]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-ia64/sn/sn_sal.h
Pull sn-features into release branch
[mirror_ubuntu-artful-kernel.git] / include / asm-ia64 / sn / sn_sal.h
1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
3
4 /*
5 * System Abstraction Layer definitions for IA64
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved.
12 */
13
14
15 #include <linux/config.h>
16 #include <asm/sal.h>
17 #include <asm/sn/sn_cpuid.h>
18 #include <asm/sn/arch.h>
19 #include <asm/sn/geo.h>
20 #include <asm/sn/nodepda.h>
21 #include <asm/sn/shub_mmr.h>
22
23 // SGI Specific Calls
24 #define SN_SAL_POD_MODE 0x02000001
25 #define SN_SAL_SYSTEM_RESET 0x02000002
26 #define SN_SAL_PROBE 0x02000003
27 #define SN_SAL_GET_MASTER_NASID 0x02000004
28 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
29 #define SN_SAL_LOG_CE 0x02000006
30 #define SN_SAL_REGISTER_CE 0x02000007
31 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
32 #define SN_SAL_XP_ADDR_REGION 0x0200000f
33 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
34 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
35 #define SN_SAL_PRINT_ERROR 0x02000012
36 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
38 #define SN_SAL_GET_SAPIC_INFO 0x0200001d
39 #define SN_SAL_GET_SN_INFO 0x0200001e
40 #define SN_SAL_CONSOLE_PUTC 0x02000021
41 #define SN_SAL_CONSOLE_GETC 0x02000022
42 #define SN_SAL_CONSOLE_PUTS 0x02000023
43 #define SN_SAL_CONSOLE_GETS 0x02000024
44 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45 #define SN_SAL_CONSOLE_POLL 0x02000026
46 #define SN_SAL_CONSOLE_INTR 0x02000027
47 #define SN_SAL_CONSOLE_PUTB 0x02000028
48 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49 #define SN_SAL_CONSOLE_READC 0x0200002b
50 #define SN_SAL_SYSCTL_MODID_GET 0x02000031
51 #define SN_SAL_SYSCTL_GET 0x02000032
52 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
53 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
54 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
55 #define SN_SAL_BUS_CONFIG 0x02000037
56 #define SN_SAL_SYS_SERIAL_GET 0x02000038
57 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
58 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
59 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
60 #define SN_SAL_COHERENCE 0x0200003d
61 #define SN_SAL_MEMPROTECT 0x0200003e
62 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
63
64 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
65 #define SN_SAL_IROUTER_OP 0x02000043
66 #define SN_SAL_SYSCTL_EVENT 0x02000044
67 #define SN_SAL_IOIF_INTERRUPT 0x0200004a
68 #define SN_SAL_HWPERF_OP 0x02000050 // lock
69 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
70
71 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
72 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
73 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
74 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
75 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
76 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058
77
78 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
79 #define SN_SAL_BTE_RECOVER 0x02000061
80 #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
81 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
82
83 #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
84 #define SN_SAL_SET_OS_FEATURE_SET 0x02000066
85
86 /*
87 * Service-specific constants
88 */
89
90 /* Console interrupt manipulation */
91 /* action codes */
92 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
93 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
94 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
95 /* interrupt specification & status return codes */
96 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
97 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
98
99 /* interrupt handling */
100 #define SAL_INTR_ALLOC 1
101 #define SAL_INTR_FREE 2
102
103 /*
104 * IRouter (i.e. generalized system controller) operations
105 */
106 #define SAL_IROUTER_OPEN 0 /* open a subchannel */
107 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
108 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
109 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
110 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
111 * an open subchannel
112 */
113 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
114 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
115 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
116
117 /* IRouter interrupt mask bits */
118 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
119 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
120
121 /*
122 * Error Handling Features
123 */
124 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
125 #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
126 #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
127 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
128
129 /*
130 * SAL Error Codes
131 */
132 #define SALRET_MORE_PASSES 1
133 #define SALRET_OK 0
134 #define SALRET_NOT_IMPLEMENTED (-1)
135 #define SALRET_INVALID_ARG (-2)
136 #define SALRET_ERROR (-3)
137
138 #define SN_SAL_FAKE_PROM 0x02009999
139
140 /**
141 * sn_sal_revision - get the SGI SAL revision number
142 *
143 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
144 * This routine simply extracts the major and minor values and
145 * presents them in a u32 format.
146 *
147 * For example, version 4.05 would be represented at 0x0405.
148 */
149 static inline u32
150 sn_sal_rev(void)
151 {
152 struct ia64_sal_systab *systab = efi.sal_systab;
153
154 return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
155 }
156
157 /*
158 * Returns the master console nasid, if the call fails, return an illegal
159 * value.
160 */
161 static inline u64
162 ia64_sn_get_console_nasid(void)
163 {
164 struct ia64_sal_retval ret_stuff;
165
166 ret_stuff.status = 0;
167 ret_stuff.v0 = 0;
168 ret_stuff.v1 = 0;
169 ret_stuff.v2 = 0;
170 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
171
172 if (ret_stuff.status < 0)
173 return ret_stuff.status;
174
175 /* Master console nasid is in 'v0' */
176 return ret_stuff.v0;
177 }
178
179 /*
180 * Returns the master baseio nasid, if the call fails, return an illegal
181 * value.
182 */
183 static inline u64
184 ia64_sn_get_master_baseio_nasid(void)
185 {
186 struct ia64_sal_retval ret_stuff;
187
188 ret_stuff.status = 0;
189 ret_stuff.v0 = 0;
190 ret_stuff.v1 = 0;
191 ret_stuff.v2 = 0;
192 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
193
194 if (ret_stuff.status < 0)
195 return ret_stuff.status;
196
197 /* Master baseio nasid is in 'v0' */
198 return ret_stuff.v0;
199 }
200
201 static inline char *
202 ia64_sn_get_klconfig_addr(nasid_t nasid)
203 {
204 struct ia64_sal_retval ret_stuff;
205 int cnodeid;
206
207 cnodeid = nasid_to_cnodeid(nasid);
208 ret_stuff.status = 0;
209 ret_stuff.v0 = 0;
210 ret_stuff.v1 = 0;
211 ret_stuff.v2 = 0;
212 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
213
214 /*
215 * We should panic if a valid cnode nasid does not produce
216 * a klconfig address.
217 */
218 if (ret_stuff.status != 0) {
219 panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status);
220 }
221 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
222 }
223
224 /*
225 * Returns the next console character.
226 */
227 static inline u64
228 ia64_sn_console_getc(int *ch)
229 {
230 struct ia64_sal_retval ret_stuff;
231
232 ret_stuff.status = 0;
233 ret_stuff.v0 = 0;
234 ret_stuff.v1 = 0;
235 ret_stuff.v2 = 0;
236 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
237
238 /* character is in 'v0' */
239 *ch = (int)ret_stuff.v0;
240
241 return ret_stuff.status;
242 }
243
244 /*
245 * Read a character from the SAL console device, after a previous interrupt
246 * or poll operation has given us to know that a character is available
247 * to be read.
248 */
249 static inline u64
250 ia64_sn_console_readc(void)
251 {
252 struct ia64_sal_retval ret_stuff;
253
254 ret_stuff.status = 0;
255 ret_stuff.v0 = 0;
256 ret_stuff.v1 = 0;
257 ret_stuff.v2 = 0;
258 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
259
260 /* character is in 'v0' */
261 return ret_stuff.v0;
262 }
263
264 /*
265 * Sends the given character to the console.
266 */
267 static inline u64
268 ia64_sn_console_putc(char ch)
269 {
270 struct ia64_sal_retval ret_stuff;
271
272 ret_stuff.status = 0;
273 ret_stuff.v0 = 0;
274 ret_stuff.v1 = 0;
275 ret_stuff.v2 = 0;
276 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0);
277
278 return ret_stuff.status;
279 }
280
281 /*
282 * Sends the given buffer to the console.
283 */
284 static inline u64
285 ia64_sn_console_putb(const char *buf, int len)
286 {
287 struct ia64_sal_retval ret_stuff;
288
289 ret_stuff.status = 0;
290 ret_stuff.v0 = 0;
291 ret_stuff.v1 = 0;
292 ret_stuff.v2 = 0;
293 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0);
294
295 if ( ret_stuff.status == 0 ) {
296 return ret_stuff.v0;
297 }
298 return (u64)0;
299 }
300
301 /*
302 * Print a platform error record
303 */
304 static inline u64
305 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
306 {
307 struct ia64_sal_retval ret_stuff;
308
309 ret_stuff.status = 0;
310 ret_stuff.v0 = 0;
311 ret_stuff.v1 = 0;
312 ret_stuff.v2 = 0;
313 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0);
314
315 return ret_stuff.status;
316 }
317
318 /*
319 * Check for Platform errors
320 */
321 static inline u64
322 ia64_sn_plat_cpei_handler(void)
323 {
324 struct ia64_sal_retval ret_stuff;
325
326 ret_stuff.status = 0;
327 ret_stuff.v0 = 0;
328 ret_stuff.v1 = 0;
329 ret_stuff.v2 = 0;
330 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
331
332 return ret_stuff.status;
333 }
334
335 /*
336 * Set Error Handling Features (Obsolete)
337 */
338 static inline u64
339 ia64_sn_plat_set_error_handling_features(void)
340 {
341 struct ia64_sal_retval ret_stuff;
342
343 ret_stuff.status = 0;
344 ret_stuff.v0 = 0;
345 ret_stuff.v1 = 0;
346 ret_stuff.v2 = 0;
347 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
348 (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES),
349 0, 0, 0, 0, 0, 0);
350
351 return ret_stuff.status;
352 }
353
354 /*
355 * Checks for console input.
356 */
357 static inline u64
358 ia64_sn_console_check(int *result)
359 {
360 struct ia64_sal_retval ret_stuff;
361
362 ret_stuff.status = 0;
363 ret_stuff.v0 = 0;
364 ret_stuff.v1 = 0;
365 ret_stuff.v2 = 0;
366 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
367
368 /* result is in 'v0' */
369 *result = (int)ret_stuff.v0;
370
371 return ret_stuff.status;
372 }
373
374 /*
375 * Checks console interrupt status
376 */
377 static inline u64
378 ia64_sn_console_intr_status(void)
379 {
380 struct ia64_sal_retval ret_stuff;
381
382 ret_stuff.status = 0;
383 ret_stuff.v0 = 0;
384 ret_stuff.v1 = 0;
385 ret_stuff.v2 = 0;
386 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
387 0, SAL_CONSOLE_INTR_STATUS,
388 0, 0, 0, 0, 0);
389
390 if (ret_stuff.status == 0) {
391 return ret_stuff.v0;
392 }
393
394 return 0;
395 }
396
397 /*
398 * Enable an interrupt on the SAL console device.
399 */
400 static inline void
401 ia64_sn_console_intr_enable(uint64_t intr)
402 {
403 struct ia64_sal_retval ret_stuff;
404
405 ret_stuff.status = 0;
406 ret_stuff.v0 = 0;
407 ret_stuff.v1 = 0;
408 ret_stuff.v2 = 0;
409 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
410 intr, SAL_CONSOLE_INTR_ON,
411 0, 0, 0, 0, 0);
412 }
413
414 /*
415 * Disable an interrupt on the SAL console device.
416 */
417 static inline void
418 ia64_sn_console_intr_disable(uint64_t intr)
419 {
420 struct ia64_sal_retval ret_stuff;
421
422 ret_stuff.status = 0;
423 ret_stuff.v0 = 0;
424 ret_stuff.v1 = 0;
425 ret_stuff.v2 = 0;
426 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
427 intr, SAL_CONSOLE_INTR_OFF,
428 0, 0, 0, 0, 0);
429 }
430
431 /*
432 * Sends a character buffer to the console asynchronously.
433 */
434 static inline u64
435 ia64_sn_console_xmit_chars(char *buf, int len)
436 {
437 struct ia64_sal_retval ret_stuff;
438
439 ret_stuff.status = 0;
440 ret_stuff.v0 = 0;
441 ret_stuff.v1 = 0;
442 ret_stuff.v2 = 0;
443 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
444 (uint64_t)buf, (uint64_t)len,
445 0, 0, 0, 0, 0);
446
447 if (ret_stuff.status == 0) {
448 return ret_stuff.v0;
449 }
450
451 return 0;
452 }
453
454 /*
455 * Returns the iobrick module Id
456 */
457 static inline u64
458 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
459 {
460 struct ia64_sal_retval ret_stuff;
461
462 ret_stuff.status = 0;
463 ret_stuff.v0 = 0;
464 ret_stuff.v1 = 0;
465 ret_stuff.v2 = 0;
466 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
467
468 /* result is in 'v0' */
469 *result = (int)ret_stuff.v0;
470
471 return ret_stuff.status;
472 }
473
474 /**
475 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
476 *
477 * SN_SAL_POD_MODE actually takes an argument, but it's always
478 * 0 when we call it from the kernel, so we don't have to expose
479 * it to the caller.
480 */
481 static inline u64
482 ia64_sn_pod_mode(void)
483 {
484 struct ia64_sal_retval isrv;
485 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
486 if (isrv.status)
487 return 0;
488 return isrv.v0;
489 }
490
491 /**
492 * ia64_sn_probe_mem - read from memory safely
493 * @addr: address to probe
494 * @size: number bytes to read (1,2,4,8)
495 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
496 *
497 * Call into the SAL to do a memory read. If the read generates a machine
498 * check, this routine will recover gracefully and return -1 to the caller.
499 * @addr is usually a kernel virtual address in uncached space (i.e. the
500 * address starts with 0xc), but if called in physical mode, @addr should
501 * be a physical address.
502 *
503 * Return values:
504 * 0 - probe successful
505 * 1 - probe failed (generated MCA)
506 * 2 - Bad arg
507 * <0 - PAL error
508 */
509 static inline u64
510 ia64_sn_probe_mem(long addr, long size, void *data_ptr)
511 {
512 struct ia64_sal_retval isrv;
513
514 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
515
516 if (data_ptr) {
517 switch (size) {
518 case 1:
519 *((u8*)data_ptr) = (u8)isrv.v0;
520 break;
521 case 2:
522 *((u16*)data_ptr) = (u16)isrv.v0;
523 break;
524 case 4:
525 *((u32*)data_ptr) = (u32)isrv.v0;
526 break;
527 case 8:
528 *((u64*)data_ptr) = (u64)isrv.v0;
529 break;
530 default:
531 isrv.status = 2;
532 }
533 }
534 return isrv.status;
535 }
536
537 /*
538 * Retrieve the system serial number as an ASCII string.
539 */
540 static inline u64
541 ia64_sn_sys_serial_get(char *buf)
542 {
543 struct ia64_sal_retval ret_stuff;
544 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
545 return ret_stuff.status;
546 }
547
548 extern char sn_system_serial_number_string[];
549 extern u64 sn_partition_serial_number;
550
551 static inline char *
552 sn_system_serial_number(void) {
553 if (sn_system_serial_number_string[0]) {
554 return(sn_system_serial_number_string);
555 } else {
556 ia64_sn_sys_serial_get(sn_system_serial_number_string);
557 return(sn_system_serial_number_string);
558 }
559 }
560
561
562 /*
563 * Returns a unique id number for this system and partition (suitable for
564 * use with license managers), based in part on the system serial number.
565 */
566 static inline u64
567 ia64_sn_partition_serial_get(void)
568 {
569 struct ia64_sal_retval ret_stuff;
570 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
571 0, 0, 0, 0, 0, 0);
572 if (ret_stuff.status != 0)
573 return 0;
574 return ret_stuff.v0;
575 }
576
577 static inline u64
578 sn_partition_serial_number_val(void) {
579 if (unlikely(sn_partition_serial_number == 0)) {
580 sn_partition_serial_number = ia64_sn_partition_serial_get();
581 }
582 return sn_partition_serial_number;
583 }
584
585 /*
586 * Returns the physical address of the partition's reserved page through
587 * an iterative number of calls.
588 *
589 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
590 * set to the nasid of the partition whose reserved page's address is
591 * being sought.
592 * On subsequent calls, pass the values, that were passed back on the
593 * previous call.
594 *
595 * While the return status equals SALRET_MORE_PASSES, keep calling
596 * this function after first copying 'len' bytes starting at 'addr'
597 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
598 * be the physical address of the partition's reserved page. If the
599 * return status equals neither of these, an error as occurred.
600 */
601 static inline s64
602 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
603 {
604 struct ia64_sal_retval rv;
605 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
606 *addr, buf, *len, 0, 0, 0);
607 *cookie = rv.v0;
608 *addr = rv.v1;
609 *len = rv.v2;
610 return rv.status;
611 }
612
613 /*
614 * Register or unregister a physical address range being referenced across
615 * a partition boundary for which certain SAL errors should be scanned for,
616 * cleaned up and ignored. This is of value for kernel partitioning code only.
617 * Values for the operation argument:
618 * 1 = register this address range with SAL
619 * 0 = unregister this address range with SAL
620 *
621 * SAL maintains a reference count on an address range in case it is registered
622 * multiple times.
623 *
624 * On success, returns the reference count of the address range after the SAL
625 * call has performed the current registration/unregistration. Returns a
626 * negative value if an error occurred.
627 */
628 static inline int
629 sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
630 {
631 struct ia64_sal_retval ret_stuff;
632 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
633 (u64)operation, 0, 0, 0, 0);
634 return ret_stuff.status;
635 }
636
637 /*
638 * Register or unregister an instruction range for which SAL errors should
639 * be ignored. If an error occurs while in the registered range, SAL jumps
640 * to return_addr after ignoring the error. Values for the operation argument:
641 * 1 = register this instruction range with SAL
642 * 0 = unregister this instruction range with SAL
643 *
644 * Returns 0 on success, or a negative value if an error occurred.
645 */
646 static inline int
647 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
648 int virtual, int operation)
649 {
650 struct ia64_sal_retval ret_stuff;
651 u64 call;
652 if (virtual) {
653 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
654 } else {
655 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
656 }
657 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
658 (u64)1, 0, 0, 0);
659 return ret_stuff.status;
660 }
661
662 /*
663 * Change or query the coherence domain for this partition. Each cpu-based
664 * nasid is represented by a bit in an array of 64-bit words:
665 * 0 = not in this partition's coherency domain
666 * 1 = in this partition's coherency domain
667 *
668 * It is not possible for the local system's nasids to be removed from
669 * the coherency domain. Purpose of the domain arguments:
670 * new_domain = set the coherence domain to the given nasids
671 * old_domain = return the current coherence domain
672 *
673 * Returns 0 on success, or a negative value if an error occurred.
674 */
675 static inline int
676 sn_change_coherence(u64 *new_domain, u64 *old_domain)
677 {
678 struct ia64_sal_retval ret_stuff;
679 ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
680 (u64)old_domain, 0, 0, 0, 0, 0);
681 return ret_stuff.status;
682 }
683
684 /*
685 * Change memory access protections for a physical address range.
686 * nasid_array is not used on Altix, but may be in future architectures.
687 * Available memory protection access classes are defined after the function.
688 */
689 static inline int
690 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
691 {
692 struct ia64_sal_retval ret_stuff;
693 int cnodeid;
694 unsigned long irq_flags;
695
696 cnodeid = nasid_to_cnodeid(get_node_number(paddr));
697 // spin_lock(&NODEPDA(cnodeid)->bist_lock);
698 local_irq_save(irq_flags);
699 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
700 (u64)nasid_array, perms, 0, 0, 0);
701 local_irq_restore(irq_flags);
702 // spin_unlock(&NODEPDA(cnodeid)->bist_lock);
703 return ret_stuff.status;
704 }
705 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
706 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
707 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
708 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
709 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
710 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
711
712 /*
713 * Turns off system power.
714 */
715 static inline void
716 ia64_sn_power_down(void)
717 {
718 struct ia64_sal_retval ret_stuff;
719 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
720 while(1)
721 cpu_relax();
722 /* never returns */
723 }
724
725 /**
726 * ia64_sn_fru_capture - tell the system controller to capture hw state
727 *
728 * This routine will call the SAL which will tell the system controller(s)
729 * to capture hw mmr information from each SHub in the system.
730 */
731 static inline u64
732 ia64_sn_fru_capture(void)
733 {
734 struct ia64_sal_retval isrv;
735 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
736 if (isrv.status)
737 return 0;
738 return isrv.v0;
739 }
740
741 /*
742 * Performs an operation on a PCI bus or slot -- power up, power down
743 * or reset.
744 */
745 static inline u64
746 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
747 u64 bus, char slot,
748 u64 action)
749 {
750 struct ia64_sal_retval rv = {0, 0, 0, 0};
751
752 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
753 bus, (u64) slot, 0, 0);
754 if (rv.status)
755 return rv.v0;
756 return 0;
757 }
758
759
760 /*
761 * Open a subchannel for sending arbitrary data to the system
762 * controller network via the system controller device associated with
763 * 'nasid'. Return the subchannel number or a negative error code.
764 */
765 static inline int
766 ia64_sn_irtr_open(nasid_t nasid)
767 {
768 struct ia64_sal_retval rv;
769 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
770 0, 0, 0, 0, 0);
771 return (int) rv.v0;
772 }
773
774 /*
775 * Close system controller subchannel 'subch' previously opened on 'nasid'.
776 */
777 static inline int
778 ia64_sn_irtr_close(nasid_t nasid, int subch)
779 {
780 struct ia64_sal_retval rv;
781 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
782 (u64) nasid, (u64) subch, 0, 0, 0, 0);
783 return (int) rv.status;
784 }
785
786 /*
787 * Read data from system controller associated with 'nasid' on
788 * subchannel 'subch'. The buffer to be filled is pointed to by
789 * 'buf', and its capacity is in the integer pointed to by 'len'. The
790 * referent of 'len' is set to the number of bytes read by the SAL
791 * call. The return value is either SALRET_OK (for bytes read) or
792 * SALRET_ERROR (for error or "no data available").
793 */
794 static inline int
795 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
796 {
797 struct ia64_sal_retval rv;
798 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
799 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
800 0, 0);
801 return (int) rv.status;
802 }
803
804 /*
805 * Write data to the system controller network via the system
806 * controller associated with 'nasid' on suchannel 'subch'. The
807 * buffer to be written out is pointed to by 'buf', and 'len' is the
808 * number of bytes to be written. The return value is either the
809 * number of bytes written (which could be zero) or a negative error
810 * code.
811 */
812 static inline int
813 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
814 {
815 struct ia64_sal_retval rv;
816 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
817 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
818 0, 0);
819 return (int) rv.v0;
820 }
821
822 /*
823 * Check whether any interrupts are pending for the system controller
824 * associated with 'nasid' and its subchannel 'subch'. The return
825 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
826 * SAL_IROUTER_INTR_RECV).
827 */
828 static inline int
829 ia64_sn_irtr_intr(nasid_t nasid, int subch)
830 {
831 struct ia64_sal_retval rv;
832 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
833 (u64) nasid, (u64) subch, 0, 0, 0, 0);
834 return (int) rv.v0;
835 }
836
837 /*
838 * Enable the interrupt indicated by the intr parameter (either
839 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
840 */
841 static inline int
842 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
843 {
844 struct ia64_sal_retval rv;
845 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
846 (u64) nasid, (u64) subch, intr, 0, 0, 0);
847 return (int) rv.v0;
848 }
849
850 /*
851 * Disable the interrupt indicated by the intr parameter (either
852 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
853 */
854 static inline int
855 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
856 {
857 struct ia64_sal_retval rv;
858 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
859 (u64) nasid, (u64) subch, intr, 0, 0, 0);
860 return (int) rv.v0;
861 }
862
863 /*
864 * Set up a node as the point of contact for system controller
865 * environmental event delivery.
866 */
867 static inline int
868 ia64_sn_sysctl_event_init(nasid_t nasid)
869 {
870 struct ia64_sal_retval rv;
871 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
872 0, 0, 0, 0, 0, 0);
873 return (int) rv.v0;
874 }
875
876 /**
877 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
878 * @nasid: NASID of node to read
879 * @index: FIT entry index to be retrieved (0..n)
880 * @fitentry: 16 byte buffer where FIT entry will be stored.
881 * @banbuf: optional buffer for retrieving banner
882 * @banlen: length of banner buffer
883 *
884 * Access to the physical PROM chips needs to be serialized since reads and
885 * writes can't occur at the same time, so we need to call into the SAL when
886 * we want to look at the FIT entries on the chips.
887 *
888 * Returns:
889 * %SALRET_OK if ok
890 * %SALRET_INVALID_ARG if index too big
891 * %SALRET_NOT_IMPLEMENTED if running on older PROM
892 * ??? if nasid invalid OR banner buffer not large enough
893 */
894 static inline int
895 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
896 u64 banlen)
897 {
898 struct ia64_sal_retval rv;
899 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
900 banbuf, banlen, 0, 0);
901 return (int) rv.status;
902 }
903
904 /*
905 * Initialize the SAL components of the system controller
906 * communication driver; specifically pass in a sizable buffer that
907 * can be used for allocation of subchannel queues as new subchannels
908 * are opened. "buf" points to the buffer, and "len" specifies its
909 * length.
910 */
911 static inline int
912 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
913 {
914 struct ia64_sal_retval rv;
915 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
916 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
917 return (int) rv.status;
918 }
919
920 /*
921 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
922 *
923 * In:
924 * arg0 - SN_SAL_GET_SAPIC_INFO
925 * arg1 - sapicid (lid >> 16)
926 * Out:
927 * v0 - nasid
928 * v1 - subnode
929 * v2 - slice
930 */
931 static inline u64
932 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
933 {
934 struct ia64_sal_retval ret_stuff;
935
936 ret_stuff.status = 0;
937 ret_stuff.v0 = 0;
938 ret_stuff.v1 = 0;
939 ret_stuff.v2 = 0;
940 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
941
942 /***** BEGIN HACK - temp til old proms no longer supported ********/
943 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
944 if (nasid) *nasid = sapicid & 0xfff;
945 if (subnode) *subnode = (sapicid >> 13) & 1;
946 if (slice) *slice = (sapicid >> 12) & 3;
947 return 0;
948 }
949 /***** END HACK *******/
950
951 if (ret_stuff.status < 0)
952 return ret_stuff.status;
953
954 if (nasid) *nasid = (int) ret_stuff.v0;
955 if (subnode) *subnode = (int) ret_stuff.v1;
956 if (slice) *slice = (int) ret_stuff.v2;
957 return 0;
958 }
959
960 /*
961 * Returns information about the HUB/SHUB.
962 * In:
963 * arg0 - SN_SAL_GET_SN_INFO
964 * arg1 - 0 (other values reserved for future use)
965 * Out:
966 * v0
967 * [7:0] - shub type (0=shub1, 1=shub2)
968 * [15:8] - Log2 max number of nodes in entire system (includes
969 * C-bricks, I-bricks, etc)
970 * [23:16] - Log2 of nodes per sharing domain
971 * [31:24] - partition ID
972 * [39:32] - coherency_id
973 * [47:40] - regionsize
974 * v1
975 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
976 * [23:15] - bit position of low nasid bit
977 */
978 static inline u64
979 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
980 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
981 {
982 struct ia64_sal_retval ret_stuff;
983
984 ret_stuff.status = 0;
985 ret_stuff.v0 = 0;
986 ret_stuff.v1 = 0;
987 ret_stuff.v2 = 0;
988 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
989
990 if (ret_stuff.status < 0)
991 return ret_stuff.status;
992
993 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
994 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
995 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
996 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
997 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
998 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
999 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1000 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1001 return 0;
1002 }
1003
1004 /*
1005 * This is the access point to the Altix PROM hardware performance
1006 * and status monitoring interface. For info on using this, see
1007 * include/asm-ia64/sn/sn2/sn_hwperf.h
1008 */
1009 static inline int
1010 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1011 u64 a3, u64 a4, int *v0)
1012 {
1013 struct ia64_sal_retval rv;
1014 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1015 opcode, a0, a1, a2, a3, a4);
1016 if (v0)
1017 *v0 = (int) rv.v0;
1018 return (int) rv.status;
1019 }
1020
1021 static inline int
1022 ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1023 {
1024 struct ia64_sal_retval rv;
1025 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1026 return (int) rv.status;
1027 }
1028
1029 /*
1030 * BTE error recovery is implemented in SAL
1031 */
1032 static inline int
1033 ia64_sn_bte_recovery(nasid_t nasid)
1034 {
1035 struct ia64_sal_retval rv;
1036
1037 rv.status = 0;
1038 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, 0, 0, 0, 0, 0, 0, 0);
1039 if (rv.status == SALRET_NOT_IMPLEMENTED)
1040 return 0;
1041 return (int) rv.status;
1042 }
1043
1044 static inline int
1045 ia64_sn_is_fake_prom(void)
1046 {
1047 struct ia64_sal_retval rv;
1048 SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1049 return (rv.status == 0);
1050 }
1051
1052 static inline int
1053 ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1054 {
1055 struct ia64_sal_retval rv;
1056
1057 SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1058 if (rv.status != 0)
1059 return rv.status;
1060 *feature_set = rv.v0;
1061 return 0;
1062 }
1063
1064 static inline int
1065 ia64_sn_set_os_feature(int feature)
1066 {
1067 struct ia64_sal_retval rv;
1068
1069 SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1070 return rv.status;
1071 }
1072
1073 #endif /* _ASM_IA64_SN_SN_SAL_H */