]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-m68knommu/dma.h
move die notifier handling to common code
[mirror_ubuntu-artful-kernel.git] / include / asm-m68knommu / dma.h
1 #ifndef _M68K_DMA_H
2 #define _M68K_DMA_H 1
3
4 //#define DMA_DEBUG 1
5
6
7 #ifdef CONFIG_COLDFIRE
8 /*
9 * ColdFire DMA Model:
10 * ColdFire DMA supports two forms of DMA: Single and Dual address. Single
11 * address mode emits a source address, and expects that the device will either
12 * pick up the data (DMA READ) or source data (DMA WRITE). This implies that
13 * the device will place data on the correct byte(s) of the data bus, as the
14 * memory transactions are always 32 bits. This implies that only 32 bit
15 * devices will find single mode transfers useful. Dual address DMA mode
16 * performs two cycles: source read and destination write. ColdFire will
17 * align the data so that the device will always get the correct bytes, thus
18 * is useful for 8 and 16 bit devices. This is the mode that is supported
19 * below.
20 *
21 * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
22 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
23 *
24 * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
25 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
26 *
27 * APR/18/2002 : added proper support for MCF5272 DMA controller.
28 * Arthur Shipkowski (art@videon-central.com)
29 */
30
31 #include <asm/coldfire.h>
32 #include <asm/mcfsim.h>
33 #include <asm/mcfdma.h>
34
35 /*
36 * Set number of channels of DMA on ColdFire for different implementations.
37 */
38 #if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407)
39 #define MAX_M68K_DMA_CHANNELS 4
40 #elif defined(CONFIG_M5272)
41 #define MAX_M68K_DMA_CHANNELS 1
42 #else
43 #define MAX_M68K_DMA_CHANNELS 2
44 #endif
45
46 extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS];
47 extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS];
48
49 #if !defined(CONFIG_M5272)
50 #define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */
51 #define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */
52 #define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */
53 #define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */
54
55 /* I/O to memory, 8 bits, mode */
56 #define DMA_MODE_READ 0
57 /* memory to I/O, 8 bits, mode */
58 #define DMA_MODE_WRITE 1
59 /* I/O to memory, 16 bits, mode */
60 #define DMA_MODE_READ_WORD 2
61 /* memory to I/O, 16 bits, mode */
62 #define DMA_MODE_WRITE_WORD 3
63 /* I/O to memory, 32 bits, mode */
64 #define DMA_MODE_READ_LONG 4
65 /* memory to I/O, 32 bits, mode */
66 #define DMA_MODE_WRITE_LONG 5
67 /* I/O to memory, 8 bits, single-address-mode */
68 #define DMA_MODE_READ_SINGLE 8
69 /* memory to I/O, 8 bits, single-address-mode */
70 #define DMA_MODE_WRITE_SINGLE 9
71 /* I/O to memory, 16 bits, single-address-mode */
72 #define DMA_MODE_READ_WORD_SINGLE 10
73 /* memory to I/O, 16 bits, single-address-mode */
74 #define DMA_MODE_WRITE_WORD_SINGLE 11
75 /* I/O to memory, 32 bits, single-address-mode */
76 #define DMA_MODE_READ_LONG_SINGLE 12
77 /* memory to I/O, 32 bits, single-address-mode */
78 #define DMA_MODE_WRITE_LONG_SINGLE 13
79
80 #else /* CONFIG_M5272 is defined */
81
82 /* Source static-address mode */
83 #define DMA_MODE_SRC_SA_BIT 0x01
84 /* Two bits to select between all four modes */
85 #define DMA_MODE_SSIZE_MASK 0x06
86 /* Offset to shift bits in */
87 #define DMA_MODE_SSIZE_OFF 0x01
88 /* Destination static-address mode */
89 #define DMA_MODE_DES_SA_BIT 0x10
90 /* Two bits to select between all four modes */
91 #define DMA_MODE_DSIZE_MASK 0x60
92 /* Offset to shift bits in */
93 #define DMA_MODE_DSIZE_OFF 0x05
94 /* Size modifiers */
95 #define DMA_MODE_SIZE_LONG 0x00
96 #define DMA_MODE_SIZE_BYTE 0x01
97 #define DMA_MODE_SIZE_WORD 0x02
98 #define DMA_MODE_SIZE_LINE 0x03
99
100 /*
101 * Aliases to help speed quick ports; these may be suboptimal, however. They
102 * do not include the SINGLE mode modifiers since the MCF5272 does not have a
103 * mode where the device is in control of its addressing.
104 */
105
106 /* I/O to memory, 8 bits, mode */
107 #define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
108 /* memory to I/O, 8 bits, mode */
109 #define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
110 /* I/O to memory, 16 bits, mode */
111 #define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
112 /* memory to I/O, 16 bits, mode */
113 #define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
114 /* I/O to memory, 32 bits, mode */
115 #define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
116 /* memory to I/O, 32 bits, mode */
117 #define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
118
119 #endif /* !defined(CONFIG_M5272) */
120
121 #if !defined(CONFIG_M5272)
122 /* enable/disable a specific DMA channel */
123 static __inline__ void enable_dma(unsigned int dmanr)
124 {
125 volatile unsigned short *dmawp;
126
127 #ifdef DMA_DEBUG
128 printk("enable_dma(dmanr=%d)\n", dmanr);
129 #endif
130
131 dmawp = (unsigned short *) dma_base_addr[dmanr];
132 dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT;
133 }
134
135 static __inline__ void disable_dma(unsigned int dmanr)
136 {
137 volatile unsigned short *dmawp;
138 volatile unsigned char *dmapb;
139
140 #ifdef DMA_DEBUG
141 printk("disable_dma(dmanr=%d)\n", dmanr);
142 #endif
143
144 dmawp = (unsigned short *) dma_base_addr[dmanr];
145 dmapb = (unsigned char *) dma_base_addr[dmanr];
146
147 /* Turn off external requests, and stop any DMA in progress */
148 dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT;
149 dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE;
150 }
151
152 /*
153 * Clear the 'DMA Pointer Flip Flop'.
154 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
155 * Use this once to initialize the FF to a known state.
156 * After that, keep track of it. :-)
157 * --- In order to do that, the DMA routines below should ---
158 * --- only be used while interrupts are disabled! ---
159 *
160 * This is a NOP for ColdFire. Provide a stub for compatibility.
161 */
162 static __inline__ void clear_dma_ff(unsigned int dmanr)
163 {
164 }
165
166 /* set mode (above) for a specific DMA channel */
167 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
168 {
169
170 volatile unsigned char *dmabp;
171 volatile unsigned short *dmawp;
172
173 #ifdef DMA_DEBUG
174 printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
175 #endif
176
177 dmabp = (unsigned char *) dma_base_addr[dmanr];
178 dmawp = (unsigned short *) dma_base_addr[dmanr];
179
180 // Clear config errors
181 dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE;
182
183 // Set command register
184 dmawp[MCFDMA_DCR] =
185 MCFDMA_DCR_INT | // Enable completion irq
186 MCFDMA_DCR_CS | // Force one xfer per request
187 MCFDMA_DCR_AA | // Enable auto alignment
188 // single-address-mode
189 ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) |
190 // sets s_rw (-> r/w) high if Memory to I/0
191 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) |
192 // Memory to I/O or I/O to Memory
193 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) |
194 // 32 bit, 16 bit or 8 bit transfers
195 ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD :
196 ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG :
197 MCFDMA_DCR_SSIZE_BYTE)) |
198 ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD :
199 ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG :
200 MCFDMA_DCR_DSIZE_BYTE));
201
202 #ifdef DEBUG_DMA
203 printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__,
204 dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR],
205 (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]);
206 #endif
207 }
208
209 /* Set transfer address for specific DMA channel */
210 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
211 {
212 volatile unsigned short *dmawp;
213 volatile unsigned int *dmalp;
214
215 #ifdef DMA_DEBUG
216 printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
217 #endif
218
219 dmawp = (unsigned short *) dma_base_addr[dmanr];
220 dmalp = (unsigned int *) dma_base_addr[dmanr];
221
222 // Determine which address registers are used for memory/device accesses
223 if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) {
224 // Source incrementing, must be memory
225 dmalp[MCFDMA_SAR] = a;
226 // Set dest address, must be device
227 dmalp[MCFDMA_DAR] = dma_device_address[dmanr];
228 } else {
229 // Destination incrementing, must be memory
230 dmalp[MCFDMA_DAR] = a;
231 // Set source address, must be device
232 dmalp[MCFDMA_SAR] = dma_device_address[dmanr];
233 }
234
235 #ifdef DEBUG_DMA
236 printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
237 __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR],
238 (int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR],
239 (int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]);
240 #endif
241 }
242
243 /*
244 * Specific for Coldfire - sets device address.
245 * Should be called after the mode set call, and before set DMA address.
246 */
247 static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
248 {
249 #ifdef DMA_DEBUG
250 printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
251 #endif
252
253 dma_device_address[dmanr] = a;
254 }
255
256 /*
257 * NOTE 2: "count" represents _bytes_.
258 */
259 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
260 {
261 volatile unsigned short *dmawp;
262
263 #ifdef DMA_DEBUG
264 printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
265 #endif
266
267 dmawp = (unsigned short *) dma_base_addr[dmanr];
268 dmawp[MCFDMA_BCR] = (unsigned short)count;
269 }
270
271 /*
272 * Get DMA residue count. After a DMA transfer, this
273 * should return zero. Reading this while a DMA transfer is
274 * still in progress will return unpredictable results.
275 * Otherwise, it returns the number of _bytes_ left to transfer.
276 */
277 static __inline__ int get_dma_residue(unsigned int dmanr)
278 {
279 volatile unsigned short *dmawp;
280 unsigned short count;
281
282 #ifdef DMA_DEBUG
283 printk("get_dma_residue(dmanr=%d)\n", dmanr);
284 #endif
285
286 dmawp = (unsigned short *) dma_base_addr[dmanr];
287 count = dmawp[MCFDMA_BCR];
288 return((int) count);
289 }
290 #else /* CONFIG_M5272 is defined */
291
292 /*
293 * The MCF5272 DMA controller is very different than the controller defined above
294 * in terms of register mapping. For instance, with the exception of the 16-bit
295 * interrupt register (IRQ#85, for reference), all of the registers are 32-bit.
296 *
297 * The big difference, however, is the lack of device-requested DMA. All modes
298 * are dual address transfer, and there is no 'device' setup or direction bit.
299 * You can DMA between a device and memory, between memory and memory, or even between
300 * two devices directly, with any combination of incrementing and non-incrementing
301 * addresses you choose. This puts a crimp in distinguishing between the 'device
302 * address' set up by set_dma_device_addr.
303 *
304 * Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr,
305 * which will act exactly as above in -- it will look to see if the source is set to
306 * autoincrement, and if so it will make the source use the set_dma_addr value and the
307 * destination the set_dma_device_addr value. Otherwise the source will be set to the
308 * set_dma_device_addr value and the destination will get the set_dma_addr value.
309 *
310 * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions
311 * and make it explicit. Depending on what you're doing, one of these two should work
312 * for you, but don't mix them in the same transfer setup.
313 */
314
315 /* enable/disable a specific DMA channel */
316 static __inline__ void enable_dma(unsigned int dmanr)
317 {
318 volatile unsigned int *dmalp;
319
320 #ifdef DMA_DEBUG
321 printk("enable_dma(dmanr=%d)\n", dmanr);
322 #endif
323
324 dmalp = (unsigned int *) dma_base_addr[dmanr];
325 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN;
326 }
327
328 static __inline__ void disable_dma(unsigned int dmanr)
329 {
330 volatile unsigned int *dmalp;
331
332 #ifdef DMA_DEBUG
333 printk("disable_dma(dmanr=%d)\n", dmanr);
334 #endif
335
336 dmalp = (unsigned int *) dma_base_addr[dmanr];
337
338 /* Turn off external requests, and stop any DMA in progress */
339 dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN;
340 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
341 }
342
343 /*
344 * Clear the 'DMA Pointer Flip Flop'.
345 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
346 * Use this once to initialize the FF to a known state.
347 * After that, keep track of it. :-)
348 * --- In order to do that, the DMA routines below should ---
349 * --- only be used while interrupts are disabled! ---
350 *
351 * This is a NOP for ColdFire. Provide a stub for compatibility.
352 */
353 static __inline__ void clear_dma_ff(unsigned int dmanr)
354 {
355 }
356
357 /* set mode (above) for a specific DMA channel */
358 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
359 {
360
361 volatile unsigned int *dmalp;
362 volatile unsigned short *dmawp;
363
364 #ifdef DMA_DEBUG
365 printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
366 #endif
367 dmalp = (unsigned int *) dma_base_addr[dmanr];
368 dmawp = (unsigned short *) dma_base_addr[dmanr];
369
370 // Clear config errors
371 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
372
373 // Set command register
374 dmalp[MCFDMA_DMR] =
375 MCFDMA_DMR_RQM_DUAL | // Mandatory Request Mode setting
376 MCFDMA_DMR_DSTT_SD | // Set up addressing types; set to supervisor-data.
377 MCFDMA_DMR_SRCT_SD | // Set up addressing types; set to supervisor-data.
378 // source static-address-mode
379 ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) |
380 // dest static-address-mode
381 ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) |
382 // burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272
383 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) |
384 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF);
385
386 dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */
387
388 #ifdef DEBUG_DMA
389 printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__,
390 dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR],
391 (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]);
392 #endif
393 }
394
395 /* Set transfer address for specific DMA channel */
396 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
397 {
398 volatile unsigned int *dmalp;
399
400 #ifdef DMA_DEBUG
401 printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
402 #endif
403
404 dmalp = (unsigned int *) dma_base_addr[dmanr];
405
406 // Determine which address registers are used for memory/device accesses
407 if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) {
408 // Source incrementing, must be memory
409 dmalp[MCFDMA_DSAR] = a;
410 // Set dest address, must be device
411 dmalp[MCFDMA_DDAR] = dma_device_address[dmanr];
412 } else {
413 // Destination incrementing, must be memory
414 dmalp[MCFDMA_DDAR] = a;
415 // Set source address, must be device
416 dmalp[MCFDMA_DSAR] = dma_device_address[dmanr];
417 }
418
419 #ifdef DEBUG_DMA
420 printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
421 __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR],
422 (int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR],
423 (int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]);
424 #endif
425 }
426
427 /*
428 * Specific for Coldfire - sets device address.
429 * Should be called after the mode set call, and before set DMA address.
430 */
431 static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
432 {
433 #ifdef DMA_DEBUG
434 printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
435 #endif
436
437 dma_device_address[dmanr] = a;
438 }
439
440 /*
441 * NOTE 2: "count" represents _bytes_.
442 *
443 * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value.
444 */
445 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
446 {
447 volatile unsigned int *dmalp;
448
449 #ifdef DMA_DEBUG
450 printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
451 #endif
452
453 dmalp = (unsigned int *) dma_base_addr[dmanr];
454 dmalp[MCFDMA_DBCR] = count;
455 }
456
457 /*
458 * Get DMA residue count. After a DMA transfer, this
459 * should return zero. Reading this while a DMA transfer is
460 * still in progress will return unpredictable results.
461 * Otherwise, it returns the number of _bytes_ left to transfer.
462 */
463 static __inline__ int get_dma_residue(unsigned int dmanr)
464 {
465 volatile unsigned int *dmalp;
466 unsigned int count;
467
468 #ifdef DMA_DEBUG
469 printk("get_dma_residue(dmanr=%d)\n", dmanr);
470 #endif
471
472 dmalp = (unsigned int *) dma_base_addr[dmanr];
473 count = dmalp[MCFDMA_DBCR];
474 return(count);
475 }
476
477 #endif /* !defined(CONFIG_M5272) */
478 #endif /* CONFIG_COLDFIRE */
479
480 #define MAX_DMA_CHANNELS 8
481
482 /* Don't define MAX_DMA_ADDRESS; it's useless on the m68k/coldfire and any
483 occurrence should be flagged as an error. */
484 /* under 2.4 it is actually needed by the new bootmem allocator */
485 #define MAX_DMA_ADDRESS PAGE_OFFSET
486
487 /* These are in kernel/dma.c: */
488 extern int request_dma(unsigned int dmanr, const char *device_id); /* reserve a DMA channel */
489 extern void free_dma(unsigned int dmanr); /* release it again */
490
491 #endif /* _M68K_DMA_H */