]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/asm-i386/system.h
Merge branch 'master' of /usr/src/ntfs-2.6/
[mirror_ubuntu-zesty-kernel.git] / include / asm-i386 / system.h
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
3
4 #include <linux/config.h>
5 #include <linux/kernel.h>
6 #include <asm/segment.h>
7 #include <asm/cpufeature.h>
8 #include <linux/bitops.h> /* for LOCK_PREFIX */
9
10 #ifdef __KERNEL__
11
12 struct task_struct; /* one of the stranger aspects of C forward declarations.. */
13 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
14
15 #define switch_to(prev,next,last) do { \
16 unsigned long esi,edi; \
17 asm volatile("pushl %%ebp\n\t" \
18 "movl %%esp,%0\n\t" /* save ESP */ \
19 "movl %5,%%esp\n\t" /* restore ESP */ \
20 "movl $1f,%1\n\t" /* save EIP */ \
21 "pushl %6\n\t" /* restore EIP */ \
22 "jmp __switch_to\n" \
23 "1:\t" \
24 "popl %%ebp\n\t" \
25 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
26 "=a" (last),"=S" (esi),"=D" (edi) \
27 :"m" (next->thread.esp),"m" (next->thread.eip), \
28 "2" (prev), "d" (next)); \
29 } while (0)
30
31 #define _set_base(addr,base) do { unsigned long __pr; \
32 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
33 "rorl $16,%%edx\n\t" \
34 "movb %%dl,%2\n\t" \
35 "movb %%dh,%3" \
36 :"=&d" (__pr) \
37 :"m" (*((addr)+2)), \
38 "m" (*((addr)+4)), \
39 "m" (*((addr)+7)), \
40 "0" (base) \
41 ); } while(0)
42
43 #define _set_limit(addr,limit) do { unsigned long __lr; \
44 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
45 "rorl $16,%%edx\n\t" \
46 "movb %2,%%dh\n\t" \
47 "andb $0xf0,%%dh\n\t" \
48 "orb %%dh,%%dl\n\t" \
49 "movb %%dl,%2" \
50 :"=&d" (__lr) \
51 :"m" (*(addr)), \
52 "m" (*((addr)+6)), \
53 "0" (limit) \
54 ); } while(0)
55
56 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
57 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1)>>12 )
58
59 static inline unsigned long _get_base(char * addr)
60 {
61 unsigned long __base;
62 __asm__("movb %3,%%dh\n\t"
63 "movb %2,%%dl\n\t"
64 "shll $16,%%edx\n\t"
65 "movw %1,%%dx"
66 :"=&d" (__base)
67 :"m" (*((addr)+2)),
68 "m" (*((addr)+4)),
69 "m" (*((addr)+7)));
70 return __base;
71 }
72
73 #define get_base(ldt) _get_base( ((char *)&(ldt)) )
74
75 /*
76 * Load a segment. Fall back on loading the zero
77 * segment if something goes wrong..
78 */
79 #define loadsegment(seg,value) \
80 asm volatile("\n" \
81 "1:\t" \
82 "mov %0,%%" #seg "\n" \
83 "2:\n" \
84 ".section .fixup,\"ax\"\n" \
85 "3:\t" \
86 "pushl $0\n\t" \
87 "popl %%" #seg "\n\t" \
88 "jmp 2b\n" \
89 ".previous\n" \
90 ".section __ex_table,\"a\"\n\t" \
91 ".align 4\n\t" \
92 ".long 1b,3b\n" \
93 ".previous" \
94 : :"rm" (value))
95
96 /*
97 * Save a segment register away
98 */
99 #define savesegment(seg, value) \
100 asm volatile("mov %%" #seg ",%0":"=rm" (value))
101
102 /*
103 * Clear and set 'TS' bit respectively
104 */
105 #define clts() __asm__ __volatile__ ("clts")
106 #define read_cr0() ({ \
107 unsigned int __dummy; \
108 __asm__ __volatile__( \
109 "movl %%cr0,%0\n\t" \
110 :"=r" (__dummy)); \
111 __dummy; \
112 })
113 #define write_cr0(x) \
114 __asm__ __volatile__("movl %0,%%cr0": :"r" (x));
115
116 #define read_cr2() ({ \
117 unsigned int __dummy; \
118 __asm__ __volatile__( \
119 "movl %%cr2,%0\n\t" \
120 :"=r" (__dummy)); \
121 __dummy; \
122 })
123 #define write_cr2(x) \
124 __asm__ __volatile__("movl %0,%%cr2": :"r" (x));
125
126 #define read_cr3() ({ \
127 unsigned int __dummy; \
128 __asm__ ( \
129 "movl %%cr3,%0\n\t" \
130 :"=r" (__dummy)); \
131 __dummy; \
132 })
133 #define write_cr3(x) \
134 __asm__ __volatile__("movl %0,%%cr3": :"r" (x));
135
136 #define read_cr4() ({ \
137 unsigned int __dummy; \
138 __asm__( \
139 "movl %%cr4,%0\n\t" \
140 :"=r" (__dummy)); \
141 __dummy; \
142 })
143 #define write_cr4(x) \
144 __asm__ __volatile__("movl %0,%%cr4": :"r" (x));
145 #define stts() write_cr0(8 | read_cr0())
146
147 #endif /* __KERNEL__ */
148
149 #define wbinvd() \
150 __asm__ __volatile__ ("wbinvd": : :"memory");
151
152 static inline unsigned long get_limit(unsigned long segment)
153 {
154 unsigned long __limit;
155 __asm__("lsll %1,%0"
156 :"=r" (__limit):"r" (segment));
157 return __limit+1;
158 }
159
160 #define nop() __asm__ __volatile__ ("nop")
161
162 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
163
164 #define tas(ptr) (xchg((ptr),1))
165
166 struct __xchg_dummy { unsigned long a[100]; };
167 #define __xg(x) ((struct __xchg_dummy *)(x))
168
169
170 #ifdef CONFIG_X86_CMPXCHG64
171
172 /*
173 * The semantics of XCHGCMP8B are a bit strange, this is why
174 * there is a loop and the loading of %%eax and %%edx has to
175 * be inside. This inlines well in most cases, the cached
176 * cost is around ~38 cycles. (in the future we might want
177 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
178 * might have an implicit FPU-save as a cost, so it's not
179 * clear which path to go.)
180 *
181 * cmpxchg8b must be used with the lock prefix here to allow
182 * the instruction to be executed atomically, see page 3-102
183 * of the instruction set reference 24319102.pdf. We need
184 * the reader side to see the coherent 64bit value.
185 */
186 static inline void __set_64bit (unsigned long long * ptr,
187 unsigned int low, unsigned int high)
188 {
189 __asm__ __volatile__ (
190 "\n1:\t"
191 "movl (%0), %%eax\n\t"
192 "movl 4(%0), %%edx\n\t"
193 "lock cmpxchg8b (%0)\n\t"
194 "jnz 1b"
195 : /* no outputs */
196 : "D"(ptr),
197 "b"(low),
198 "c"(high)
199 : "ax","dx","memory");
200 }
201
202 static inline void __set_64bit_constant (unsigned long long *ptr,
203 unsigned long long value)
204 {
205 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
206 }
207 #define ll_low(x) *(((unsigned int*)&(x))+0)
208 #define ll_high(x) *(((unsigned int*)&(x))+1)
209
210 static inline void __set_64bit_var (unsigned long long *ptr,
211 unsigned long long value)
212 {
213 __set_64bit(ptr,ll_low(value), ll_high(value));
214 }
215
216 #define set_64bit(ptr,value) \
217 (__builtin_constant_p(value) ? \
218 __set_64bit_constant(ptr, value) : \
219 __set_64bit_var(ptr, value) )
220
221 #define _set_64bit(ptr,value) \
222 (__builtin_constant_p(value) ? \
223 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
224 __set_64bit(ptr, ll_low(value), ll_high(value)) )
225
226 #endif
227
228 /*
229 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
230 * Note 2: xchg has side effect, so that attribute volatile is necessary,
231 * but generally the primitive is invalid, *ptr is output argument. --ANK
232 */
233 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
234 {
235 switch (size) {
236 case 1:
237 __asm__ __volatile__("xchgb %b0,%1"
238 :"=q" (x)
239 :"m" (*__xg(ptr)), "0" (x)
240 :"memory");
241 break;
242 case 2:
243 __asm__ __volatile__("xchgw %w0,%1"
244 :"=r" (x)
245 :"m" (*__xg(ptr)), "0" (x)
246 :"memory");
247 break;
248 case 4:
249 __asm__ __volatile__("xchgl %0,%1"
250 :"=r" (x)
251 :"m" (*__xg(ptr)), "0" (x)
252 :"memory");
253 break;
254 }
255 return x;
256 }
257
258 /*
259 * Atomic compare and exchange. Compare OLD with MEM, if identical,
260 * store NEW in MEM. Return the initial value in MEM. Success is
261 * indicated by comparing RETURN with OLD.
262 */
263
264 #ifdef CONFIG_X86_CMPXCHG
265 #define __HAVE_ARCH_CMPXCHG 1
266
267 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
268 unsigned long new, int size)
269 {
270 unsigned long prev;
271 switch (size) {
272 case 1:
273 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
274 : "=a"(prev)
275 : "q"(new), "m"(*__xg(ptr)), "0"(old)
276 : "memory");
277 return prev;
278 case 2:
279 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
280 : "=a"(prev)
281 : "r"(new), "m"(*__xg(ptr)), "0"(old)
282 : "memory");
283 return prev;
284 case 4:
285 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
286 : "=a"(prev)
287 : "r"(new), "m"(*__xg(ptr)), "0"(old)
288 : "memory");
289 return prev;
290 }
291 return old;
292 }
293
294 #define cmpxchg(ptr,o,n)\
295 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
296 (unsigned long)(n),sizeof(*(ptr))))
297
298 #endif
299
300 #ifdef CONFIG_X86_CMPXCHG64
301
302 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
303 unsigned long long new)
304 {
305 unsigned long long prev;
306 __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
307 : "=A"(prev)
308 : "b"((unsigned long)new),
309 "c"((unsigned long)(new >> 32)),
310 "m"(*__xg(ptr)),
311 "0"(old)
312 : "memory");
313 return prev;
314 }
315
316 #define cmpxchg64(ptr,o,n)\
317 ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
318 (unsigned long long)(n)))
319
320 #endif
321
322 #ifdef __KERNEL__
323 struct alt_instr {
324 __u8 *instr; /* original instruction */
325 __u8 *replacement;
326 __u8 cpuid; /* cpuid bit set for replacement */
327 __u8 instrlen; /* length of original instruction */
328 __u8 replacementlen; /* length of new instruction, <= instrlen */
329 __u8 pad;
330 };
331 #endif
332
333 /*
334 * Alternative instructions for different CPU types or capabilities.
335 *
336 * This allows to use optimized instructions even on generic binary
337 * kernels.
338 *
339 * length of oldinstr must be longer or equal the length of newinstr
340 * It can be padded with nops as needed.
341 *
342 * For non barrier like inlines please define new variants
343 * without volatile and memory clobber.
344 */
345 #define alternative(oldinstr, newinstr, feature) \
346 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
347 ".section .altinstructions,\"a\"\n" \
348 " .align 4\n" \
349 " .long 661b\n" /* label */ \
350 " .long 663f\n" /* new instruction */ \
351 " .byte %c0\n" /* feature bit */ \
352 " .byte 662b-661b\n" /* sourcelen */ \
353 " .byte 664f-663f\n" /* replacementlen */ \
354 ".previous\n" \
355 ".section .altinstr_replacement,\"ax\"\n" \
356 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
357 ".previous" :: "i" (feature) : "memory")
358
359 /*
360 * Alternative inline assembly with input.
361 *
362 * Pecularities:
363 * No memory clobber here.
364 * Argument numbers start with 1.
365 * Best is to use constraints that are fixed size (like (%1) ... "r")
366 * If you use variable sized constraints like "m" or "g" in the
367 * replacement maake sure to pad to the worst case length.
368 */
369 #define alternative_input(oldinstr, newinstr, feature, input...) \
370 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
371 ".section .altinstructions,\"a\"\n" \
372 " .align 4\n" \
373 " .long 661b\n" /* label */ \
374 " .long 663f\n" /* new instruction */ \
375 " .byte %c0\n" /* feature bit */ \
376 " .byte 662b-661b\n" /* sourcelen */ \
377 " .byte 664f-663f\n" /* replacementlen */ \
378 ".previous\n" \
379 ".section .altinstr_replacement,\"ax\"\n" \
380 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
381 ".previous" :: "i" (feature), ##input)
382
383 /*
384 * Force strict CPU ordering.
385 * And yes, this is required on UP too when we're talking
386 * to devices.
387 *
388 * For now, "wmb()" doesn't actually do anything, as all
389 * Intel CPU's follow what Intel calls a *Processor Order*,
390 * in which all writes are seen in the program order even
391 * outside the CPU.
392 *
393 * I expect future Intel CPU's to have a weaker ordering,
394 * but I'd also expect them to finally get their act together
395 * and add some real memory barriers if so.
396 *
397 * Some non intel clones support out of order store. wmb() ceases to be a
398 * nop for these.
399 */
400
401
402 /*
403 * Actually only lfence would be needed for mb() because all stores done
404 * by the kernel should be already ordered. But keep a full barrier for now.
405 */
406
407 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
408 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
409
410 /**
411 * read_barrier_depends - Flush all pending reads that subsequents reads
412 * depend on.
413 *
414 * No data-dependent reads from memory-like regions are ever reordered
415 * over this barrier. All reads preceding this primitive are guaranteed
416 * to access memory (but not necessarily other CPUs' caches) before any
417 * reads following this primitive that depend on the data return by
418 * any of the preceding reads. This primitive is much lighter weight than
419 * rmb() on most CPUs, and is never heavier weight than is
420 * rmb().
421 *
422 * These ordering constraints are respected by both the local CPU
423 * and the compiler.
424 *
425 * Ordering is not guaranteed by anything other than these primitives,
426 * not even by data dependencies. See the documentation for
427 * memory_barrier() for examples and URLs to more information.
428 *
429 * For example, the following code would force ordering (the initial
430 * value of "a" is zero, "b" is one, and "p" is "&a"):
431 *
432 * <programlisting>
433 * CPU 0 CPU 1
434 *
435 * b = 2;
436 * memory_barrier();
437 * p = &b; q = p;
438 * read_barrier_depends();
439 * d = *q;
440 * </programlisting>
441 *
442 * because the read of "*q" depends on the read of "p" and these
443 * two reads are separated by a read_barrier_depends(). However,
444 * the following code, with the same initial values for "a" and "b":
445 *
446 * <programlisting>
447 * CPU 0 CPU 1
448 *
449 * a = 2;
450 * memory_barrier();
451 * b = 3; y = b;
452 * read_barrier_depends();
453 * x = a;
454 * </programlisting>
455 *
456 * does not enforce ordering, since there is no data dependency between
457 * the read of "a" and the read of "b". Therefore, on some CPUs, such
458 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
459 * in cases like thiswhere there are no data dependencies.
460 **/
461
462 #define read_barrier_depends() do { } while(0)
463
464 #ifdef CONFIG_X86_OOSTORE
465 /* Actually there are no OOO store capable CPUs for now that do SSE,
466 but make it already an possibility. */
467 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
468 #else
469 #define wmb() __asm__ __volatile__ ("": : :"memory")
470 #endif
471
472 #ifdef CONFIG_SMP
473 #define smp_mb() mb()
474 #define smp_rmb() rmb()
475 #define smp_wmb() wmb()
476 #define smp_read_barrier_depends() read_barrier_depends()
477 #define set_mb(var, value) do { xchg(&var, value); } while (0)
478 #else
479 #define smp_mb() barrier()
480 #define smp_rmb() barrier()
481 #define smp_wmb() barrier()
482 #define smp_read_barrier_depends() do { } while(0)
483 #define set_mb(var, value) do { var = value; barrier(); } while (0)
484 #endif
485
486 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
487
488 /* interrupt control.. */
489 #define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
490 #define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
491 #define local_irq_disable() __asm__ __volatile__("cli": : :"memory")
492 #define local_irq_enable() __asm__ __volatile__("sti": : :"memory")
493 /* used in the idle loop; sti takes one instruction cycle to complete */
494 #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
495 /* used when interrupts are already enabled or to shutdown the processor */
496 #define halt() __asm__ __volatile__("hlt": : :"memory")
497
498 #define irqs_disabled() \
499 ({ \
500 unsigned long flags; \
501 local_save_flags(flags); \
502 !(flags & (1<<9)); \
503 })
504
505 /* For spinlocks etc */
506 #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
507
508 /*
509 * disable hlt during certain critical i/o operations
510 */
511 #define HAVE_DISABLE_HLT
512 void disable_hlt(void);
513 void enable_hlt(void);
514
515 extern int es7000_plat;
516 void cpu_idle_wait(void);
517
518 extern unsigned long arch_align_stack(unsigned long sp);
519
520 #endif