]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/asm-ppc64/mmu.h
Merge Christoph's freeze cleanup patch
[mirror_ubuntu-bionic-kernel.git] / include / asm-ppc64 / mmu.h
1 /*
2 * PowerPC memory management structures
3 *
4 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
5 * PPC64 rework.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #ifndef _PPC64_MMU_H_
14 #define _PPC64_MMU_H_
15
16 #include <linux/config.h>
17 #include <asm/page.h>
18
19 /*
20 * Segment table
21 */
22
23 #define STE_ESID_V 0x80
24 #define STE_ESID_KS 0x20
25 #define STE_ESID_KP 0x10
26 #define STE_ESID_N 0x08
27
28 #define STE_VSID_SHIFT 12
29
30 /* Location of cpu0's segment table */
31 #define STAB0_PAGE 0x9
32 #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
33 #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
34
35 /*
36 * SLB
37 */
38
39 #define SLB_NUM_BOLTED 3
40 #define SLB_CACHE_ENTRIES 8
41
42 /* Bits in the SLB ESID word */
43 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
44
45 /* Bits in the SLB VSID word */
46 #define SLB_VSID_SHIFT 12
47 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
48 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
49 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
50 #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage */
51 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
52 #define SLB_VSID_LS ASM_CONST(0x0000000000000070) /* size of largepage */
53
54 #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
55 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
56
57 /*
58 * Hash table
59 */
60
61 #define HPTES_PER_GROUP 8
62
63 /* Values for PP (assumes Ks=0, Kp=1) */
64 /* pp0 will always be 0 for linux */
65 #define PP_RWXX 0 /* Supervisor read/write, User none */
66 #define PP_RWRX 1 /* Supervisor read/write, User read */
67 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
68 #define PP_RXRX 3 /* Supervisor read, User read */
69
70 #ifndef __ASSEMBLY__
71
72 /* Hardware Page Table Entry */
73 typedef struct {
74 unsigned long avpn:57; /* vsid | api == avpn */
75 unsigned long : 2; /* Software use */
76 unsigned long bolted: 1; /* HPTE is "bolted" */
77 unsigned long lock: 1; /* lock on pSeries SMP */
78 unsigned long l: 1; /* Virtual page is large (L=1) or 4 KB (L=0) */
79 unsigned long h: 1; /* Hash function identifier */
80 unsigned long v: 1; /* Valid (v=1) or invalid (v=0) */
81 } Hpte_dword0;
82
83 typedef struct {
84 unsigned long pp0: 1; /* Page protection bit 0 */
85 unsigned long ts: 1; /* Tag set bit */
86 unsigned long rpn: 50; /* Real page number */
87 unsigned long : 2; /* Reserved */
88 unsigned long ac: 1; /* Address compare */
89 unsigned long r: 1; /* Referenced */
90 unsigned long c: 1; /* Changed */
91 unsigned long w: 1; /* Write-thru cache mode */
92 unsigned long i: 1; /* Cache inhibited */
93 unsigned long m: 1; /* Memory coherence required */
94 unsigned long g: 1; /* Guarded */
95 unsigned long n: 1; /* No-execute */
96 unsigned long pp: 2; /* Page protection bits 1:2 */
97 } Hpte_dword1;
98
99 typedef struct {
100 char padding[6]; /* padding */
101 unsigned long : 6; /* padding */
102 unsigned long flags: 10; /* HPTE flags */
103 } Hpte_dword1_flags;
104
105 typedef struct {
106 union {
107 unsigned long dword0;
108 Hpte_dword0 dw0;
109 } dw0;
110
111 union {
112 unsigned long dword1;
113 Hpte_dword1 dw1;
114 Hpte_dword1_flags flags;
115 } dw1;
116 } HPTE;
117
118 extern HPTE * htab_address;
119 extern unsigned long htab_hash_mask;
120
121 static inline unsigned long hpt_hash(unsigned long vpn, int large)
122 {
123 unsigned long vsid;
124 unsigned long page;
125
126 if (large) {
127 vsid = vpn >> 4;
128 page = vpn & 0xf;
129 } else {
130 vsid = vpn >> 16;
131 page = vpn & 0xffff;
132 }
133
134 return (vsid & 0x7fffffffffUL) ^ page;
135 }
136
137 static inline void __tlbie(unsigned long va, int large)
138 {
139 /* clear top 16 bits, non SLS segment */
140 va &= ~(0xffffULL << 48);
141
142 if (large) {
143 va &= HPAGE_MASK;
144 asm volatile("tlbie %0,1" : : "r"(va) : "memory");
145 } else {
146 va &= PAGE_MASK;
147 asm volatile("tlbie %0,0" : : "r"(va) : "memory");
148 }
149 }
150
151 static inline void tlbie(unsigned long va, int large)
152 {
153 asm volatile("ptesync": : :"memory");
154 __tlbie(va, large);
155 asm volatile("eieio; tlbsync; ptesync": : :"memory");
156 }
157
158 static inline void __tlbiel(unsigned long va)
159 {
160 /* clear top 16 bits, non SLS segment */
161 va &= ~(0xffffULL << 48);
162 va &= PAGE_MASK;
163
164 /*
165 * Thanks to Alan Modra we are now able to use machine specific
166 * assembly instructions (like tlbiel) by using the gas -many flag.
167 * However we have to support older toolchains so for the moment
168 * we hardwire it.
169 */
170 #if 0
171 asm volatile("tlbiel %0" : : "r"(va) : "memory");
172 #else
173 asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
174 #endif
175 }
176
177 static inline void tlbiel(unsigned long va)
178 {
179 asm volatile("ptesync": : :"memory");
180 __tlbiel(va);
181 asm volatile("ptesync": : :"memory");
182 }
183
184 static inline unsigned long slot2va(unsigned long avpn, unsigned long large,
185 unsigned long secondary, unsigned long slot)
186 {
187 unsigned long va;
188
189 va = avpn << 23;
190
191 if (!large) {
192 unsigned long vpi, pteg;
193
194 pteg = slot / HPTES_PER_GROUP;
195 if (secondary)
196 pteg = ~pteg;
197
198 vpi = ((va >> 28) ^ pteg) & htab_hash_mask;
199
200 va |= vpi << PAGE_SHIFT;
201 }
202
203 return va;
204 }
205
206 /*
207 * Handle a fault by adding an HPTE. If the address can't be determined
208 * to be valid via Linux page tables, return 1. If handled return 0
209 */
210 extern int __hash_page(unsigned long ea, unsigned long access,
211 unsigned long vsid, pte_t *ptep, unsigned long trap,
212 int local);
213
214 extern void htab_finish_init(void);
215
216 extern void hpte_init_native(void);
217 extern void hpte_init_lpar(void);
218 extern void hpte_init_iSeries(void);
219
220 extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
221 unsigned long va, unsigned long prpn,
222 int secondary, unsigned long hpteflags,
223 int bolted, int large);
224 extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
225 unsigned long prpn, int secondary,
226 unsigned long hpteflags, int bolted, int large);
227
228 #endif /* __ASSEMBLY__ */
229
230 /*
231 * VSID allocation
232 *
233 * We first generate a 36-bit "proto-VSID". For kernel addresses this
234 * is equal to the ESID, for user addresses it is:
235 * (context << 15) | (esid & 0x7fff)
236 *
237 * The two forms are distinguishable because the top bit is 0 for user
238 * addresses, whereas the top two bits are 1 for kernel addresses.
239 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
240 * now.
241 *
242 * The proto-VSIDs are then scrambled into real VSIDs with the
243 * multiplicative hash:
244 *
245 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
246 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
247 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
248 *
249 * This scramble is only well defined for proto-VSIDs below
250 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
251 * reserved. VSID_MULTIPLIER is prime, so in particular it is
252 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
253 * Because the modulus is 2^n-1 we can compute it efficiently without
254 * a divide or extra multiply (see below).
255 *
256 * This scheme has several advantages over older methods:
257 *
258 * - We have VSIDs allocated for every kernel address
259 * (i.e. everything above 0xC000000000000000), except the very top
260 * segment, which simplifies several things.
261 *
262 * - We allow for 15 significant bits of ESID and 20 bits of
263 * context for user addresses. i.e. 8T (43 bits) of address space for
264 * up to 1M contexts (although the page table structure and context
265 * allocation will need changes to take advantage of this).
266 *
267 * - The scramble function gives robust scattering in the hash
268 * table (at least based on some initial results). The previous
269 * method was more susceptible to pathological cases giving excessive
270 * hash collisions.
271 */
272 /*
273 * WARNING - If you change these you must make sure the asm
274 * implementations in slb_allocate (slb_low.S), do_stab_bolted
275 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
276 *
277 * You'll also need to change the precomputed VSID values in head.S
278 * which are used by the iSeries firmware.
279 */
280
281 #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
282 #define VSID_BITS 36
283 #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
284
285 #define CONTEXT_BITS 20
286 #define USER_ESID_BITS 15
287
288 /*
289 * This macro generates asm code to compute the VSID scramble
290 * function. Used in slb_allocate() and do_stab_bolted. The function
291 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
292 *
293 * rt = register continaing the proto-VSID and into which the
294 * VSID will be stored
295 * rx = scratch register (clobbered)
296 *
297 * - rt and rx must be different registers
298 * - The answer will end up in the low 36 bits of rt. The higher
299 * bits may contain other garbage, so you may need to mask the
300 * result.
301 */
302 #define ASM_VSID_SCRAMBLE(rt, rx) \
303 lis rx,VSID_MULTIPLIER@h; \
304 ori rx,rx,VSID_MULTIPLIER@l; \
305 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
306 \
307 srdi rx,rt,VSID_BITS; \
308 clrldi rt,rt,(64-VSID_BITS); \
309 add rt,rt,rx; /* add high and low bits */ \
310 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
311 * 2^36-1+2^28-1. That in particular means that if r3 >= \
312 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
313 * the bit clear, r3 already has the answer we want, if it \
314 * doesn't, the answer is the low 36 bits of r3+1. So in all \
315 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
316 addi rx,rt,1; \
317 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
318 add rt,rt,rx
319
320
321 #ifndef __ASSEMBLY__
322
323 typedef unsigned long mm_context_id_t;
324
325 typedef struct {
326 mm_context_id_t id;
327 #ifdef CONFIG_HUGETLB_PAGE
328 pgd_t *huge_pgdir;
329 u16 htlb_segs; /* bitmask */
330 #endif
331 } mm_context_t;
332
333
334 static inline unsigned long vsid_scramble(unsigned long protovsid)
335 {
336 #if 0
337 /* The code below is equivalent to this function for arguments
338 * < 2^VSID_BITS, which is all this should ever be called
339 * with. However gcc is not clever enough to compute the
340 * modulus (2^n-1) without a second multiply. */
341 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
342 #else /* 1 */
343 unsigned long x;
344
345 x = protovsid * VSID_MULTIPLIER;
346 x = (x >> VSID_BITS) + (x & VSID_MODULUS);
347 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
348 #endif /* 1 */
349 }
350
351 /* This is only valid for addresses >= KERNELBASE */
352 static inline unsigned long get_kernel_vsid(unsigned long ea)
353 {
354 return vsid_scramble(ea >> SID_SHIFT);
355 }
356
357 /* This is only valid for user addresses (which are below 2^41) */
358 static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
359 {
360 return vsid_scramble((context << USER_ESID_BITS)
361 | (ea >> SID_SHIFT));
362 }
363
364 #endif /* __ASSEMBLY */
365
366 #endif /* _PPC64_MMU_H_ */