]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-i386/pgtable.h
page table handling cleanup
[mirror_ubuntu-artful-kernel.git] / include / asm-i386 / pgtable.h
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
3
4
5 /*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
10 *
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
13 */
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
19
20 #ifndef _I386_BITOPS_H
21 #include <asm/bitops.h>
22 #endif
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27
28 struct mm_struct;
29 struct vm_area_struct;
30
31 /*
32 * ZERO_PAGE is a global shared page that is always zero: used
33 * for zero-mapped memory areas etc..
34 */
35 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
36 extern unsigned long empty_zero_page[1024];
37 extern pgd_t swapper_pg_dir[1024];
38 extern struct kmem_cache *pmd_cache;
39 extern spinlock_t pgd_lock;
40 extern struct page *pgd_list;
41 void check_pgt_cache(void);
42
43 void pmd_ctor(void *, struct kmem_cache *, unsigned long);
44 void pgtable_cache_init(void);
45 void paging_init(void);
46
47
48 /*
49 * The Linux x86 paging architecture is 'compile-time dual-mode', it
50 * implements both the traditional 2-level x86 page tables and the
51 * newer 3-level PAE-mode page tables.
52 */
53 #ifdef CONFIG_X86_PAE
54 # include <asm/pgtable-3level-defs.h>
55 # define PMD_SIZE (1UL << PMD_SHIFT)
56 # define PMD_MASK (~(PMD_SIZE-1))
57 #else
58 # include <asm/pgtable-2level-defs.h>
59 #endif
60
61 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
62 #define PGDIR_MASK (~(PGDIR_SIZE-1))
63
64 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
65 #define FIRST_USER_ADDRESS 0
66
67 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
68 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
69
70 #define TWOLEVEL_PGDIR_SHIFT 22
71 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
72 #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
73
74 /* Just any arbitrary offset to the start of the vmalloc VM area: the
75 * current 8MB value just means that there will be a 8MB "hole" after the
76 * physical memory until the kernel virtual memory starts. That means that
77 * any out-of-bounds memory accesses will hopefully be caught.
78 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
79 * area for the same reason. ;)
80 */
81 #define VMALLOC_OFFSET (8*1024*1024)
82 #define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
83 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
84 #ifdef CONFIG_HIGHMEM
85 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
86 #else
87 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
88 #endif
89
90 /*
91 * _PAGE_PSE set in the page directory entry just means that
92 * the page directory entry points directly to a 4MB-aligned block of
93 * memory.
94 */
95 #define _PAGE_BIT_PRESENT 0
96 #define _PAGE_BIT_RW 1
97 #define _PAGE_BIT_USER 2
98 #define _PAGE_BIT_PWT 3
99 #define _PAGE_BIT_PCD 4
100 #define _PAGE_BIT_ACCESSED 5
101 #define _PAGE_BIT_DIRTY 6
102 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
103 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
104 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */
105 #define _PAGE_BIT_UNUSED2 10
106 #define _PAGE_BIT_UNUSED3 11
107 #define _PAGE_BIT_NX 63
108
109 #define _PAGE_PRESENT 0x001
110 #define _PAGE_RW 0x002
111 #define _PAGE_USER 0x004
112 #define _PAGE_PWT 0x008
113 #define _PAGE_PCD 0x010
114 #define _PAGE_ACCESSED 0x020
115 #define _PAGE_DIRTY 0x040
116 #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
117 #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
118 #define _PAGE_UNUSED1 0x200 /* available for programmer */
119 #define _PAGE_UNUSED2 0x400
120 #define _PAGE_UNUSED3 0x800
121
122 /* If _PAGE_PRESENT is clear, we use these: */
123 #define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
124 #define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE;
125 pte_present gives true */
126 #ifdef CONFIG_X86_PAE
127 #define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
128 #else
129 #define _PAGE_NX 0
130 #endif
131
132 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
133 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
134 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
135
136 #define PAGE_NONE \
137 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
138 #define PAGE_SHARED \
139 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
140
141 #define PAGE_SHARED_EXEC \
142 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
143 #define PAGE_COPY_NOEXEC \
144 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
145 #define PAGE_COPY_EXEC \
146 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
147 #define PAGE_COPY \
148 PAGE_COPY_NOEXEC
149 #define PAGE_READONLY \
150 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
151 #define PAGE_READONLY_EXEC \
152 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
153
154 #define _PAGE_KERNEL \
155 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
156 #define _PAGE_KERNEL_EXEC \
157 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
158
159 extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
160 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
161 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
162 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
163 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
164 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
165
166 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
167 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
168 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
169 #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX)
170 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
171 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
172 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
173
174 /*
175 * The i386 can't do page protection for execute, and considers that
176 * the same are read. Also, write permissions imply read permissions.
177 * This is the closest we can get..
178 */
179 #define __P000 PAGE_NONE
180 #define __P001 PAGE_READONLY
181 #define __P010 PAGE_COPY
182 #define __P011 PAGE_COPY
183 #define __P100 PAGE_READONLY_EXEC
184 #define __P101 PAGE_READONLY_EXEC
185 #define __P110 PAGE_COPY_EXEC
186 #define __P111 PAGE_COPY_EXEC
187
188 #define __S000 PAGE_NONE
189 #define __S001 PAGE_READONLY
190 #define __S010 PAGE_SHARED
191 #define __S011 PAGE_SHARED
192 #define __S100 PAGE_READONLY_EXEC
193 #define __S101 PAGE_READONLY_EXEC
194 #define __S110 PAGE_SHARED_EXEC
195 #define __S111 PAGE_SHARED_EXEC
196
197 /*
198 * Define this if things work differently on an i386 and an i486:
199 * it will (on an i486) warn about kernel memory accesses that are
200 * done without a 'access_ok(VERIFY_WRITE,..)'
201 */
202 #undef TEST_ACCESS_OK
203
204 /* The boot page tables (all created as a single array) */
205 extern unsigned long pg0[];
206
207 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
208
209 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
210 #define pmd_none(x) (!(unsigned long)pmd_val(x))
211 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
212 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
213
214
215 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
216
217 /*
218 * The following only work if pte_present() is true.
219 * Undefined behaviour if not..
220 */
221 static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
222 static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
223 static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
224 static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; }
225
226 /*
227 * The following only works if pte_present() is not true.
228 */
229 static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
230
231 static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
232 static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
233 static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
234 static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
235 static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
236 static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
237 static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; }
238
239 #ifdef CONFIG_X86_PAE
240 # include <asm/pgtable-3level.h>
241 #else
242 # include <asm/pgtable-2level.h>
243 #endif
244
245 #ifndef CONFIG_PARAVIRT
246 /*
247 * Rules for using pte_update - it must be called after any PTE update which
248 * has not been done using the set_pte / clear_pte interfaces. It is used by
249 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
250 * updates should either be sets, clears, or set_pte_atomic for P->P
251 * transitions, which means this hook should only be called for user PTEs.
252 * This hook implies a P->P protection or access change has taken place, which
253 * requires a subsequent TLB flush. The notification can optionally be delayed
254 * until the TLB flush event by using the pte_update_defer form of the
255 * interface, but care must be taken to assure that the flush happens while
256 * still holding the same page table lock so that the shadow and primary pages
257 * do not become out of sync on SMP.
258 */
259 #define pte_update(mm, addr, ptep) do { } while (0)
260 #define pte_update_defer(mm, addr, ptep) do { } while (0)
261 #endif
262
263 /* local pte updates need not use xchg for locking */
264 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
265 {
266 pte_t res = *ptep;
267
268 /* Pure native function needs no input for mm, addr */
269 native_pte_clear(NULL, 0, ptep);
270 return res;
271 }
272
273 /*
274 * We only update the dirty/accessed state if we set
275 * the dirty bit by hand in the kernel, since the hardware
276 * will do the accessed bit for us, and we don't want to
277 * race with other CPU's that might be updating the dirty
278 * bit at the same time.
279 */
280 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
281 #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
282 ({ \
283 int __changed = !pte_same(*(ptep), entry); \
284 if (__changed && dirty) { \
285 (ptep)->pte_low = (entry).pte_low; \
286 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
287 flush_tlb_page(vma, address); \
288 } \
289 __changed; \
290 })
291
292 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
293 #define ptep_test_and_clear_dirty(vma, addr, ptep) ({ \
294 int __ret = 0; \
295 if (pte_dirty(*(ptep))) \
296 __ret = test_and_clear_bit(_PAGE_BIT_DIRTY, \
297 &(ptep)->pte_low); \
298 if (__ret) \
299 pte_update((vma)->vm_mm, addr, ptep); \
300 __ret; \
301 })
302
303 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
304 #define ptep_test_and_clear_young(vma, addr, ptep) ({ \
305 int __ret = 0; \
306 if (pte_young(*(ptep))) \
307 __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \
308 &(ptep)->pte_low); \
309 if (__ret) \
310 pte_update((vma)->vm_mm, addr, ptep); \
311 __ret; \
312 })
313
314 /*
315 * Rules for using ptep_establish: the pte MUST be a user pte, and
316 * must be a present->present transition.
317 */
318 #define __HAVE_ARCH_PTEP_ESTABLISH
319 #define ptep_establish(vma, address, ptep, pteval) \
320 do { \
321 set_pte_present((vma)->vm_mm, address, ptep, pteval); \
322 flush_tlb_page(vma, address); \
323 } while (0)
324
325 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
326 #define ptep_clear_flush_dirty(vma, address, ptep) \
327 ({ \
328 int __dirty; \
329 __dirty = ptep_test_and_clear_dirty((vma), (address), (ptep)); \
330 if (__dirty) \
331 flush_tlb_page(vma, address); \
332 __dirty; \
333 })
334
335 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
336 #define ptep_clear_flush_young(vma, address, ptep) \
337 ({ \
338 int __young; \
339 __young = ptep_test_and_clear_young((vma), (address), (ptep)); \
340 if (__young) \
341 flush_tlb_page(vma, address); \
342 __young; \
343 })
344
345 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
346 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
347 {
348 pte_t pte = native_ptep_get_and_clear(ptep);
349 pte_update(mm, addr, ptep);
350 return pte;
351 }
352
353 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
354 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
355 {
356 pte_t pte;
357 if (full) {
358 /*
359 * Full address destruction in progress; paravirt does not
360 * care about updates and native needs no locking
361 */
362 pte = native_local_ptep_get_and_clear(ptep);
363 } else {
364 pte = ptep_get_and_clear(mm, addr, ptep);
365 }
366 return pte;
367 }
368
369 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
370 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
371 {
372 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
373 pte_update(mm, addr, ptep);
374 }
375
376 /*
377 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
378 *
379 * dst - pointer to pgd range anwhere on a pgd page
380 * src - ""
381 * count - the number of pgds to copy.
382 *
383 * dst and src can be on the same page, but the range must not overlap,
384 * and must not cross a page boundary.
385 */
386 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
387 {
388 memcpy(dst, src, count * sizeof(pgd_t));
389 }
390
391 /*
392 * Macro to mark a page protection value as "uncacheable". On processors which do not support
393 * it, this is a no-op.
394 */
395 #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
396 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
397
398 /*
399 * Conversion functions: convert a page and protection to a page entry,
400 * and a page entry and page directory to the page they refer to.
401 */
402
403 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
404
405 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
406 {
407 pte.pte_low &= _PAGE_CHG_MASK;
408 pte.pte_low |= pgprot_val(newprot);
409 #ifdef CONFIG_X86_PAE
410 /*
411 * Chop off the NX bit (if present), and add the NX portion of
412 * the newprot (if present):
413 */
414 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
415 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
416 (__supported_pte_mask >> 32);
417 #endif
418 return pte;
419 }
420
421 #define pmd_large(pmd) \
422 ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
423
424 /*
425 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
426 *
427 * this macro returns the index of the entry in the pgd page which would
428 * control the given virtual address
429 */
430 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
431 #define pgd_index_k(addr) pgd_index(addr)
432
433 /*
434 * pgd_offset() returns a (pgd_t *)
435 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
436 */
437 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
438
439 /*
440 * a shortcut which implies the use of the kernel's pgd, instead
441 * of a process's
442 */
443 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
444
445 /*
446 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
447 *
448 * this macro returns the index of the entry in the pmd page which would
449 * control the given virtual address
450 */
451 #define pmd_index(address) \
452 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
453
454 /*
455 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
456 *
457 * this macro returns the index of the entry in the pte page which would
458 * control the given virtual address
459 */
460 #define pte_index(address) \
461 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
462 #define pte_offset_kernel(dir, address) \
463 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
464
465 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
466
467 #define pmd_page_vaddr(pmd) \
468 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
469
470 /*
471 * Helper function that returns the kernel pagetable entry controlling
472 * the virtual address 'address'. NULL means no pagetable entry present.
473 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
474 * as a pte too.
475 */
476 extern pte_t *lookup_address(unsigned long address);
477
478 /*
479 * Make a given kernel text page executable/non-executable.
480 * Returns the previous executability setting of that page (which
481 * is used to restore the previous state). Used by the SMP bootup code.
482 * NOTE: this is an __init function for security reasons.
483 */
484 #ifdef CONFIG_X86_PAE
485 extern int set_kernel_exec(unsigned long vaddr, int enable);
486 #else
487 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
488 #endif
489
490 #if defined(CONFIG_HIGHPTE)
491 #define pte_offset_map(dir, address) \
492 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
493 #define pte_offset_map_nested(dir, address) \
494 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
495 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
496 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
497 #else
498 #define pte_offset_map(dir, address) \
499 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
500 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
501 #define pte_unmap(pte) do { } while (0)
502 #define pte_unmap_nested(pte) do { } while (0)
503 #endif
504
505 /* Clear a kernel PTE and flush it from the TLB */
506 #define kpte_clear_flush(ptep, vaddr) \
507 do { \
508 pte_clear(&init_mm, vaddr, ptep); \
509 __flush_tlb_one(vaddr); \
510 } while (0)
511
512 /*
513 * The i386 doesn't have any external MMU info: the kernel page
514 * tables contain all the necessary information.
515 */
516 #define update_mmu_cache(vma,address,pte) do { } while (0)
517
518 void native_pagetable_setup_start(pgd_t *base);
519 void native_pagetable_setup_done(pgd_t *base);
520
521 #ifndef CONFIG_PARAVIRT
522 static inline void paravirt_pagetable_setup_start(pgd_t *base)
523 {
524 native_pagetable_setup_start(base);
525 }
526
527 static inline void paravirt_pagetable_setup_done(pgd_t *base)
528 {
529 native_pagetable_setup_done(base);
530 }
531 #endif /* !CONFIG_PARAVIRT */
532
533 #endif /* !__ASSEMBLY__ */
534
535 #ifdef CONFIG_FLATMEM
536 #define kern_addr_valid(addr) (1)
537 #endif /* CONFIG_FLATMEM */
538
539 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
540 remap_pfn_range(vma, vaddr, pfn, size, prot)
541
542 #include <asm-generic/pgtable.h>
543
544 #endif /* _I386_PGTABLE_H */