]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/asm-x86/pgtable_32.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[mirror_ubuntu-bionic-kernel.git] / include / asm-x86 / pgtable_32.h
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
3
4
5 /*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
10 *
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
13 */
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
19
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
24
25 struct mm_struct;
26 struct vm_area_struct;
27
28 extern pgd_t swapper_pg_dir[1024];
29
30 static inline void pgtable_cache_init(void) { }
31 static inline void check_pgt_cache(void) { }
32 void paging_init(void);
33
34
35 /*
36 * The Linux x86 paging architecture is 'compile-time dual-mode', it
37 * implements both the traditional 2-level x86 page tables and the
38 * newer 3-level PAE-mode page tables.
39 */
40 #ifdef CONFIG_X86_PAE
41 # include <asm/pgtable-3level-defs.h>
42 # define PMD_SIZE (1UL << PMD_SHIFT)
43 # define PMD_MASK (~(PMD_SIZE - 1))
44 #else
45 # include <asm/pgtable-2level-defs.h>
46 #endif
47
48 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
49 #define PGDIR_MASK (~(PGDIR_SIZE - 1))
50
51 /* Just any arbitrary offset to the start of the vmalloc VM area: the
52 * current 8MB value just means that there will be a 8MB "hole" after the
53 * physical memory until the kernel virtual memory starts. That means that
54 * any out-of-bounds memory accesses will hopefully be caught.
55 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
56 * area for the same reason. ;)
57 */
58 #define VMALLOC_OFFSET (8 * 1024 * 1024)
59 #define VMALLOC_START (((unsigned long)high_memory + 2 * VMALLOC_OFFSET - 1) \
60 & ~(VMALLOC_OFFSET - 1))
61 #ifdef CONFIG_X86_PAE
62 #define LAST_PKMAP 512
63 #else
64 #define LAST_PKMAP 1024
65 #endif
66
67 #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE * (LAST_PKMAP + 1)) \
68 & PMD_MASK)
69
70 #ifdef CONFIG_HIGHMEM
71 # define VMALLOC_END (PKMAP_BASE - 2 * PAGE_SIZE)
72 #else
73 # define VMALLOC_END (FIXADDR_START - 2 * PAGE_SIZE)
74 #endif
75
76 /*
77 * Define this if things work differently on an i386 and an i486:
78 * it will (on an i486) warn about kernel memory accesses that are
79 * done without a 'access_ok(VERIFY_WRITE,..)'
80 */
81 #undef TEST_ACCESS_OK
82
83 /* The boot page tables (all created as a single array) */
84 extern unsigned long pg0[];
85
86 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
87
88 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
89 #define pmd_none(x) (!(unsigned long)pmd_val((x)))
90 #define pmd_present(x) (pmd_val((x)) & _PAGE_PRESENT)
91
92 extern int pmd_bad(pmd_t pmd);
93
94 #define pmd_bad_v1(x) \
95 (_KERNPG_TABLE != (pmd_val((x)) & ~(PAGE_MASK | _PAGE_USER)))
96 #define pmd_bad_v2(x) \
97 (_KERNPG_TABLE != (pmd_val((x)) & ~(PAGE_MASK | _PAGE_USER | \
98 _PAGE_PSE | _PAGE_NX)))
99
100 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
101
102 #ifdef CONFIG_X86_PAE
103 # include <asm/pgtable-3level.h>
104 #else
105 # include <asm/pgtable-2level.h>
106 #endif
107
108 /*
109 * Macro to mark a page protection value as "uncacheable".
110 * On processors which do not support it, this is a no-op.
111 */
112 #define pgprot_noncached(prot) \
113 ((boot_cpu_data.x86 > 3) \
114 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) \
115 : (prot))
116
117 /*
118 * Conversion functions: convert a page and protection to a page entry,
119 * and a page entry and page directory to the page they refer to.
120 */
121 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
122
123 /*
124 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
125 *
126 * this macro returns the index of the entry in the pgd page which would
127 * control the given virtual address
128 */
129 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
130 #define pgd_index_k(addr) pgd_index((addr))
131
132 /*
133 * pgd_offset() returns a (pgd_t *)
134 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
135 */
136 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
137
138 /*
139 * a shortcut which implies the use of the kernel's pgd, instead
140 * of a process's
141 */
142 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
143
144 static inline int pud_large(pud_t pud) { return 0; }
145
146 /*
147 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
148 *
149 * this macro returns the index of the entry in the pmd page which would
150 * control the given virtual address
151 */
152 #define pmd_index(address) \
153 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
154
155 /*
156 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
157 *
158 * this macro returns the index of the entry in the pte page which would
159 * control the given virtual address
160 */
161 #define pte_index(address) \
162 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
163 #define pte_offset_kernel(dir, address) \
164 ((pte_t *)pmd_page_vaddr(*(dir)) + pte_index((address)))
165
166 #define pmd_page(pmd) (pfn_to_page(pmd_val((pmd)) >> PAGE_SHIFT))
167
168 #define pmd_page_vaddr(pmd) \
169 ((unsigned long)__va(pmd_val((pmd)) & PAGE_MASK))
170
171 #if defined(CONFIG_HIGHPTE)
172 #define pte_offset_map(dir, address) \
173 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE0) + \
174 pte_index((address)))
175 #define pte_offset_map_nested(dir, address) \
176 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE1) + \
177 pte_index((address)))
178 #define pte_unmap(pte) kunmap_atomic((pte), KM_PTE0)
179 #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
180 #else
181 #define pte_offset_map(dir, address) \
182 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index((address)))
183 #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
184 #define pte_unmap(pte) do { } while (0)
185 #define pte_unmap_nested(pte) do { } while (0)
186 #endif
187
188 /* Clear a kernel PTE and flush it from the TLB */
189 #define kpte_clear_flush(ptep, vaddr) \
190 do { \
191 pte_clear(&init_mm, (vaddr), (ptep)); \
192 __flush_tlb_one((vaddr)); \
193 } while (0)
194
195 /*
196 * The i386 doesn't have any external MMU info: the kernel page
197 * tables contain all the necessary information.
198 */
199 #define update_mmu_cache(vma, address, pte) do { } while (0)
200
201 void native_pagetable_setup_start(pgd_t *base);
202 void native_pagetable_setup_done(pgd_t *base);
203
204 #ifndef CONFIG_PARAVIRT
205 static inline void paravirt_pagetable_setup_start(pgd_t *base)
206 {
207 native_pagetable_setup_start(base);
208 }
209
210 static inline void paravirt_pagetable_setup_done(pgd_t *base)
211 {
212 native_pagetable_setup_done(base);
213 }
214 #endif /* !CONFIG_PARAVIRT */
215
216 #endif /* !__ASSEMBLY__ */
217
218 /*
219 * kern_addr_valid() is (1) for FLATMEM and (0) for
220 * SPARSEMEM and DISCONTIGMEM
221 */
222 #ifdef CONFIG_FLATMEM
223 #define kern_addr_valid(addr) (1)
224 #else
225 #define kern_addr_valid(kaddr) (0)
226 #endif
227
228 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
229 remap_pfn_range(vma, vaddr, pfn, size, prot)
230
231 #endif /* _I386_PGTABLE_H */