]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/asm-x86/paravirt.h
x86: check function status in EDD boot code
[mirror_ubuntu-artful-kernel.git] / include / asm-x86 / paravirt.h
1 #ifndef __ASM_PARAVIRT_H
2 #define __ASM_PARAVIRT_H
3 /* Various instructions on x86 need to be replaced for
4 * para-virtualization: those hooks are defined here. */
5
6 #ifdef CONFIG_PARAVIRT
7 #include <asm/page.h>
8 #include <asm/asm.h>
9
10 /* Bitmask of what can be clobbered: usually at least eax. */
11 #define CLBR_NONE 0
12 #define CLBR_EAX (1 << 0)
13 #define CLBR_ECX (1 << 1)
14 #define CLBR_EDX (1 << 2)
15
16 #ifdef CONFIG_X86_64
17 #define CLBR_RSI (1 << 3)
18 #define CLBR_RDI (1 << 4)
19 #define CLBR_R8 (1 << 5)
20 #define CLBR_R9 (1 << 6)
21 #define CLBR_R10 (1 << 7)
22 #define CLBR_R11 (1 << 8)
23 #define CLBR_ANY ((1 << 9) - 1)
24 #include <asm/desc_defs.h>
25 #else
26 /* CLBR_ANY should match all regs platform has. For i386, that's just it */
27 #define CLBR_ANY ((1 << 3) - 1)
28 #endif /* X86_64 */
29
30 #ifndef __ASSEMBLY__
31 #include <linux/types.h>
32 #include <linux/cpumask.h>
33 #include <asm/kmap_types.h>
34 #include <asm/desc_defs.h>
35
36 struct page;
37 struct thread_struct;
38 struct desc_ptr;
39 struct tss_struct;
40 struct mm_struct;
41 struct desc_struct;
42
43 /* general info */
44 struct pv_info {
45 unsigned int kernel_rpl;
46 int shared_kernel_pmd;
47 int paravirt_enabled;
48 const char *name;
49 };
50
51 struct pv_init_ops {
52 /*
53 * Patch may replace one of the defined code sequences with
54 * arbitrary code, subject to the same register constraints.
55 * This generally means the code is not free to clobber any
56 * registers other than EAX. The patch function should return
57 * the number of bytes of code generated, as we nop pad the
58 * rest in generic code.
59 */
60 unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
61 unsigned long addr, unsigned len);
62
63 /* Basic arch-specific setup */
64 void (*arch_setup)(void);
65 char *(*memory_setup)(void);
66 void (*post_allocator_init)(void);
67
68 /* Print a banner to identify the environment */
69 void (*banner)(void);
70 };
71
72
73 struct pv_lazy_ops {
74 /* Set deferred update mode, used for batching operations. */
75 void (*enter)(void);
76 void (*leave)(void);
77 };
78
79 struct pv_time_ops {
80 void (*time_init)(void);
81
82 /* Set and set time of day */
83 unsigned long (*get_wallclock)(void);
84 int (*set_wallclock)(unsigned long);
85
86 unsigned long long (*sched_clock)(void);
87 unsigned long (*get_tsc_khz)(void);
88 };
89
90 struct pv_cpu_ops {
91 /* hooks for various privileged instructions */
92 unsigned long (*get_debugreg)(int regno);
93 void (*set_debugreg)(int regno, unsigned long value);
94
95 void (*clts)(void);
96
97 unsigned long (*read_cr0)(void);
98 void (*write_cr0)(unsigned long);
99
100 unsigned long (*read_cr4_safe)(void);
101 unsigned long (*read_cr4)(void);
102 void (*write_cr4)(unsigned long);
103
104 #ifdef CONFIG_X86_64
105 unsigned long (*read_cr8)(void);
106 void (*write_cr8)(unsigned long);
107 #endif
108
109 /* Segment descriptor handling */
110 void (*load_tr_desc)(void);
111 void (*load_gdt)(const struct desc_ptr *);
112 void (*load_idt)(const struct desc_ptr *);
113 void (*store_gdt)(struct desc_ptr *);
114 void (*store_idt)(struct desc_ptr *);
115 void (*set_ldt)(const void *desc, unsigned entries);
116 unsigned long (*store_tr)(void);
117 void (*load_tls)(struct thread_struct *t, unsigned int cpu);
118 #ifdef CONFIG_X86_64
119 void (*load_gs_index)(unsigned int idx);
120 #endif
121 void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
122 const void *desc);
123 void (*write_gdt_entry)(struct desc_struct *,
124 int entrynum, const void *desc, int size);
125 void (*write_idt_entry)(gate_desc *,
126 int entrynum, const gate_desc *gate);
127 void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
128
129 void (*set_iopl_mask)(unsigned mask);
130
131 void (*wbinvd)(void);
132 void (*io_delay)(void);
133
134 /* cpuid emulation, mostly so that caps bits can be disabled */
135 void (*cpuid)(unsigned int *eax, unsigned int *ebx,
136 unsigned int *ecx, unsigned int *edx);
137
138 /* MSR, PMC and TSR operations.
139 err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
140 u64 (*read_msr)(unsigned int msr, int *err);
141 int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
142
143 u64 (*read_tsc)(void);
144 u64 (*read_pmc)(int counter);
145 unsigned long long (*read_tscp)(unsigned int *aux);
146
147 /*
148 * Atomically enable interrupts and return to userspace. This
149 * is only ever used to return to 32-bit processes; in a
150 * 64-bit kernel, it's used for 32-on-64 compat processes, but
151 * never native 64-bit processes. (Jump, not call.)
152 */
153 void (*irq_enable_sysexit)(void);
154
155 /*
156 * Switch to usermode gs and return to 64-bit usermode using
157 * sysret. Only used in 64-bit kernels to return to 64-bit
158 * processes. Usermode register state, including %rsp, must
159 * already be restored.
160 */
161 void (*usergs_sysret64)(void);
162
163 /*
164 * Switch to usermode gs and return to 32-bit usermode using
165 * sysret. Used to return to 32-on-64 compat processes.
166 * Other usermode register state, including %esp, must already
167 * be restored.
168 */
169 void (*usergs_sysret32)(void);
170
171 /* Normal iret. Jump to this with the standard iret stack
172 frame set up. */
173 void (*iret)(void);
174
175 void (*swapgs)(void);
176
177 struct pv_lazy_ops lazy_mode;
178 };
179
180 struct pv_irq_ops {
181 void (*init_IRQ)(void);
182
183 /*
184 * Get/set interrupt state. save_fl and restore_fl are only
185 * expected to use X86_EFLAGS_IF; all other bits
186 * returned from save_fl are undefined, and may be ignored by
187 * restore_fl.
188 */
189 unsigned long (*save_fl)(void);
190 void (*restore_fl)(unsigned long);
191 void (*irq_disable)(void);
192 void (*irq_enable)(void);
193 void (*safe_halt)(void);
194 void (*halt)(void);
195
196 #ifdef CONFIG_X86_64
197 void (*adjust_exception_frame)(void);
198 #endif
199 };
200
201 struct pv_apic_ops {
202 #ifdef CONFIG_X86_LOCAL_APIC
203 /*
204 * Direct APIC operations, principally for VMI. Ideally
205 * these shouldn't be in this interface.
206 */
207 void (*apic_write)(unsigned long reg, u32 v);
208 void (*apic_write_atomic)(unsigned long reg, u32 v);
209 u32 (*apic_read)(unsigned long reg);
210 void (*setup_boot_clock)(void);
211 void (*setup_secondary_clock)(void);
212
213 void (*startup_ipi_hook)(int phys_apicid,
214 unsigned long start_eip,
215 unsigned long start_esp);
216 #endif
217 };
218
219 struct pv_mmu_ops {
220 /*
221 * Called before/after init_mm pagetable setup. setup_start
222 * may reset %cr3, and may pre-install parts of the pagetable;
223 * pagetable setup is expected to preserve any existing
224 * mapping.
225 */
226 void (*pagetable_setup_start)(pgd_t *pgd_base);
227 void (*pagetable_setup_done)(pgd_t *pgd_base);
228
229 unsigned long (*read_cr2)(void);
230 void (*write_cr2)(unsigned long);
231
232 unsigned long (*read_cr3)(void);
233 void (*write_cr3)(unsigned long);
234
235 /*
236 * Hooks for intercepting the creation/use/destruction of an
237 * mm_struct.
238 */
239 void (*activate_mm)(struct mm_struct *prev,
240 struct mm_struct *next);
241 void (*dup_mmap)(struct mm_struct *oldmm,
242 struct mm_struct *mm);
243 void (*exit_mmap)(struct mm_struct *mm);
244
245
246 /* TLB operations */
247 void (*flush_tlb_user)(void);
248 void (*flush_tlb_kernel)(void);
249 void (*flush_tlb_single)(unsigned long addr);
250 void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
251 unsigned long va);
252
253 /* Hooks for allocating and freeing a pagetable top-level */
254 int (*pgd_alloc)(struct mm_struct *mm);
255 void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
256
257 /*
258 * Hooks for allocating/releasing pagetable pages when they're
259 * attached to a pagetable
260 */
261 void (*alloc_pte)(struct mm_struct *mm, u32 pfn);
262 void (*alloc_pmd)(struct mm_struct *mm, u32 pfn);
263 void (*alloc_pmd_clone)(u32 pfn, u32 clonepfn, u32 start, u32 count);
264 void (*alloc_pud)(struct mm_struct *mm, u32 pfn);
265 void (*release_pte)(u32 pfn);
266 void (*release_pmd)(u32 pfn);
267 void (*release_pud)(u32 pfn);
268
269 /* Pagetable manipulation functions */
270 void (*set_pte)(pte_t *ptep, pte_t pteval);
271 void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
272 pte_t *ptep, pte_t pteval);
273 void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
274 void (*pte_update)(struct mm_struct *mm, unsigned long addr,
275 pte_t *ptep);
276 void (*pte_update_defer)(struct mm_struct *mm,
277 unsigned long addr, pte_t *ptep);
278
279 pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
280 pte_t *ptep);
281 void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
282 pte_t *ptep, pte_t pte);
283
284 pteval_t (*pte_val)(pte_t);
285 pteval_t (*pte_flags)(pte_t);
286 pte_t (*make_pte)(pteval_t pte);
287
288 pgdval_t (*pgd_val)(pgd_t);
289 pgd_t (*make_pgd)(pgdval_t pgd);
290
291 #if PAGETABLE_LEVELS >= 3
292 #ifdef CONFIG_X86_PAE
293 void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
294 void (*set_pte_present)(struct mm_struct *mm, unsigned long addr,
295 pte_t *ptep, pte_t pte);
296 void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
297 pte_t *ptep);
298 void (*pmd_clear)(pmd_t *pmdp);
299
300 #endif /* CONFIG_X86_PAE */
301
302 void (*set_pud)(pud_t *pudp, pud_t pudval);
303
304 pmdval_t (*pmd_val)(pmd_t);
305 pmd_t (*make_pmd)(pmdval_t pmd);
306
307 #if PAGETABLE_LEVELS == 4
308 pudval_t (*pud_val)(pud_t);
309 pud_t (*make_pud)(pudval_t pud);
310
311 void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
312 #endif /* PAGETABLE_LEVELS == 4 */
313 #endif /* PAGETABLE_LEVELS >= 3 */
314
315 #ifdef CONFIG_HIGHPTE
316 void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
317 #endif
318
319 struct pv_lazy_ops lazy_mode;
320
321 /* dom0 ops */
322
323 /* Sometimes the physical address is a pfn, and sometimes its
324 an mfn. We can tell which is which from the index. */
325 void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
326 unsigned long phys, pgprot_t flags);
327 };
328
329 /* This contains all the paravirt structures: we get a convenient
330 * number for each function using the offset which we use to indicate
331 * what to patch. */
332 struct paravirt_patch_template {
333 struct pv_init_ops pv_init_ops;
334 struct pv_time_ops pv_time_ops;
335 struct pv_cpu_ops pv_cpu_ops;
336 struct pv_irq_ops pv_irq_ops;
337 struct pv_apic_ops pv_apic_ops;
338 struct pv_mmu_ops pv_mmu_ops;
339 };
340
341 extern struct pv_info pv_info;
342 extern struct pv_init_ops pv_init_ops;
343 extern struct pv_time_ops pv_time_ops;
344 extern struct pv_cpu_ops pv_cpu_ops;
345 extern struct pv_irq_ops pv_irq_ops;
346 extern struct pv_apic_ops pv_apic_ops;
347 extern struct pv_mmu_ops pv_mmu_ops;
348
349 #define PARAVIRT_PATCH(x) \
350 (offsetof(struct paravirt_patch_template, x) / sizeof(void *))
351
352 #define paravirt_type(op) \
353 [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
354 [paravirt_opptr] "m" (op)
355 #define paravirt_clobber(clobber) \
356 [paravirt_clobber] "i" (clobber)
357
358 /*
359 * Generate some code, and mark it as patchable by the
360 * apply_paravirt() alternate instruction patcher.
361 */
362 #define _paravirt_alt(insn_string, type, clobber) \
363 "771:\n\t" insn_string "\n" "772:\n" \
364 ".pushsection .parainstructions,\"a\"\n" \
365 _ASM_ALIGN "\n" \
366 _ASM_PTR " 771b\n" \
367 " .byte " type "\n" \
368 " .byte 772b-771b\n" \
369 " .short " clobber "\n" \
370 ".popsection\n"
371
372 /* Generate patchable code, with the default asm parameters. */
373 #define paravirt_alt(insn_string) \
374 _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
375
376 /* Simple instruction patching code. */
377 #define DEF_NATIVE(ops, name, code) \
378 extern const char start_##ops##_##name[], end_##ops##_##name[]; \
379 asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
380
381 unsigned paravirt_patch_nop(void);
382 unsigned paravirt_patch_ignore(unsigned len);
383 unsigned paravirt_patch_call(void *insnbuf,
384 const void *target, u16 tgt_clobbers,
385 unsigned long addr, u16 site_clobbers,
386 unsigned len);
387 unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
388 unsigned long addr, unsigned len);
389 unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
390 unsigned long addr, unsigned len);
391
392 unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
393 const char *start, const char *end);
394
395 unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
396 unsigned long addr, unsigned len);
397
398 int paravirt_disable_iospace(void);
399
400 /*
401 * This generates an indirect call based on the operation type number.
402 * The type number, computed in PARAVIRT_PATCH, is derived from the
403 * offset into the paravirt_patch_template structure, and can therefore be
404 * freely converted back into a structure offset.
405 */
406 #define PARAVIRT_CALL "call *%[paravirt_opptr];"
407
408 /*
409 * These macros are intended to wrap calls through one of the paravirt
410 * ops structs, so that they can be later identified and patched at
411 * runtime.
412 *
413 * Normally, a call to a pv_op function is a simple indirect call:
414 * (pv_op_struct.operations)(args...).
415 *
416 * Unfortunately, this is a relatively slow operation for modern CPUs,
417 * because it cannot necessarily determine what the destination
418 * address is. In this case, the address is a runtime constant, so at
419 * the very least we can patch the call to e a simple direct call, or
420 * ideally, patch an inline implementation into the callsite. (Direct
421 * calls are essentially free, because the call and return addresses
422 * are completely predictable.)
423 *
424 * For i386, these macros rely on the standard gcc "regparm(3)" calling
425 * convention, in which the first three arguments are placed in %eax,
426 * %edx, %ecx (in that order), and the remaining arguments are placed
427 * on the stack. All caller-save registers (eax,edx,ecx) are expected
428 * to be modified (either clobbered or used for return values).
429 * X86_64, on the other hand, already specifies a register-based calling
430 * conventions, returning at %rax, with parameteres going on %rdi, %rsi,
431 * %rdx, and %rcx. Note that for this reason, x86_64 does not need any
432 * special handling for dealing with 4 arguments, unlike i386.
433 * However, x86_64 also have to clobber all caller saved registers, which
434 * unfortunately, are quite a bit (r8 - r11)
435 *
436 * The call instruction itself is marked by placing its start address
437 * and size into the .parainstructions section, so that
438 * apply_paravirt() in arch/i386/kernel/alternative.c can do the
439 * appropriate patching under the control of the backend pv_init_ops
440 * implementation.
441 *
442 * Unfortunately there's no way to get gcc to generate the args setup
443 * for the call, and then allow the call itself to be generated by an
444 * inline asm. Because of this, we must do the complete arg setup and
445 * return value handling from within these macros. This is fairly
446 * cumbersome.
447 *
448 * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
449 * It could be extended to more arguments, but there would be little
450 * to be gained from that. For each number of arguments, there are
451 * the two VCALL and CALL variants for void and non-void functions.
452 *
453 * When there is a return value, the invoker of the macro must specify
454 * the return type. The macro then uses sizeof() on that type to
455 * determine whether its a 32 or 64 bit value, and places the return
456 * in the right register(s) (just %eax for 32-bit, and %edx:%eax for
457 * 64-bit). For x86_64 machines, it just returns at %rax regardless of
458 * the return value size.
459 *
460 * 64-bit arguments are passed as a pair of adjacent 32-bit arguments
461 * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
462 * in low,high order
463 *
464 * Small structures are passed and returned in registers. The macro
465 * calling convention can't directly deal with this, so the wrapper
466 * functions must do this.
467 *
468 * These PVOP_* macros are only defined within this header. This
469 * means that all uses must be wrapped in inline functions. This also
470 * makes sure the incoming and outgoing types are always correct.
471 */
472 #ifdef CONFIG_X86_32
473 #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx
474 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS
475 #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
476 "=c" (__ecx)
477 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
478 #define EXTRA_CLOBBERS
479 #define VEXTRA_CLOBBERS
480 #else
481 #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx
482 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
483 #define PVOP_VCALL_CLOBBERS "=D" (__edi), \
484 "=S" (__esi), "=d" (__edx), \
485 "=c" (__ecx)
486
487 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
488
489 #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
490 #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
491 #endif
492
493 #ifdef CONFIG_PARAVIRT_DEBUG
494 #define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
495 #else
496 #define PVOP_TEST_NULL(op) ((void)op)
497 #endif
498
499 #define __PVOP_CALL(rettype, op, pre, post, ...) \
500 ({ \
501 rettype __ret; \
502 PVOP_CALL_ARGS; \
503 PVOP_TEST_NULL(op); \
504 /* This is 32-bit specific, but is okay in 64-bit */ \
505 /* since this condition will never hold */ \
506 if (sizeof(rettype) > sizeof(unsigned long)) { \
507 asm volatile(pre \
508 paravirt_alt(PARAVIRT_CALL) \
509 post \
510 : PVOP_CALL_CLOBBERS \
511 : paravirt_type(op), \
512 paravirt_clobber(CLBR_ANY), \
513 ##__VA_ARGS__ \
514 : "memory", "cc" EXTRA_CLOBBERS); \
515 __ret = (rettype)((((u64)__edx) << 32) | __eax); \
516 } else { \
517 asm volatile(pre \
518 paravirt_alt(PARAVIRT_CALL) \
519 post \
520 : PVOP_CALL_CLOBBERS \
521 : paravirt_type(op), \
522 paravirt_clobber(CLBR_ANY), \
523 ##__VA_ARGS__ \
524 : "memory", "cc" EXTRA_CLOBBERS); \
525 __ret = (rettype)__eax; \
526 } \
527 __ret; \
528 })
529 #define __PVOP_VCALL(op, pre, post, ...) \
530 ({ \
531 PVOP_VCALL_ARGS; \
532 PVOP_TEST_NULL(op); \
533 asm volatile(pre \
534 paravirt_alt(PARAVIRT_CALL) \
535 post \
536 : PVOP_VCALL_CLOBBERS \
537 : paravirt_type(op), \
538 paravirt_clobber(CLBR_ANY), \
539 ##__VA_ARGS__ \
540 : "memory", "cc" VEXTRA_CLOBBERS); \
541 })
542
543 #define PVOP_CALL0(rettype, op) \
544 __PVOP_CALL(rettype, op, "", "")
545 #define PVOP_VCALL0(op) \
546 __PVOP_VCALL(op, "", "")
547
548 #define PVOP_CALL1(rettype, op, arg1) \
549 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)))
550 #define PVOP_VCALL1(op, arg1) \
551 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)))
552
553 #define PVOP_CALL2(rettype, op, arg1, arg2) \
554 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
555 "1" ((unsigned long)(arg2)))
556 #define PVOP_VCALL2(op, arg1, arg2) \
557 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
558 "1" ((unsigned long)(arg2)))
559
560 #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
561 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
562 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
563 #define PVOP_VCALL3(op, arg1, arg2, arg3) \
564 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
565 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
566
567 /* This is the only difference in x86_64. We can make it much simpler */
568 #ifdef CONFIG_X86_32
569 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
570 __PVOP_CALL(rettype, op, \
571 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
572 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
573 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
574 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
575 __PVOP_VCALL(op, \
576 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
577 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
578 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
579 #else
580 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
581 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
582 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
583 "3"((unsigned long)(arg4)))
584 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
585 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
586 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
587 "3"((unsigned long)(arg4)))
588 #endif
589
590 static inline int paravirt_enabled(void)
591 {
592 return pv_info.paravirt_enabled;
593 }
594
595 static inline void load_sp0(struct tss_struct *tss,
596 struct thread_struct *thread)
597 {
598 PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread);
599 }
600
601 #define ARCH_SETUP pv_init_ops.arch_setup();
602 static inline unsigned long get_wallclock(void)
603 {
604 return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock);
605 }
606
607 static inline int set_wallclock(unsigned long nowtime)
608 {
609 return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime);
610 }
611
612 static inline void (*choose_time_init(void))(void)
613 {
614 return pv_time_ops.time_init;
615 }
616
617 /* The paravirtualized CPUID instruction. */
618 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
619 unsigned int *ecx, unsigned int *edx)
620 {
621 PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx);
622 }
623
624 /*
625 * These special macros can be used to get or set a debugging register
626 */
627 static inline unsigned long paravirt_get_debugreg(int reg)
628 {
629 return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg);
630 }
631 #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
632 static inline void set_debugreg(unsigned long val, int reg)
633 {
634 PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val);
635 }
636
637 static inline void clts(void)
638 {
639 PVOP_VCALL0(pv_cpu_ops.clts);
640 }
641
642 static inline unsigned long read_cr0(void)
643 {
644 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0);
645 }
646
647 static inline void write_cr0(unsigned long x)
648 {
649 PVOP_VCALL1(pv_cpu_ops.write_cr0, x);
650 }
651
652 static inline unsigned long read_cr2(void)
653 {
654 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2);
655 }
656
657 static inline void write_cr2(unsigned long x)
658 {
659 PVOP_VCALL1(pv_mmu_ops.write_cr2, x);
660 }
661
662 static inline unsigned long read_cr3(void)
663 {
664 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3);
665 }
666
667 static inline void write_cr3(unsigned long x)
668 {
669 PVOP_VCALL1(pv_mmu_ops.write_cr3, x);
670 }
671
672 static inline unsigned long read_cr4(void)
673 {
674 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4);
675 }
676 static inline unsigned long read_cr4_safe(void)
677 {
678 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe);
679 }
680
681 static inline void write_cr4(unsigned long x)
682 {
683 PVOP_VCALL1(pv_cpu_ops.write_cr4, x);
684 }
685
686 #ifdef CONFIG_X86_64
687 static inline unsigned long read_cr8(void)
688 {
689 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8);
690 }
691
692 static inline void write_cr8(unsigned long x)
693 {
694 PVOP_VCALL1(pv_cpu_ops.write_cr8, x);
695 }
696 #endif
697
698 static inline void raw_safe_halt(void)
699 {
700 PVOP_VCALL0(pv_irq_ops.safe_halt);
701 }
702
703 static inline void halt(void)
704 {
705 PVOP_VCALL0(pv_irq_ops.safe_halt);
706 }
707
708 static inline void wbinvd(void)
709 {
710 PVOP_VCALL0(pv_cpu_ops.wbinvd);
711 }
712
713 #define get_kernel_rpl() (pv_info.kernel_rpl)
714
715 static inline u64 paravirt_read_msr(unsigned msr, int *err)
716 {
717 return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
718 }
719 static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
720 {
721 return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
722 }
723
724 /* These should all do BUG_ON(_err), but our headers are too tangled. */
725 #define rdmsr(msr, val1, val2) \
726 do { \
727 int _err; \
728 u64 _l = paravirt_read_msr(msr, &_err); \
729 val1 = (u32)_l; \
730 val2 = _l >> 32; \
731 } while (0)
732
733 #define wrmsr(msr, val1, val2) \
734 do { \
735 paravirt_write_msr(msr, val1, val2); \
736 } while (0)
737
738 #define rdmsrl(msr, val) \
739 do { \
740 int _err; \
741 val = paravirt_read_msr(msr, &_err); \
742 } while (0)
743
744 #define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32)
745 #define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b)
746
747 /* rdmsr with exception handling */
748 #define rdmsr_safe(msr, a, b) \
749 ({ \
750 int _err; \
751 u64 _l = paravirt_read_msr(msr, &_err); \
752 (*a) = (u32)_l; \
753 (*b) = _l >> 32; \
754 _err; \
755 })
756
757 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
758 {
759 int err;
760
761 *p = paravirt_read_msr(msr, &err);
762 return err;
763 }
764
765 static inline u64 paravirt_read_tsc(void)
766 {
767 return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
768 }
769
770 #define rdtscl(low) \
771 do { \
772 u64 _l = paravirt_read_tsc(); \
773 low = (int)_l; \
774 } while (0)
775
776 #define rdtscll(val) (val = paravirt_read_tsc())
777
778 static inline unsigned long long paravirt_sched_clock(void)
779 {
780 return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
781 }
782 #define calibrate_tsc() (pv_time_ops.get_tsc_khz())
783
784 static inline unsigned long long paravirt_read_pmc(int counter)
785 {
786 return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
787 }
788
789 #define rdpmc(counter, low, high) \
790 do { \
791 u64 _l = paravirt_read_pmc(counter); \
792 low = (u32)_l; \
793 high = _l >> 32; \
794 } while (0)
795
796 static inline unsigned long long paravirt_rdtscp(unsigned int *aux)
797 {
798 return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux);
799 }
800
801 #define rdtscp(low, high, aux) \
802 do { \
803 int __aux; \
804 unsigned long __val = paravirt_rdtscp(&__aux); \
805 (low) = (u32)__val; \
806 (high) = (u32)(__val >> 32); \
807 (aux) = __aux; \
808 } while (0)
809
810 #define rdtscpll(val, aux) \
811 do { \
812 unsigned long __aux; \
813 val = paravirt_rdtscp(&__aux); \
814 (aux) = __aux; \
815 } while (0)
816
817 static inline void load_TR_desc(void)
818 {
819 PVOP_VCALL0(pv_cpu_ops.load_tr_desc);
820 }
821 static inline void load_gdt(const struct desc_ptr *dtr)
822 {
823 PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr);
824 }
825 static inline void load_idt(const struct desc_ptr *dtr)
826 {
827 PVOP_VCALL1(pv_cpu_ops.load_idt, dtr);
828 }
829 static inline void set_ldt(const void *addr, unsigned entries)
830 {
831 PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries);
832 }
833 static inline void store_gdt(struct desc_ptr *dtr)
834 {
835 PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr);
836 }
837 static inline void store_idt(struct desc_ptr *dtr)
838 {
839 PVOP_VCALL1(pv_cpu_ops.store_idt, dtr);
840 }
841 static inline unsigned long paravirt_store_tr(void)
842 {
843 return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr);
844 }
845 #define store_tr(tr) ((tr) = paravirt_store_tr())
846 static inline void load_TLS(struct thread_struct *t, unsigned cpu)
847 {
848 PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu);
849 }
850
851 #ifdef CONFIG_X86_64
852 static inline void load_gs_index(unsigned int gs)
853 {
854 PVOP_VCALL1(pv_cpu_ops.load_gs_index, gs);
855 }
856 #endif
857
858 static inline void write_ldt_entry(struct desc_struct *dt, int entry,
859 const void *desc)
860 {
861 PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc);
862 }
863
864 static inline void write_gdt_entry(struct desc_struct *dt, int entry,
865 void *desc, int type)
866 {
867 PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type);
868 }
869
870 static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
871 {
872 PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g);
873 }
874 static inline void set_iopl_mask(unsigned mask)
875 {
876 PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask);
877 }
878
879 /* The paravirtualized I/O functions */
880 static inline void slow_down_io(void)
881 {
882 pv_cpu_ops.io_delay();
883 #ifdef REALLY_SLOW_IO
884 pv_cpu_ops.io_delay();
885 pv_cpu_ops.io_delay();
886 pv_cpu_ops.io_delay();
887 #endif
888 }
889
890 #ifdef CONFIG_X86_LOCAL_APIC
891 /*
892 * Basic functions accessing APICs.
893 */
894 static inline void apic_write(unsigned long reg, u32 v)
895 {
896 PVOP_VCALL2(pv_apic_ops.apic_write, reg, v);
897 }
898
899 static inline void apic_write_atomic(unsigned long reg, u32 v)
900 {
901 PVOP_VCALL2(pv_apic_ops.apic_write_atomic, reg, v);
902 }
903
904 static inline u32 apic_read(unsigned long reg)
905 {
906 return PVOP_CALL1(unsigned long, pv_apic_ops.apic_read, reg);
907 }
908
909 static inline void setup_boot_clock(void)
910 {
911 PVOP_VCALL0(pv_apic_ops.setup_boot_clock);
912 }
913
914 static inline void setup_secondary_clock(void)
915 {
916 PVOP_VCALL0(pv_apic_ops.setup_secondary_clock);
917 }
918 #endif
919
920 static inline void paravirt_post_allocator_init(void)
921 {
922 if (pv_init_ops.post_allocator_init)
923 (*pv_init_ops.post_allocator_init)();
924 }
925
926 static inline void paravirt_pagetable_setup_start(pgd_t *base)
927 {
928 (*pv_mmu_ops.pagetable_setup_start)(base);
929 }
930
931 static inline void paravirt_pagetable_setup_done(pgd_t *base)
932 {
933 (*pv_mmu_ops.pagetable_setup_done)(base);
934 }
935
936 #ifdef CONFIG_SMP
937 static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
938 unsigned long start_esp)
939 {
940 PVOP_VCALL3(pv_apic_ops.startup_ipi_hook,
941 phys_apicid, start_eip, start_esp);
942 }
943 #endif
944
945 static inline void paravirt_activate_mm(struct mm_struct *prev,
946 struct mm_struct *next)
947 {
948 PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
949 }
950
951 static inline void arch_dup_mmap(struct mm_struct *oldmm,
952 struct mm_struct *mm)
953 {
954 PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
955 }
956
957 static inline void arch_exit_mmap(struct mm_struct *mm)
958 {
959 PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
960 }
961
962 static inline void __flush_tlb(void)
963 {
964 PVOP_VCALL0(pv_mmu_ops.flush_tlb_user);
965 }
966 static inline void __flush_tlb_global(void)
967 {
968 PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel);
969 }
970 static inline void __flush_tlb_single(unsigned long addr)
971 {
972 PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr);
973 }
974
975 static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
976 unsigned long va)
977 {
978 PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va);
979 }
980
981 static inline int paravirt_pgd_alloc(struct mm_struct *mm)
982 {
983 return PVOP_CALL1(int, pv_mmu_ops.pgd_alloc, mm);
984 }
985
986 static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd)
987 {
988 PVOP_VCALL2(pv_mmu_ops.pgd_free, mm, pgd);
989 }
990
991 static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned pfn)
992 {
993 PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn);
994 }
995 static inline void paravirt_release_pte(unsigned pfn)
996 {
997 PVOP_VCALL1(pv_mmu_ops.release_pte, pfn);
998 }
999
1000 static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned pfn)
1001 {
1002 PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn);
1003 }
1004
1005 static inline void paravirt_alloc_pmd_clone(unsigned pfn, unsigned clonepfn,
1006 unsigned start, unsigned count)
1007 {
1008 PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count);
1009 }
1010 static inline void paravirt_release_pmd(unsigned pfn)
1011 {
1012 PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn);
1013 }
1014
1015 static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned pfn)
1016 {
1017 PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn);
1018 }
1019 static inline void paravirt_release_pud(unsigned pfn)
1020 {
1021 PVOP_VCALL1(pv_mmu_ops.release_pud, pfn);
1022 }
1023
1024 #ifdef CONFIG_HIGHPTE
1025 static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
1026 {
1027 unsigned long ret;
1028 ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type);
1029 return (void *)ret;
1030 }
1031 #endif
1032
1033 static inline void pte_update(struct mm_struct *mm, unsigned long addr,
1034 pte_t *ptep)
1035 {
1036 PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep);
1037 }
1038
1039 static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
1040 pte_t *ptep)
1041 {
1042 PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep);
1043 }
1044
1045 static inline pte_t __pte(pteval_t val)
1046 {
1047 pteval_t ret;
1048
1049 if (sizeof(pteval_t) > sizeof(long))
1050 ret = PVOP_CALL2(pteval_t,
1051 pv_mmu_ops.make_pte,
1052 val, (u64)val >> 32);
1053 else
1054 ret = PVOP_CALL1(pteval_t,
1055 pv_mmu_ops.make_pte,
1056 val);
1057
1058 return (pte_t) { .pte = ret };
1059 }
1060
1061 static inline pteval_t pte_val(pte_t pte)
1062 {
1063 pteval_t ret;
1064
1065 if (sizeof(pteval_t) > sizeof(long))
1066 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val,
1067 pte.pte, (u64)pte.pte >> 32);
1068 else
1069 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val,
1070 pte.pte);
1071
1072 return ret;
1073 }
1074
1075 static inline pteval_t pte_flags(pte_t pte)
1076 {
1077 pteval_t ret;
1078
1079 if (sizeof(pteval_t) > sizeof(long))
1080 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_flags,
1081 pte.pte, (u64)pte.pte >> 32);
1082 else
1083 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_flags,
1084 pte.pte);
1085
1086 return ret;
1087 }
1088
1089 static inline pgd_t __pgd(pgdval_t val)
1090 {
1091 pgdval_t ret;
1092
1093 if (sizeof(pgdval_t) > sizeof(long))
1094 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd,
1095 val, (u64)val >> 32);
1096 else
1097 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd,
1098 val);
1099
1100 return (pgd_t) { ret };
1101 }
1102
1103 static inline pgdval_t pgd_val(pgd_t pgd)
1104 {
1105 pgdval_t ret;
1106
1107 if (sizeof(pgdval_t) > sizeof(long))
1108 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val,
1109 pgd.pgd, (u64)pgd.pgd >> 32);
1110 else
1111 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val,
1112 pgd.pgd);
1113
1114 return ret;
1115 }
1116
1117 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1118 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr,
1119 pte_t *ptep)
1120 {
1121 pteval_t ret;
1122
1123 ret = PVOP_CALL3(pteval_t, pv_mmu_ops.ptep_modify_prot_start,
1124 mm, addr, ptep);
1125
1126 return (pte_t) { .pte = ret };
1127 }
1128
1129 static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
1130 pte_t *ptep, pte_t pte)
1131 {
1132 if (sizeof(pteval_t) > sizeof(long))
1133 /* 5 arg words */
1134 pv_mmu_ops.ptep_modify_prot_commit(mm, addr, ptep, pte);
1135 else
1136 PVOP_VCALL4(pv_mmu_ops.ptep_modify_prot_commit,
1137 mm, addr, ptep, pte.pte);
1138 }
1139
1140 static inline void set_pte(pte_t *ptep, pte_t pte)
1141 {
1142 if (sizeof(pteval_t) > sizeof(long))
1143 PVOP_VCALL3(pv_mmu_ops.set_pte, ptep,
1144 pte.pte, (u64)pte.pte >> 32);
1145 else
1146 PVOP_VCALL2(pv_mmu_ops.set_pte, ptep,
1147 pte.pte);
1148 }
1149
1150 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1151 pte_t *ptep, pte_t pte)
1152 {
1153 if (sizeof(pteval_t) > sizeof(long))
1154 /* 5 arg words */
1155 pv_mmu_ops.set_pte_at(mm, addr, ptep, pte);
1156 else
1157 PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte);
1158 }
1159
1160 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1161 {
1162 pmdval_t val = native_pmd_val(pmd);
1163
1164 if (sizeof(pmdval_t) > sizeof(long))
1165 PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32);
1166 else
1167 PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val);
1168 }
1169
1170 #if PAGETABLE_LEVELS >= 3
1171 static inline pmd_t __pmd(pmdval_t val)
1172 {
1173 pmdval_t ret;
1174
1175 if (sizeof(pmdval_t) > sizeof(long))
1176 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd,
1177 val, (u64)val >> 32);
1178 else
1179 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd,
1180 val);
1181
1182 return (pmd_t) { ret };
1183 }
1184
1185 static inline pmdval_t pmd_val(pmd_t pmd)
1186 {
1187 pmdval_t ret;
1188
1189 if (sizeof(pmdval_t) > sizeof(long))
1190 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val,
1191 pmd.pmd, (u64)pmd.pmd >> 32);
1192 else
1193 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val,
1194 pmd.pmd);
1195
1196 return ret;
1197 }
1198
1199 static inline void set_pud(pud_t *pudp, pud_t pud)
1200 {
1201 pudval_t val = native_pud_val(pud);
1202
1203 if (sizeof(pudval_t) > sizeof(long))
1204 PVOP_VCALL3(pv_mmu_ops.set_pud, pudp,
1205 val, (u64)val >> 32);
1206 else
1207 PVOP_VCALL2(pv_mmu_ops.set_pud, pudp,
1208 val);
1209 }
1210 #if PAGETABLE_LEVELS == 4
1211 static inline pud_t __pud(pudval_t val)
1212 {
1213 pudval_t ret;
1214
1215 if (sizeof(pudval_t) > sizeof(long))
1216 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud,
1217 val, (u64)val >> 32);
1218 else
1219 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud,
1220 val);
1221
1222 return (pud_t) { ret };
1223 }
1224
1225 static inline pudval_t pud_val(pud_t pud)
1226 {
1227 pudval_t ret;
1228
1229 if (sizeof(pudval_t) > sizeof(long))
1230 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val,
1231 pud.pud, (u64)pud.pud >> 32);
1232 else
1233 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val,
1234 pud.pud);
1235
1236 return ret;
1237 }
1238
1239 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1240 {
1241 pgdval_t val = native_pgd_val(pgd);
1242
1243 if (sizeof(pgdval_t) > sizeof(long))
1244 PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp,
1245 val, (u64)val >> 32);
1246 else
1247 PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp,
1248 val);
1249 }
1250
1251 static inline void pgd_clear(pgd_t *pgdp)
1252 {
1253 set_pgd(pgdp, __pgd(0));
1254 }
1255
1256 static inline void pud_clear(pud_t *pudp)
1257 {
1258 set_pud(pudp, __pud(0));
1259 }
1260
1261 #endif /* PAGETABLE_LEVELS == 4 */
1262
1263 #endif /* PAGETABLE_LEVELS >= 3 */
1264
1265 #ifdef CONFIG_X86_PAE
1266 /* Special-case pte-setting operations for PAE, which can't update a
1267 64-bit pte atomically */
1268 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1269 {
1270 PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep,
1271 pte.pte, pte.pte >> 32);
1272 }
1273
1274 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1275 pte_t *ptep, pte_t pte)
1276 {
1277 /* 5 arg words */
1278 pv_mmu_ops.set_pte_present(mm, addr, ptep, pte);
1279 }
1280
1281 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1282 pte_t *ptep)
1283 {
1284 PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep);
1285 }
1286
1287 static inline void pmd_clear(pmd_t *pmdp)
1288 {
1289 PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp);
1290 }
1291 #else /* !CONFIG_X86_PAE */
1292 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1293 {
1294 set_pte(ptep, pte);
1295 }
1296
1297 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1298 pte_t *ptep, pte_t pte)
1299 {
1300 set_pte(ptep, pte);
1301 }
1302
1303 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1304 pte_t *ptep)
1305 {
1306 set_pte_at(mm, addr, ptep, __pte(0));
1307 }
1308
1309 static inline void pmd_clear(pmd_t *pmdp)
1310 {
1311 set_pmd(pmdp, __pmd(0));
1312 }
1313 #endif /* CONFIG_X86_PAE */
1314
1315 /* Lazy mode for batching updates / context switch */
1316 enum paravirt_lazy_mode {
1317 PARAVIRT_LAZY_NONE,
1318 PARAVIRT_LAZY_MMU,
1319 PARAVIRT_LAZY_CPU,
1320 };
1321
1322 enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
1323 void paravirt_enter_lazy_cpu(void);
1324 void paravirt_leave_lazy_cpu(void);
1325 void paravirt_enter_lazy_mmu(void);
1326 void paravirt_leave_lazy_mmu(void);
1327 void paravirt_leave_lazy(enum paravirt_lazy_mode mode);
1328
1329 #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
1330 static inline void arch_enter_lazy_cpu_mode(void)
1331 {
1332 PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter);
1333 }
1334
1335 static inline void arch_leave_lazy_cpu_mode(void)
1336 {
1337 PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave);
1338 }
1339
1340 static inline void arch_flush_lazy_cpu_mode(void)
1341 {
1342 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) {
1343 arch_leave_lazy_cpu_mode();
1344 arch_enter_lazy_cpu_mode();
1345 }
1346 }
1347
1348
1349 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1350 static inline void arch_enter_lazy_mmu_mode(void)
1351 {
1352 PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter);
1353 }
1354
1355 static inline void arch_leave_lazy_mmu_mode(void)
1356 {
1357 PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave);
1358 }
1359
1360 static inline void arch_flush_lazy_mmu_mode(void)
1361 {
1362 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) {
1363 arch_leave_lazy_mmu_mode();
1364 arch_enter_lazy_mmu_mode();
1365 }
1366 }
1367
1368 static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx,
1369 unsigned long phys, pgprot_t flags)
1370 {
1371 pv_mmu_ops.set_fixmap(idx, phys, flags);
1372 }
1373
1374 void _paravirt_nop(void);
1375 #define paravirt_nop ((void *)_paravirt_nop)
1376
1377 /* These all sit in the .parainstructions section to tell us what to patch. */
1378 struct paravirt_patch_site {
1379 u8 *instr; /* original instructions */
1380 u8 instrtype; /* type of this instruction */
1381 u8 len; /* length of original instruction */
1382 u16 clobbers; /* what registers you may clobber */
1383 };
1384
1385 extern struct paravirt_patch_site __parainstructions[],
1386 __parainstructions_end[];
1387
1388 #ifdef CONFIG_X86_32
1389 #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;"
1390 #define PV_RESTORE_REGS "popl %%edx; popl %%ecx"
1391 #define PV_FLAGS_ARG "0"
1392 #define PV_EXTRA_CLOBBERS
1393 #define PV_VEXTRA_CLOBBERS
1394 #else
1395 /* We save some registers, but all of them, that's too much. We clobber all
1396 * caller saved registers but the argument parameter */
1397 #define PV_SAVE_REGS "pushq %%rdi;"
1398 #define PV_RESTORE_REGS "popq %%rdi;"
1399 #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx"
1400 #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx"
1401 #define PV_FLAGS_ARG "D"
1402 #endif
1403
1404 static inline unsigned long __raw_local_save_flags(void)
1405 {
1406 unsigned long f;
1407
1408 asm volatile(paravirt_alt(PV_SAVE_REGS
1409 PARAVIRT_CALL
1410 PV_RESTORE_REGS)
1411 : "=a"(f)
1412 : paravirt_type(pv_irq_ops.save_fl),
1413 paravirt_clobber(CLBR_EAX)
1414 : "memory", "cc" PV_VEXTRA_CLOBBERS);
1415 return f;
1416 }
1417
1418 static inline void raw_local_irq_restore(unsigned long f)
1419 {
1420 asm volatile(paravirt_alt(PV_SAVE_REGS
1421 PARAVIRT_CALL
1422 PV_RESTORE_REGS)
1423 : "=a"(f)
1424 : PV_FLAGS_ARG(f),
1425 paravirt_type(pv_irq_ops.restore_fl),
1426 paravirt_clobber(CLBR_EAX)
1427 : "memory", "cc" PV_EXTRA_CLOBBERS);
1428 }
1429
1430 static inline void raw_local_irq_disable(void)
1431 {
1432 asm volatile(paravirt_alt(PV_SAVE_REGS
1433 PARAVIRT_CALL
1434 PV_RESTORE_REGS)
1435 :
1436 : paravirt_type(pv_irq_ops.irq_disable),
1437 paravirt_clobber(CLBR_EAX)
1438 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1439 }
1440
1441 static inline void raw_local_irq_enable(void)
1442 {
1443 asm volatile(paravirt_alt(PV_SAVE_REGS
1444 PARAVIRT_CALL
1445 PV_RESTORE_REGS)
1446 :
1447 : paravirt_type(pv_irq_ops.irq_enable),
1448 paravirt_clobber(CLBR_EAX)
1449 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1450 }
1451
1452 static inline unsigned long __raw_local_irq_save(void)
1453 {
1454 unsigned long f;
1455
1456 f = __raw_local_save_flags();
1457 raw_local_irq_disable();
1458 return f;
1459 }
1460
1461 /* Make sure as little as possible of this mess escapes. */
1462 #undef PARAVIRT_CALL
1463 #undef __PVOP_CALL
1464 #undef __PVOP_VCALL
1465 #undef PVOP_VCALL0
1466 #undef PVOP_CALL0
1467 #undef PVOP_VCALL1
1468 #undef PVOP_CALL1
1469 #undef PVOP_VCALL2
1470 #undef PVOP_CALL2
1471 #undef PVOP_VCALL3
1472 #undef PVOP_CALL3
1473 #undef PVOP_VCALL4
1474 #undef PVOP_CALL4
1475
1476 #else /* __ASSEMBLY__ */
1477
1478 #define _PVSITE(ptype, clobbers, ops, word, algn) \
1479 771:; \
1480 ops; \
1481 772:; \
1482 .pushsection .parainstructions,"a"; \
1483 .align algn; \
1484 word 771b; \
1485 .byte ptype; \
1486 .byte 772b-771b; \
1487 .short clobbers; \
1488 .popsection
1489
1490
1491 #ifdef CONFIG_X86_64
1492 #define PV_SAVE_REGS pushq %rax; pushq %rdi; pushq %rcx; pushq %rdx
1493 #define PV_RESTORE_REGS popq %rdx; popq %rcx; popq %rdi; popq %rax
1494 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8)
1495 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8)
1496 #define PARA_INDIRECT(addr) *addr(%rip)
1497 #else
1498 #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx
1499 #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax
1500 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4)
1501 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4)
1502 #define PARA_INDIRECT(addr) *%cs:addr
1503 #endif
1504
1505 #define INTERRUPT_RETURN \
1506 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \
1507 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_iret))
1508
1509 #define DISABLE_INTERRUPTS(clobbers) \
1510 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \
1511 PV_SAVE_REGS; \
1512 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_disable); \
1513 PV_RESTORE_REGS;) \
1514
1515 #define ENABLE_INTERRUPTS(clobbers) \
1516 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \
1517 PV_SAVE_REGS; \
1518 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_enable); \
1519 PV_RESTORE_REGS;)
1520
1521 #define USERGS_SYSRET32 \
1522 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret32), \
1523 CLBR_NONE, \
1524 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret32))
1525
1526 #ifdef CONFIG_X86_32
1527 #define GET_CR0_INTO_EAX \
1528 push %ecx; push %edx; \
1529 call PARA_INDIRECT(pv_cpu_ops+PV_CPU_read_cr0); \
1530 pop %edx; pop %ecx
1531
1532 #define ENABLE_INTERRUPTS_SYSEXIT \
1533 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
1534 CLBR_NONE, \
1535 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
1536
1537
1538 #else /* !CONFIG_X86_32 */
1539
1540 /*
1541 * If swapgs is used while the userspace stack is still current,
1542 * there's no way to call a pvop. The PV replacement *must* be
1543 * inlined, or the swapgs instruction must be trapped and emulated.
1544 */
1545 #define SWAPGS_UNSAFE_STACK \
1546 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1547 swapgs)
1548
1549 #define SWAPGS \
1550 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1551 PV_SAVE_REGS; \
1552 call PARA_INDIRECT(pv_cpu_ops+PV_CPU_swapgs); \
1553 PV_RESTORE_REGS \
1554 )
1555
1556 #define GET_CR2_INTO_RCX \
1557 call PARA_INDIRECT(pv_mmu_ops+PV_MMU_read_cr2); \
1558 movq %rax, %rcx; \
1559 xorq %rax, %rax;
1560
1561 #define PARAVIRT_ADJUST_EXCEPTION_FRAME \
1562 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_adjust_exception_frame), \
1563 CLBR_NONE, \
1564 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_adjust_exception_frame))
1565
1566 #define USERGS_SYSRET64 \
1567 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret64), \
1568 CLBR_NONE, \
1569 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret64))
1570
1571 #define ENABLE_INTERRUPTS_SYSEXIT32 \
1572 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
1573 CLBR_NONE, \
1574 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
1575 #endif /* CONFIG_X86_32 */
1576
1577 #endif /* __ASSEMBLY__ */
1578 #endif /* CONFIG_PARAVIRT */
1579 #endif /* __ASM_PARAVIRT_H */