]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-ppc64/dma.h
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / include / asm-ppc64 / dma.h
1 /*
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
6 * Changes for ppc sound by Christoph Nadig
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _ASM_DMA_H
15 #define _ASM_DMA_H
16
17 #include <linux/config.h>
18 #include <asm/io.h>
19 #include <linux/spinlock.h>
20 #include <asm/system.h>
21
22 #ifndef MAX_DMA_CHANNELS
23 #define MAX_DMA_CHANNELS 8
24 #endif
25
26 /* The maximum address that we can perform a DMA transfer to on this platform */
27 /* Doesn't really apply... */
28 #define MAX_DMA_ADDRESS (~0UL)
29
30 #define dma_outb outb
31 #define dma_inb inb
32
33 /*
34 * NOTES about DMA transfers:
35 *
36 * controller 1: channels 0-3, byte operations, ports 00-1F
37 * controller 2: channels 4-7, word operations, ports C0-DF
38 *
39 * - ALL registers are 8 bits only, regardless of transfer size
40 * - channel 4 is not used - cascades 1 into 2.
41 * - channels 0-3 are byte - addresses/counts are for physical bytes
42 * - channels 5-7 are word - addresses/counts are for physical words
43 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
44 * - transfer count loaded to registers is 1 less than actual count
45 * - controller 2 offsets are all even (2x offsets for controller 1)
46 * - page registers for 5-7 don't use data bit 0, represent 128K pages
47 * - page registers for 0-3 use bit 0, represent 64K pages
48 *
49 * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
50 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
51 * Note that addresses loaded into registers must be _physical_ addresses,
52 * not logical addresses (which may differ if paging is active).
53 *
54 * Address mapping for channels 0-3:
55 *
56 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
57 * | ... | | ... | | ... |
58 * | ... | | ... | | ... |
59 * | ... | | ... | | ... |
60 * P7 ... P0 A7 ... A0 A7 ... A0
61 * | Page | Addr MSB | Addr LSB | (DMA registers)
62 *
63 * Address mapping for channels 5-7:
64 *
65 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
66 * | ... | \ \ ... \ \ \ ... \ \
67 * | ... | \ \ ... \ \ \ ... \ (not used)
68 * | ... | \ \ ... \ \ \ ... \
69 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
70 * | Page | Addr MSB | Addr LSB | (DMA registers)
71 *
72 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
73 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
74 * the hardware level, so odd-byte transfers aren't possible).
75 *
76 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
77 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
78 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
79 *
80 */
81
82 /* 8237 DMA controllers */
83 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
84 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
85
86 /* DMA controller registers */
87 #define DMA1_CMD_REG 0x08 /* command register (w) */
88 #define DMA1_STAT_REG 0x08 /* status register (r) */
89 #define DMA1_REQ_REG 0x09 /* request register (w) */
90 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
91 #define DMA1_MODE_REG 0x0B /* mode register (w) */
92 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
93 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
94 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
95 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
96 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
97
98 #define DMA2_CMD_REG 0xD0 /* command register (w) */
99 #define DMA2_STAT_REG 0xD0 /* status register (r) */
100 #define DMA2_REQ_REG 0xD2 /* request register (w) */
101 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
102 #define DMA2_MODE_REG 0xD6 /* mode register (w) */
103 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
104 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
105 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
106 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
107 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
108
109 #define DMA_ADDR_0 0x00 /* DMA address registers */
110 #define DMA_ADDR_1 0x02
111 #define DMA_ADDR_2 0x04
112 #define DMA_ADDR_3 0x06
113 #define DMA_ADDR_4 0xC0
114 #define DMA_ADDR_5 0xC4
115 #define DMA_ADDR_6 0xC8
116 #define DMA_ADDR_7 0xCC
117
118 #define DMA_CNT_0 0x01 /* DMA count registers */
119 #define DMA_CNT_1 0x03
120 #define DMA_CNT_2 0x05
121 #define DMA_CNT_3 0x07
122 #define DMA_CNT_4 0xC2
123 #define DMA_CNT_5 0xC6
124 #define DMA_CNT_6 0xCA
125 #define DMA_CNT_7 0xCE
126
127 #define DMA_LO_PAGE_0 0x87 /* DMA page registers */
128 #define DMA_LO_PAGE_1 0x83
129 #define DMA_LO_PAGE_2 0x81
130 #define DMA_LO_PAGE_3 0x82
131 #define DMA_LO_PAGE_5 0x8B
132 #define DMA_LO_PAGE_6 0x89
133 #define DMA_LO_PAGE_7 0x8A
134
135 #define DMA_HI_PAGE_0 0x487 /* DMA page registers */
136 #define DMA_HI_PAGE_1 0x483
137 #define DMA_HI_PAGE_2 0x481
138 #define DMA_HI_PAGE_3 0x482
139 #define DMA_HI_PAGE_5 0x48B
140 #define DMA_HI_PAGE_6 0x489
141 #define DMA_HI_PAGE_7 0x48A
142
143 #define DMA1_EXT_REG 0x40B
144 #define DMA2_EXT_REG 0x4D6
145
146 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
147 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
148 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
149
150 #define DMA_AUTOINIT 0x10
151
152 extern spinlock_t dma_spin_lock;
153
154 static __inline__ unsigned long claim_dma_lock(void)
155 {
156 unsigned long flags;
157 spin_lock_irqsave(&dma_spin_lock, flags);
158 return flags;
159 }
160
161 static __inline__ void release_dma_lock(unsigned long flags)
162 {
163 spin_unlock_irqrestore(&dma_spin_lock, flags);
164 }
165
166 /* enable/disable a specific DMA channel */
167 static __inline__ void enable_dma(unsigned int dmanr)
168 {
169 unsigned char ucDmaCmd=0x00;
170
171 if (dmanr != 4)
172 {
173 dma_outb(0, DMA2_MASK_REG); /* This may not be enabled */
174 dma_outb(ucDmaCmd, DMA2_CMD_REG); /* Enable group */
175 }
176 if (dmanr<=3)
177 {
178 dma_outb(dmanr, DMA1_MASK_REG);
179 dma_outb(ucDmaCmd, DMA1_CMD_REG); /* Enable group */
180 } else
181 {
182 dma_outb(dmanr & 3, DMA2_MASK_REG);
183 }
184 }
185
186 static __inline__ void disable_dma(unsigned int dmanr)
187 {
188 if (dmanr<=3)
189 dma_outb(dmanr | 4, DMA1_MASK_REG);
190 else
191 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
192 }
193
194 /* Clear the 'DMA Pointer Flip Flop'.
195 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
196 * Use this once to initialize the FF to a known state.
197 * After that, keep track of it. :-)
198 * --- In order to do that, the DMA routines below should ---
199 * --- only be used while interrupts are disabled! ---
200 */
201 static __inline__ void clear_dma_ff(unsigned int dmanr)
202 {
203 if (dmanr<=3)
204 dma_outb(0, DMA1_CLEAR_FF_REG);
205 else
206 dma_outb(0, DMA2_CLEAR_FF_REG);
207 }
208
209 /* set mode (above) for a specific DMA channel */
210 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
211 {
212 if (dmanr<=3)
213 dma_outb(mode | dmanr, DMA1_MODE_REG);
214 else
215 dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
216 }
217
218 /* Set only the page register bits of the transfer address.
219 * This is used for successive transfers when we know the contents of
220 * the lower 16 bits of the DMA current address register, but a 64k boundary
221 * may have been crossed.
222 */
223 static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
224 {
225 switch(dmanr) {
226 case 0:
227 dma_outb(pagenr, DMA_LO_PAGE_0);
228 dma_outb(pagenr>>8, DMA_HI_PAGE_0);
229 break;
230 case 1:
231 dma_outb(pagenr, DMA_LO_PAGE_1);
232 dma_outb(pagenr>>8, DMA_HI_PAGE_1);
233 break;
234 case 2:
235 dma_outb(pagenr, DMA_LO_PAGE_2);
236 dma_outb(pagenr>>8, DMA_HI_PAGE_2);
237 break;
238 case 3:
239 dma_outb(pagenr, DMA_LO_PAGE_3);
240 dma_outb(pagenr>>8, DMA_HI_PAGE_3);
241 break;
242 case 5:
243 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
244 dma_outb(pagenr>>8, DMA_HI_PAGE_5);
245 break;
246 case 6:
247 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
248 dma_outb(pagenr>>8, DMA_HI_PAGE_6);
249 break;
250 case 7:
251 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
252 dma_outb(pagenr>>8, DMA_HI_PAGE_7);
253 break;
254 }
255 }
256
257
258 /* Set transfer address & page bits for specific DMA channel.
259 * Assumes dma flipflop is clear.
260 */
261 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
262 {
263 if (dmanr <= 3) {
264 dma_outb( phys & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
265 dma_outb( (phys>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
266 } else {
267 dma_outb( (phys>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
268 dma_outb( (phys>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
269 }
270 set_dma_page(dmanr, phys>>16);
271 }
272
273
274 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
275 * a specific DMA channel.
276 * You must ensure the parameters are valid.
277 * NOTE: from a manual: "the number of transfers is one more
278 * than the initial word count"! This is taken into account.
279 * Assumes dma flip-flop is clear.
280 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
281 */
282 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
283 {
284 count--;
285 if (dmanr <= 3) {
286 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
287 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
288 } else {
289 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
290 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
291 }
292 }
293
294
295 /* Get DMA residue count. After a DMA transfer, this
296 * should return zero. Reading this while a DMA transfer is
297 * still in progress will return unpredictable results.
298 * If called before the channel has been used, it may return 1.
299 * Otherwise, it returns the number of _bytes_ left to transfer.
300 *
301 * Assumes DMA flip-flop is clear.
302 */
303 static __inline__ int get_dma_residue(unsigned int dmanr)
304 {
305 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
306 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
307
308 /* using short to get 16-bit wrap around */
309 unsigned short count;
310
311 count = 1 + dma_inb(io_port);
312 count += dma_inb(io_port) << 8;
313
314 return (dmanr <= 3)? count : (count<<1);
315 }
316
317 /* These are in kernel/dma.c: */
318 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
319 extern void free_dma(unsigned int dmanr); /* release it again */
320
321 #ifdef CONFIG_PCI
322 extern int isa_dma_bridge_buggy;
323 #else
324 #define isa_dma_bridge_buggy (0)
325 #endif
326 #endif /* _ASM_DMA_H */