]> git.proxmox.com Git - mirror_qemu.git/blob - include/block/aio.h
b9fe2cb37e47c66e9051eb23c80ca34211455a91
[mirror_qemu.git] / include / block / aio.h
1 /*
2 * QEMU aio implementation
3 *
4 * Copyright IBM, Corp. 2008
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_AIO_H
15 #define QEMU_AIO_H
16
17 #include "qemu-common.h"
18 #include "qemu/queue.h"
19 #include "qemu/event_notifier.h"
20 #include "qemu/thread.h"
21 #include "qemu/rfifolock.h"
22 #include "qemu/timer.h"
23
24 typedef struct BlockAIOCB BlockAIOCB;
25 typedef void BlockCompletionFunc(void *opaque, int ret);
26
27 typedef struct AIOCBInfo {
28 void (*cancel_async)(BlockAIOCB *acb);
29 AioContext *(*get_aio_context)(BlockAIOCB *acb);
30 size_t aiocb_size;
31 } AIOCBInfo;
32
33 struct BlockAIOCB {
34 const AIOCBInfo *aiocb_info;
35 BlockDriverState *bs;
36 BlockCompletionFunc *cb;
37 void *opaque;
38 int refcnt;
39 };
40
41 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
42 BlockCompletionFunc *cb, void *opaque);
43 void qemu_aio_unref(void *p);
44 void qemu_aio_ref(void *p);
45
46 typedef struct AioHandler AioHandler;
47 typedef void QEMUBHFunc(void *opaque);
48 typedef void IOHandler(void *opaque);
49
50 struct ThreadPool;
51 struct LinuxAioState;
52
53 struct AioContext {
54 GSource source;
55
56 /* Protects all fields from multi-threaded access */
57 RFifoLock lock;
58
59 /* The list of registered AIO handlers */
60 QLIST_HEAD(, AioHandler) aio_handlers;
61
62 /* This is a simple lock used to protect the aio_handlers list.
63 * Specifically, it's used to ensure that no callbacks are removed while
64 * we're walking and dispatching callbacks.
65 */
66 int walking_handlers;
67
68 /* Used to avoid unnecessary event_notifier_set calls in aio_notify;
69 * accessed with atomic primitives. If this field is 0, everything
70 * (file descriptors, bottom halves, timers) will be re-evaluated
71 * before the next blocking poll(), thus the event_notifier_set call
72 * can be skipped. If it is non-zero, you may need to wake up a
73 * concurrent aio_poll or the glib main event loop, making
74 * event_notifier_set necessary.
75 *
76 * Bit 0 is reserved for GSource usage of the AioContext, and is 1
77 * between a call to aio_ctx_prepare and the next call to aio_ctx_check.
78 * Bits 1-31 simply count the number of active calls to aio_poll
79 * that are in the prepare or poll phase.
80 *
81 * The GSource and aio_poll must use a different mechanism because
82 * there is no certainty that a call to GSource's prepare callback
83 * (via g_main_context_prepare) is indeed followed by check and
84 * dispatch. It's not clear whether this would be a bug, but let's
85 * play safe and allow it---it will just cause extra calls to
86 * event_notifier_set until the next call to dispatch.
87 *
88 * Instead, the aio_poll calls include both the prepare and the
89 * dispatch phase, hence a simple counter is enough for them.
90 */
91 uint32_t notify_me;
92
93 /* lock to protect between bh's adders and deleter */
94 QemuMutex bh_lock;
95
96 /* Anchor of the list of Bottom Halves belonging to the context */
97 struct QEMUBH *first_bh;
98
99 /* A simple lock used to protect the first_bh list, and ensure that
100 * no callbacks are removed while we're walking and dispatching callbacks.
101 */
102 int walking_bh;
103
104 /* Used by aio_notify.
105 *
106 * "notified" is used to avoid expensive event_notifier_test_and_clear
107 * calls. When it is clear, the EventNotifier is clear, or one thread
108 * is going to clear "notified" before processing more events. False
109 * positives are possible, i.e. "notified" could be set even though the
110 * EventNotifier is clear.
111 *
112 * Note that event_notifier_set *cannot* be optimized the same way. For
113 * more information on the problem that would result, see "#ifdef BUG2"
114 * in the docs/aio_notify_accept.promela formal model.
115 */
116 bool notified;
117 EventNotifier notifier;
118
119 /* Scheduling this BH forces the event loop it iterate */
120 QEMUBH *notify_dummy_bh;
121
122 /* Thread pool for performing work and receiving completion callbacks */
123 struct ThreadPool *thread_pool;
124
125 #ifdef CONFIG_LINUX_AIO
126 /* State for native Linux AIO. Uses aio_context_acquire/release for
127 * locking.
128 */
129 struct LinuxAioState *linux_aio;
130 #endif
131
132 /* TimerLists for calling timers - one per clock type */
133 QEMUTimerListGroup tlg;
134
135 int external_disable_cnt;
136
137 /* epoll(7) state used when built with CONFIG_EPOLL */
138 int epollfd;
139 bool epoll_enabled;
140 bool epoll_available;
141 };
142
143 /**
144 * aio_context_new: Allocate a new AioContext.
145 *
146 * AioContext provide a mini event-loop that can be waited on synchronously.
147 * They also provide bottom halves, a service to execute a piece of code
148 * as soon as possible.
149 */
150 AioContext *aio_context_new(Error **errp);
151
152 /**
153 * aio_context_ref:
154 * @ctx: The AioContext to operate on.
155 *
156 * Add a reference to an AioContext.
157 */
158 void aio_context_ref(AioContext *ctx);
159
160 /**
161 * aio_context_unref:
162 * @ctx: The AioContext to operate on.
163 *
164 * Drop a reference to an AioContext.
165 */
166 void aio_context_unref(AioContext *ctx);
167
168 /* Take ownership of the AioContext. If the AioContext will be shared between
169 * threads, and a thread does not want to be interrupted, it will have to
170 * take ownership around calls to aio_poll(). Otherwise, aio_poll()
171 * automatically takes care of calling aio_context_acquire and
172 * aio_context_release.
173 *
174 * Access to timers and BHs from a thread that has not acquired AioContext
175 * is possible. Access to callbacks for now must be done while the AioContext
176 * is owned by the thread (FIXME).
177 */
178 void aio_context_acquire(AioContext *ctx);
179
180 /* Relinquish ownership of the AioContext. */
181 void aio_context_release(AioContext *ctx);
182
183 /**
184 * aio_bh_schedule_oneshot: Allocate a new bottom half structure that will run
185 * only once and as soon as possible.
186 */
187 void aio_bh_schedule_oneshot(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
188
189 /**
190 * aio_bh_new: Allocate a new bottom half structure.
191 *
192 * Bottom halves are lightweight callbacks whose invocation is guaranteed
193 * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure
194 * is opaque and must be allocated prior to its use.
195 */
196 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
197
198 /**
199 * aio_notify: Force processing of pending events.
200 *
201 * Similar to signaling a condition variable, aio_notify forces
202 * aio_wait to exit, so that the next call will re-examine pending events.
203 * The caller of aio_notify will usually call aio_wait again very soon,
204 * or go through another iteration of the GLib main loop. Hence, aio_notify
205 * also has the side effect of recalculating the sets of file descriptors
206 * that the main loop waits for.
207 *
208 * Calling aio_notify is rarely necessary, because for example scheduling
209 * a bottom half calls it already.
210 */
211 void aio_notify(AioContext *ctx);
212
213 /**
214 * aio_notify_accept: Acknowledge receiving an aio_notify.
215 *
216 * aio_notify() uses an EventNotifier in order to wake up a sleeping
217 * aio_poll() or g_main_context_iteration(). Calls to aio_notify() are
218 * usually rare, but the AioContext has to clear the EventNotifier on
219 * every aio_poll() or g_main_context_iteration() in order to avoid
220 * busy waiting. This event_notifier_test_and_clear() cannot be done
221 * using the usual aio_context_set_event_notifier(), because it must
222 * be done before processing all events (file descriptors, bottom halves,
223 * timers).
224 *
225 * aio_notify_accept() is an optimized event_notifier_test_and_clear()
226 * that is specific to an AioContext's notifier; it is used internally
227 * to clear the EventNotifier only if aio_notify() had been called.
228 */
229 void aio_notify_accept(AioContext *ctx);
230
231 /**
232 * aio_bh_call: Executes callback function of the specified BH.
233 */
234 void aio_bh_call(QEMUBH *bh);
235
236 /**
237 * aio_bh_poll: Poll bottom halves for an AioContext.
238 *
239 * These are internal functions used by the QEMU main loop.
240 * And notice that multiple occurrences of aio_bh_poll cannot
241 * be called concurrently
242 */
243 int aio_bh_poll(AioContext *ctx);
244
245 /**
246 * qemu_bh_schedule: Schedule a bottom half.
247 *
248 * Scheduling a bottom half interrupts the main loop and causes the
249 * execution of the callback that was passed to qemu_bh_new.
250 *
251 * Bottom halves that are scheduled from a bottom half handler are instantly
252 * invoked. This can create an infinite loop if a bottom half handler
253 * schedules itself.
254 *
255 * @bh: The bottom half to be scheduled.
256 */
257 void qemu_bh_schedule(QEMUBH *bh);
258
259 /**
260 * qemu_bh_cancel: Cancel execution of a bottom half.
261 *
262 * Canceling execution of a bottom half undoes the effect of calls to
263 * qemu_bh_schedule without freeing its resources yet. While cancellation
264 * itself is also wait-free and thread-safe, it can of course race with the
265 * loop that executes bottom halves unless you are holding the iothread
266 * mutex. This makes it mostly useless if you are not holding the mutex.
267 *
268 * @bh: The bottom half to be canceled.
269 */
270 void qemu_bh_cancel(QEMUBH *bh);
271
272 /**
273 *qemu_bh_delete: Cancel execution of a bottom half and free its resources.
274 *
275 * Deleting a bottom half frees the memory that was allocated for it by
276 * qemu_bh_new. It also implies canceling the bottom half if it was
277 * scheduled.
278 * This func is async. The bottom half will do the delete action at the finial
279 * end.
280 *
281 * @bh: The bottom half to be deleted.
282 */
283 void qemu_bh_delete(QEMUBH *bh);
284
285 /* Return whether there are any pending callbacks from the GSource
286 * attached to the AioContext, before g_poll is invoked.
287 *
288 * This is used internally in the implementation of the GSource.
289 */
290 bool aio_prepare(AioContext *ctx);
291
292 /* Return whether there are any pending callbacks from the GSource
293 * attached to the AioContext, after g_poll is invoked.
294 *
295 * This is used internally in the implementation of the GSource.
296 */
297 bool aio_pending(AioContext *ctx);
298
299 /* Dispatch any pending callbacks from the GSource attached to the AioContext.
300 *
301 * This is used internally in the implementation of the GSource.
302 */
303 bool aio_dispatch(AioContext *ctx);
304
305 /* Progress in completing AIO work to occur. This can issue new pending
306 * aio as a result of executing I/O completion or bh callbacks.
307 *
308 * Return whether any progress was made by executing AIO or bottom half
309 * handlers. If @blocking == true, this should always be true except
310 * if someone called aio_notify.
311 *
312 * If there are no pending bottom halves, but there are pending AIO
313 * operations, it may not be possible to make any progress without
314 * blocking. If @blocking is true, this function will wait until one
315 * or more AIO events have completed, to ensure something has moved
316 * before returning.
317 */
318 bool aio_poll(AioContext *ctx, bool blocking);
319
320 /* Register a file descriptor and associated callbacks. Behaves very similarly
321 * to qemu_set_fd_handler. Unlike qemu_set_fd_handler, these callbacks will
322 * be invoked when using aio_poll().
323 *
324 * Code that invokes AIO completion functions should rely on this function
325 * instead of qemu_set_fd_handler[2].
326 */
327 void aio_set_fd_handler(AioContext *ctx,
328 int fd,
329 bool is_external,
330 IOHandler *io_read,
331 IOHandler *io_write,
332 void *opaque);
333
334 /* Register an event notifier and associated callbacks. Behaves very similarly
335 * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks
336 * will be invoked when using aio_poll().
337 *
338 * Code that invokes AIO completion functions should rely on this function
339 * instead of event_notifier_set_handler.
340 */
341 void aio_set_event_notifier(AioContext *ctx,
342 EventNotifier *notifier,
343 bool is_external,
344 EventNotifierHandler *io_read);
345
346 /* Return a GSource that lets the main loop poll the file descriptors attached
347 * to this AioContext.
348 */
349 GSource *aio_get_g_source(AioContext *ctx);
350
351 /* Return the ThreadPool bound to this AioContext */
352 struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
353
354 /* Return the LinuxAioState bound to this AioContext */
355 struct LinuxAioState *aio_get_linux_aio(AioContext *ctx);
356
357 /**
358 * aio_timer_new:
359 * @ctx: the aio context
360 * @type: the clock type
361 * @scale: the scale
362 * @cb: the callback to call on timer expiry
363 * @opaque: the opaque pointer to pass to the callback
364 *
365 * Allocate a new timer attached to the context @ctx.
366 * The function is responsible for memory allocation.
367 *
368 * The preferred interface is aio_timer_init. Use that
369 * unless you really need dynamic memory allocation.
370 *
371 * Returns: a pointer to the new timer
372 */
373 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type,
374 int scale,
375 QEMUTimerCB *cb, void *opaque)
376 {
377 return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque);
378 }
379
380 /**
381 * aio_timer_init:
382 * @ctx: the aio context
383 * @ts: the timer
384 * @type: the clock type
385 * @scale: the scale
386 * @cb: the callback to call on timer expiry
387 * @opaque: the opaque pointer to pass to the callback
388 *
389 * Initialise a new timer attached to the context @ctx.
390 * The caller is responsible for memory allocation.
391 */
392 static inline void aio_timer_init(AioContext *ctx,
393 QEMUTimer *ts, QEMUClockType type,
394 int scale,
395 QEMUTimerCB *cb, void *opaque)
396 {
397 timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque);
398 }
399
400 /**
401 * aio_compute_timeout:
402 * @ctx: the aio context
403 *
404 * Compute the timeout that a blocking aio_poll should use.
405 */
406 int64_t aio_compute_timeout(AioContext *ctx);
407
408 /**
409 * aio_disable_external:
410 * @ctx: the aio context
411 *
412 * Disable the further processing of external clients.
413 */
414 static inline void aio_disable_external(AioContext *ctx)
415 {
416 atomic_inc(&ctx->external_disable_cnt);
417 }
418
419 /**
420 * aio_enable_external:
421 * @ctx: the aio context
422 *
423 * Enable the processing of external clients.
424 */
425 static inline void aio_enable_external(AioContext *ctx)
426 {
427 assert(ctx->external_disable_cnt > 0);
428 atomic_dec(&ctx->external_disable_cnt);
429 }
430
431 /**
432 * aio_external_disabled:
433 * @ctx: the aio context
434 *
435 * Return true if the external clients are disabled.
436 */
437 static inline bool aio_external_disabled(AioContext *ctx)
438 {
439 return atomic_read(&ctx->external_disable_cnt);
440 }
441
442 /**
443 * aio_node_check:
444 * @ctx: the aio context
445 * @is_external: Whether or not the checked node is an external event source.
446 *
447 * Check if the node's is_external flag is okay to be polled by the ctx at this
448 * moment. True means green light.
449 */
450 static inline bool aio_node_check(AioContext *ctx, bool is_external)
451 {
452 return !is_external || !atomic_read(&ctx->external_disable_cnt);
453 }
454
455 /**
456 * aio_context_setup:
457 * @ctx: the aio context
458 *
459 * Initialize the aio context.
460 */
461 void aio_context_setup(AioContext *ctx);
462
463 #endif