]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/crypto/aead.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / include / crypto / aead.h
1 /*
2 * AEAD: Authenticated Encryption with Associated Data
3 *
4 * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_AEAD_H
14 #define _CRYPTO_AEAD_H
15
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19
20 /**
21 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
22 *
23 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24 * (listed as type "aead" in /proc/crypto)
25 *
26 * The most prominent examples for this type of encryption is GCM and CCM.
27 * However, the kernel supports other types of AEAD ciphers which are defined
28 * with the following cipher string:
29 *
30 * authenc(keyed message digest, block cipher)
31 *
32 * For example: authenc(hmac(sha256), cbc(aes))
33 *
34 * The example code provided for the asynchronous block cipher operation
35 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
36 * the *aead* pendants discussed in the following. In addition, for the AEAD
37 * operation, the aead_request_set_assoc function must be used to set the
38 * pointer to the associated data memory location before performing the
39 * encryption or decryption operation. In case of an encryption, the associated
40 * data memory is filled during the encryption operation. For decryption, the
41 * associated data memory must contain data that is used to verify the integrity
42 * of the decrypted data. Another deviation from the asynchronous block cipher
43 * operation is that the caller should explicitly check for -EBADMSG of the
44 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45 * a breach in the integrity of the message. In essence, that -EBADMSG error
46 * code is the key bonus an AEAD cipher has over "standard" block chaining
47 * modes.
48 */
49
50 /**
51 * struct aead_request - AEAD request
52 * @base: Common attributes for async crypto requests
53 * @old: Boolean whether the old or new AEAD API is used
54 * @assoclen: Length in bytes of associated data for authentication
55 * @cryptlen: Length of data to be encrypted or decrypted
56 * @iv: Initialisation vector
57 * @assoc: Associated data
58 * @src: Source data
59 * @dst: Destination data
60 * @__ctx: Start of private context data
61 */
62 struct aead_request {
63 struct crypto_async_request base;
64
65 bool old;
66
67 unsigned int assoclen;
68 unsigned int cryptlen;
69
70 u8 *iv;
71
72 struct scatterlist *assoc;
73 struct scatterlist *src;
74 struct scatterlist *dst;
75
76 void *__ctx[] CRYPTO_MINALIGN_ATTR;
77 };
78
79 /**
80 * struct aead_givcrypt_request - AEAD request with IV generation
81 * @seq: Sequence number for IV generation
82 * @giv: Space for generated IV
83 * @areq: The AEAD request itself
84 */
85 struct aead_givcrypt_request {
86 u64 seq;
87 u8 *giv;
88
89 struct aead_request areq;
90 };
91
92 /**
93 * struct aead_alg - AEAD cipher definition
94 * @maxauthsize: Set the maximum authentication tag size supported by the
95 * transformation. A transformation may support smaller tag sizes.
96 * As the authentication tag is a message digest to ensure the
97 * integrity of the encrypted data, a consumer typically wants the
98 * largest authentication tag possible as defined by this
99 * variable.
100 * @setauthsize: Set authentication size for the AEAD transformation. This
101 * function is used to specify the consumer requested size of the
102 * authentication tag to be either generated by the transformation
103 * during encryption or the size of the authentication tag to be
104 * supplied during the decryption operation. This function is also
105 * responsible for checking the authentication tag size for
106 * validity.
107 * @setkey: see struct ablkcipher_alg
108 * @encrypt: see struct ablkcipher_alg
109 * @decrypt: see struct ablkcipher_alg
110 * @geniv: see struct ablkcipher_alg
111 * @ivsize: see struct ablkcipher_alg
112 * @init: Initialize the cryptographic transformation object. This function
113 * is used to initialize the cryptographic transformation object.
114 * This function is called only once at the instantiation time, right
115 * after the transformation context was allocated. In case the
116 * cryptographic hardware has some special requirements which need to
117 * be handled by software, this function shall check for the precise
118 * requirement of the transformation and put any software fallbacks
119 * in place.
120 * @exit: Deinitialize the cryptographic transformation object. This is a
121 * counterpart to @init, used to remove various changes set in
122 * @init.
123 *
124 * All fields except @ivsize is mandatory and must be filled.
125 */
126 struct aead_alg {
127 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
128 unsigned int keylen);
129 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
130 int (*encrypt)(struct aead_request *req);
131 int (*decrypt)(struct aead_request *req);
132 int (*init)(struct crypto_aead *tfm);
133 void (*exit)(struct crypto_aead *tfm);
134
135 const char *geniv;
136
137 unsigned int ivsize;
138 unsigned int maxauthsize;
139
140 struct crypto_alg base;
141 };
142
143 struct crypto_aead {
144 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
145 unsigned int keylen);
146 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
147 int (*encrypt)(struct aead_request *req);
148 int (*decrypt)(struct aead_request *req);
149 int (*givencrypt)(struct aead_givcrypt_request *req);
150 int (*givdecrypt)(struct aead_givcrypt_request *req);
151
152 struct crypto_aead *child;
153
154 unsigned int authsize;
155 unsigned int reqsize;
156
157 struct crypto_tfm base;
158 };
159
160 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
161 {
162 return container_of(tfm, struct crypto_aead, base);
163 }
164
165 /**
166 * crypto_alloc_aead() - allocate AEAD cipher handle
167 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
168 * AEAD cipher
169 * @type: specifies the type of the cipher
170 * @mask: specifies the mask for the cipher
171 *
172 * Allocate a cipher handle for an AEAD. The returned struct
173 * crypto_aead is the cipher handle that is required for any subsequent
174 * API invocation for that AEAD.
175 *
176 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
177 * of an error, PTR_ERR() returns the error code.
178 */
179 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
180
181 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
182 {
183 return &tfm->base;
184 }
185
186 /**
187 * crypto_free_aead() - zeroize and free aead handle
188 * @tfm: cipher handle to be freed
189 */
190 static inline void crypto_free_aead(struct crypto_aead *tfm)
191 {
192 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
193 }
194
195 static inline struct crypto_aead *crypto_aead_crt(struct crypto_aead *tfm)
196 {
197 return tfm;
198 }
199
200 static inline struct old_aead_alg *crypto_old_aead_alg(struct crypto_aead *tfm)
201 {
202 return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
203 }
204
205 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
206 {
207 return container_of(crypto_aead_tfm(tfm)->__crt_alg,
208 struct aead_alg, base);
209 }
210
211 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
212 {
213 return alg->base.cra_aead.encrypt ? alg->base.cra_aead.ivsize :
214 alg->ivsize;
215 }
216
217 /**
218 * crypto_aead_ivsize() - obtain IV size
219 * @tfm: cipher handle
220 *
221 * The size of the IV for the aead referenced by the cipher handle is
222 * returned. This IV size may be zero if the cipher does not need an IV.
223 *
224 * Return: IV size in bytes
225 */
226 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
227 {
228 return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
229 }
230
231 /**
232 * crypto_aead_authsize() - obtain maximum authentication data size
233 * @tfm: cipher handle
234 *
235 * The maximum size of the authentication data for the AEAD cipher referenced
236 * by the AEAD cipher handle is returned. The authentication data size may be
237 * zero if the cipher implements a hard-coded maximum.
238 *
239 * The authentication data may also be known as "tag value".
240 *
241 * Return: authentication data size / tag size in bytes
242 */
243 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
244 {
245 return tfm->authsize;
246 }
247
248 /**
249 * crypto_aead_blocksize() - obtain block size of cipher
250 * @tfm: cipher handle
251 *
252 * The block size for the AEAD referenced with the cipher handle is returned.
253 * The caller may use that information to allocate appropriate memory for the
254 * data returned by the encryption or decryption operation
255 *
256 * Return: block size of cipher
257 */
258 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
259 {
260 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
261 }
262
263 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
264 {
265 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
266 }
267
268 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
269 {
270 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
271 }
272
273 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
274 {
275 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
276 }
277
278 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
279 {
280 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
281 }
282
283 /**
284 * crypto_aead_setkey() - set key for cipher
285 * @tfm: cipher handle
286 * @key: buffer holding the key
287 * @keylen: length of the key in bytes
288 *
289 * The caller provided key is set for the AEAD referenced by the cipher
290 * handle.
291 *
292 * Note, the key length determines the cipher type. Many block ciphers implement
293 * different cipher modes depending on the key size, such as AES-128 vs AES-192
294 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
295 * is performed.
296 *
297 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
298 */
299 int crypto_aead_setkey(struct crypto_aead *tfm,
300 const u8 *key, unsigned int keylen);
301
302 /**
303 * crypto_aead_setauthsize() - set authentication data size
304 * @tfm: cipher handle
305 * @authsize: size of the authentication data / tag in bytes
306 *
307 * Set the authentication data size / tag size. AEAD requires an authentication
308 * tag (or MAC) in addition to the associated data.
309 *
310 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
311 */
312 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
313
314 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
315 {
316 return __crypto_aead_cast(req->base.tfm);
317 }
318
319 /**
320 * crypto_aead_encrypt() - encrypt plaintext
321 * @req: reference to the aead_request handle that holds all information
322 * needed to perform the cipher operation
323 *
324 * Encrypt plaintext data using the aead_request handle. That data structure
325 * and how it is filled with data is discussed with the aead_request_*
326 * functions.
327 *
328 * IMPORTANT NOTE The encryption operation creates the authentication data /
329 * tag. That data is concatenated with the created ciphertext.
330 * The ciphertext memory size is therefore the given number of
331 * block cipher blocks + the size defined by the
332 * crypto_aead_setauthsize invocation. The caller must ensure
333 * that sufficient memory is available for the ciphertext and
334 * the authentication tag.
335 *
336 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
337 */
338 static inline int crypto_aead_encrypt(struct aead_request *req)
339 {
340 return crypto_aead_reqtfm(req)->encrypt(req);
341 }
342
343 /**
344 * crypto_aead_decrypt() - decrypt ciphertext
345 * @req: reference to the ablkcipher_request handle that holds all information
346 * needed to perform the cipher operation
347 *
348 * Decrypt ciphertext data using the aead_request handle. That data structure
349 * and how it is filled with data is discussed with the aead_request_*
350 * functions.
351 *
352 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
353 * authentication data / tag. That authentication data / tag
354 * must have the size defined by the crypto_aead_setauthsize
355 * invocation.
356 *
357 *
358 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
359 * cipher operation performs the authentication of the data during the
360 * decryption operation. Therefore, the function returns this error if
361 * the authentication of the ciphertext was unsuccessful (i.e. the
362 * integrity of the ciphertext or the associated data was violated);
363 * < 0 if an error occurred.
364 */
365 static inline int crypto_aead_decrypt(struct aead_request *req)
366 {
367 if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
368 return -EINVAL;
369
370 return crypto_aead_reqtfm(req)->decrypt(req);
371 }
372
373 /**
374 * DOC: Asynchronous AEAD Request Handle
375 *
376 * The aead_request data structure contains all pointers to data required for
377 * the AEAD cipher operation. This includes the cipher handle (which can be
378 * used by multiple aead_request instances), pointer to plaintext and
379 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
380 * aead_request_* API calls in a similar way as AEAD handle to the
381 * crypto_aead_* API calls.
382 */
383
384 /**
385 * crypto_aead_reqsize() - obtain size of the request data structure
386 * @tfm: cipher handle
387 *
388 * Return: number of bytes
389 */
390 unsigned int crypto_aead_reqsize(struct crypto_aead *tfm);
391
392 /**
393 * aead_request_set_tfm() - update cipher handle reference in request
394 * @req: request handle to be modified
395 * @tfm: cipher handle that shall be added to the request handle
396 *
397 * Allow the caller to replace the existing aead handle in the request
398 * data structure with a different one.
399 */
400 static inline void aead_request_set_tfm(struct aead_request *req,
401 struct crypto_aead *tfm)
402 {
403 req->base.tfm = crypto_aead_tfm(tfm->child);
404 }
405
406 /**
407 * aead_request_alloc() - allocate request data structure
408 * @tfm: cipher handle to be registered with the request
409 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
410 *
411 * Allocate the request data structure that must be used with the AEAD
412 * encrypt and decrypt API calls. During the allocation, the provided aead
413 * handle is registered in the request data structure.
414 *
415 * Return: allocated request handle in case of success; IS_ERR() is true in case
416 * of an error, PTR_ERR() returns the error code.
417 */
418 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
419 gfp_t gfp)
420 {
421 struct aead_request *req;
422
423 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
424
425 if (likely(req))
426 aead_request_set_tfm(req, tfm);
427
428 return req;
429 }
430
431 /**
432 * aead_request_free() - zeroize and free request data structure
433 * @req: request data structure cipher handle to be freed
434 */
435 static inline void aead_request_free(struct aead_request *req)
436 {
437 kzfree(req);
438 }
439
440 /**
441 * aead_request_set_callback() - set asynchronous callback function
442 * @req: request handle
443 * @flags: specify zero or an ORing of the flags
444 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
445 * increase the wait queue beyond the initial maximum size;
446 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
447 * @compl: callback function pointer to be registered with the request handle
448 * @data: The data pointer refers to memory that is not used by the kernel
449 * crypto API, but provided to the callback function for it to use. Here,
450 * the caller can provide a reference to memory the callback function can
451 * operate on. As the callback function is invoked asynchronously to the
452 * related functionality, it may need to access data structures of the
453 * related functionality which can be referenced using this pointer. The
454 * callback function can access the memory via the "data" field in the
455 * crypto_async_request data structure provided to the callback function.
456 *
457 * Setting the callback function that is triggered once the cipher operation
458 * completes
459 *
460 * The callback function is registered with the aead_request handle and
461 * must comply with the following template
462 *
463 * void callback_function(struct crypto_async_request *req, int error)
464 */
465 static inline void aead_request_set_callback(struct aead_request *req,
466 u32 flags,
467 crypto_completion_t compl,
468 void *data)
469 {
470 req->base.complete = compl;
471 req->base.data = data;
472 req->base.flags = flags;
473 }
474
475 /**
476 * aead_request_set_crypt - set data buffers
477 * @req: request handle
478 * @src: source scatter / gather list
479 * @dst: destination scatter / gather list
480 * @cryptlen: number of bytes to process from @src
481 * @iv: IV for the cipher operation which must comply with the IV size defined
482 * by crypto_aead_ivsize()
483 *
484 * Setting the source data and destination data scatter / gather lists which
485 * hold the associated data concatenated with the plaintext or ciphertext. See
486 * below for the authentication tag.
487 *
488 * For encryption, the source is treated as the plaintext and the
489 * destination is the ciphertext. For a decryption operation, the use is
490 * reversed - the source is the ciphertext and the destination is the plaintext.
491 *
492 * For both src/dst the layout is associated data, plain/cipher text,
493 * authentication tag.
494 *
495 * The content of the AD in the destination buffer after processing
496 * will either be untouched, or it will contain a copy of the AD
497 * from the source buffer. In order to ensure that it always has
498 * a copy of the AD, the user must copy the AD over either before
499 * or after processing. Of course this is not relevant if the user
500 * is doing in-place processing where src == dst.
501 *
502 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
503 * the caller must concatenate the ciphertext followed by the
504 * authentication tag and provide the entire data stream to the
505 * decryption operation (i.e. the data length used for the
506 * initialization of the scatterlist and the data length for the
507 * decryption operation is identical). For encryption, however,
508 * the authentication tag is created while encrypting the data.
509 * The destination buffer must hold sufficient space for the
510 * ciphertext and the authentication tag while the encryption
511 * invocation must only point to the plaintext data size. The
512 * following code snippet illustrates the memory usage
513 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
514 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
515 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
516 */
517 static inline void aead_request_set_crypt(struct aead_request *req,
518 struct scatterlist *src,
519 struct scatterlist *dst,
520 unsigned int cryptlen, u8 *iv)
521 {
522 req->src = src;
523 req->dst = dst;
524 req->cryptlen = cryptlen;
525 req->iv = iv;
526 }
527
528 /**
529 * aead_request_set_assoc() - set the associated data scatter / gather list
530 * @req: request handle
531 * @assoc: associated data scatter / gather list
532 * @assoclen: number of bytes to process from @assoc
533 *
534 * Obsolete, do not use.
535 */
536 static inline void aead_request_set_assoc(struct aead_request *req,
537 struct scatterlist *assoc,
538 unsigned int assoclen)
539 {
540 req->assoc = assoc;
541 req->assoclen = assoclen;
542 req->old = true;
543 }
544
545 /**
546 * aead_request_set_ad - set associated data information
547 * @req: request handle
548 * @assoclen: number of bytes in associated data
549 *
550 * Setting the AD information. This function sets the length of
551 * the associated data.
552 */
553 static inline void aead_request_set_ad(struct aead_request *req,
554 unsigned int assoclen)
555 {
556 req->assoclen = assoclen;
557 req->old = false;
558 }
559
560 static inline struct crypto_aead *aead_givcrypt_reqtfm(
561 struct aead_givcrypt_request *req)
562 {
563 return crypto_aead_reqtfm(&req->areq);
564 }
565
566 static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
567 {
568 return aead_givcrypt_reqtfm(req)->givencrypt(req);
569 };
570
571 static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
572 {
573 return aead_givcrypt_reqtfm(req)->givdecrypt(req);
574 };
575
576 static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
577 struct crypto_aead *tfm)
578 {
579 req->areq.base.tfm = crypto_aead_tfm(tfm);
580 }
581
582 static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
583 struct crypto_aead *tfm, gfp_t gfp)
584 {
585 struct aead_givcrypt_request *req;
586
587 req = kmalloc(sizeof(struct aead_givcrypt_request) +
588 crypto_aead_reqsize(tfm), gfp);
589
590 if (likely(req))
591 aead_givcrypt_set_tfm(req, tfm);
592
593 return req;
594 }
595
596 static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
597 {
598 kfree(req);
599 }
600
601 static inline void aead_givcrypt_set_callback(
602 struct aead_givcrypt_request *req, u32 flags,
603 crypto_completion_t compl, void *data)
604 {
605 aead_request_set_callback(&req->areq, flags, compl, data);
606 }
607
608 static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
609 struct scatterlist *src,
610 struct scatterlist *dst,
611 unsigned int nbytes, void *iv)
612 {
613 aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
614 }
615
616 static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
617 struct scatterlist *assoc,
618 unsigned int assoclen)
619 {
620 aead_request_set_assoc(&req->areq, assoc, assoclen);
621 }
622
623 static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
624 u8 *giv, u64 seq)
625 {
626 req->giv = giv;
627 req->seq = seq;
628 }
629
630 #endif /* _CRYPTO_AEAD_H */