernel cares is for NUMA balancing and is only ever set
820 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
821 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
822 * is the responsibility of the caller to distinguish between PROT_NONE
823 * protections and NUMA hinting fault protections.
824 */
825 static inline int pte_protnone(pte_t pte)
826 {
827 return 0;
828 }
829
830 static inline int pmd_protnone(pmd_t pmd)
831 {
832 return 0;
833 }
834 #endif /* CONFIG_NUMA_BALANCING */
835
836 #endif /* CONFIG_MMU */
837
838 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
839 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
840 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
841 int pud_clear_huge(pud_t *pud);
842 int pmd_clear_huge(pmd_t *pmd);
843 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
844 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
845 {
846 return 0;
847 }
848 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
849 {
850 return 0;
851 }
852 static inline int pud_clear_huge(pud_t *pud)
853 {
854 return 0;
855 }
856 static inline int pmd_clear_huge(pmd_t *pmd)
857 {
858 return 0;
859 }
860 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
861
862 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
863 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
864 /*
865 * ARCHes with special requirements for evicting THP backing TLB entries can
866 * implement this. Otherwise also, it can help optimize normal TLB flush in
867 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
868 * entire TLB TLB if flush span is greater than a threshold, which will
869 * likely be true for a single huge page. Thus a single thp flush will
870 * invalidate the entire TLB which is not desitable.
871 * e.g. see arch/arc: flush_pmd_tlb_range
872 */
873 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
874 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
875 #else
876 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
877 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
878 #endif
879 #endif
880
881 struct file;
882 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
883 unsigned long size, pgprot_t *vma_prot);
884 #endif /* !__ASSEMBLY__ */
885
886 #ifndef io_remap_pfn_range
887 #define io_remap_pfn_range remap_pfn_range
888 #endif
889
890 #ifndef has_transparent_hugepage
891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
892 #define has_transparent_hugepage() 1
893 #else
894 #define has_transparent_hugepage() 0
895 #endif
896 #endif
897
898 #endif /* _ASM_GENERIC_PGTABLE_H */