]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/asm-x86/pgtable_32.h
x86: fix pmd_bad and pud_bad to support huge pages
[mirror_ubuntu-bionic-kernel.git] / include / asm-x86 / pgtable_32.h
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
3
4
5 /*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
10 *
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
13 */
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
19
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
24
25 struct mm_struct;
26 struct vm_area_struct;
27
28 extern pgd_t swapper_pg_dir[1024];
29 extern struct kmem_cache *pmd_cache;
30 void check_pgt_cache(void);
31
32 static inline void pgtable_cache_init(void) {}
33 void paging_init(void);
34
35
36 /*
37 * The Linux x86 paging architecture is 'compile-time dual-mode', it
38 * implements both the traditional 2-level x86 page tables and the
39 * newer 3-level PAE-mode page tables.
40 */
41 #ifdef CONFIG_X86_PAE
42 # include <asm/pgtable-3level-defs.h>
43 # define PMD_SIZE (1UL << PMD_SHIFT)
44 # define PMD_MASK (~(PMD_SIZE-1))
45 #else
46 # include <asm/pgtable-2level-defs.h>
47 #endif
48
49 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
50 #define PGDIR_MASK (~(PGDIR_SIZE-1))
51
52 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
53 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
54
55 /* Just any arbitrary offset to the start of the vmalloc VM area: the
56 * current 8MB value just means that there will be a 8MB "hole" after the
57 * physical memory until the kernel virtual memory starts. That means that
58 * any out-of-bounds memory accesses will hopefully be caught.
59 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
60 * area for the same reason. ;)
61 */
62 #define VMALLOC_OFFSET (8*1024*1024)
63 #define VMALLOC_START (((unsigned long) high_memory + \
64 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
65 #ifdef CONFIG_X86_PAE
66 #define LAST_PKMAP 512
67 #else
68 #define LAST_PKMAP 1024
69 #endif
70
71 #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE*(LAST_PKMAP + 1)) & PMD_MASK)
72
73 #ifdef CONFIG_HIGHMEM
74 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
75 #else
76 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
77 #endif
78
79 /*
80 * Define this if things work differently on an i386 and an i486:
81 * it will (on an i486) warn about kernel memory accesses that are
82 * done without a 'access_ok(VERIFY_WRITE,..)'
83 */
84 #undef TEST_ACCESS_OK
85
86 /* The boot page tables (all created as a single array) */
87 extern unsigned long pg0[];
88
89 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
90
91 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
92 #define pmd_none(x) (!(unsigned long)pmd_val(x))
93 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
94 #define pmd_bad(x) ((pmd_val(x) \
95 & ~(PAGE_MASK | _PAGE_USER | _PAGE_PSE | _PAGE_NX)) \
96 != _KERNPG_TABLE)
97
98
99 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
100
101 #ifdef CONFIG_X86_PAE
102 # include <asm/pgtable-3level.h>
103 #else
104 # include <asm/pgtable-2level.h>
105 #endif
106
107 /*
108 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
109 *
110 * dst - pointer to pgd range anwhere on a pgd page
111 * src - ""
112 * count - the number of pgds to copy.
113 *
114 * dst and src can be on the same page, but the range must not overlap,
115 * and must not cross a page boundary.
116 */
117 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
118 {
119 memcpy(dst, src, count * sizeof(pgd_t));
120 }
121
122 /*
123 * Macro to mark a page protection value as "uncacheable". On processors which do not support
124 * it, this is a no-op.
125 */
126 #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
127 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
128
129 /*
130 * Conversion functions: convert a page and protection to a page entry,
131 * and a page entry and page directory to the page they refer to.
132 */
133
134 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
135
136 /*
137 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
138 *
139 * this macro returns the index of the entry in the pgd page which would
140 * control the given virtual address
141 */
142 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
143 #define pgd_index_k(addr) pgd_index(addr)
144
145 /*
146 * pgd_offset() returns a (pgd_t *)
147 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
148 */
149 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
150
151 /*
152 * a shortcut which implies the use of the kernel's pgd, instead
153 * of a process's
154 */
155 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
156
157 static inline int pud_large(pud_t pud) { return 0; }
158
159 /*
160 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
161 *
162 * this macro returns the index of the entry in the pmd page which would
163 * control the given virtual address
164 */
165 #define pmd_index(address) \
166 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
167
168 /*
169 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
170 *
171 * this macro returns the index of the entry in the pte page which would
172 * control the given virtual address
173 */
174 #define pte_index(address) \
175 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
176 #define pte_offset_kernel(dir, address) \
177 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
178
179 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
180
181 #define pmd_page_vaddr(pmd) \
182 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
183
184 #if defined(CONFIG_HIGHPTE)
185 #define pte_offset_map(dir, address) \
186 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
187 #define pte_offset_map_nested(dir, address) \
188 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
189 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
190 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
191 #else
192 #define pte_offset_map(dir, address) \
193 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
194 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
195 #define pte_unmap(pte) do { } while (0)
196 #define pte_unmap_nested(pte) do { } while (0)
197 #endif
198
199 /* Clear a kernel PTE and flush it from the TLB */
200 #define kpte_clear_flush(ptep, vaddr) \
201 do { \
202 pte_clear(&init_mm, vaddr, ptep); \
203 __flush_tlb_one(vaddr); \
204 } while (0)
205
206 /*
207 * The i386 doesn't have any external MMU info: the kernel page
208 * tables contain all the necessary information.
209 */
210 #define update_mmu_cache(vma,address,pte) do { } while (0)
211
212 void native_pagetable_setup_start(pgd_t *base);
213 void native_pagetable_setup_done(pgd_t *base);
214
215 #ifndef CONFIG_PARAVIRT
216 static inline void paravirt_pagetable_setup_start(pgd_t *base)
217 {
218 native_pagetable_setup_start(base);
219 }
220
221 static inline void paravirt_pagetable_setup_done(pgd_t *base)
222 {
223 native_pagetable_setup_done(base);
224 }
225 #endif /* !CONFIG_PARAVIRT */
226
227 #endif /* !__ASSEMBLY__ */
228
229 /*
230 * kern_addr_valid() is (1) for FLATMEM and (0) for
231 * SPARSEMEM and DISCONTIGMEM
232 */
233 #ifdef CONFIG_FLATMEM
234 #define kern_addr_valid(addr) (1)
235 #else
236 #define kern_addr_valid(kaddr) (0)
237 #endif
238
239 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
240 remap_pfn_range(vma, vaddr, pfn, size, prot)
241
242 #endif /* _I386_PGTABLE_H */