]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/crypto/hash.h
Merge tag 'sunxi-fixes-for-4.15-2' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / include / crypto / hash.h
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52 };
53
54 struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * Note: mandatory.
79 * @update: Push a chunk of data into the driver for transformation. This
80 * function actually pushes blocks of data from upper layers into the
81 * driver, which then passes those to the hardware as seen fit. This
82 * function must not finalize the HASH transformation by calculating the
83 * final message digest as this only adds more data into the
84 * transformation. This function shall not modify the transformation
85 * context, as this function may be called in parallel with the same
86 * transformation object. Data processing can happen synchronously
87 * [SHASH] or asynchronously [AHASH] at this point.
88 * Note: mandatory.
89 * @final: Retrieve result from the driver. This function finalizes the
90 * transformation and retrieves the resulting hash from the driver and
91 * pushes it back to upper layers. No data processing happens at this
92 * point unless hardware requires it to finish the transformation
93 * (then the data buffered by the device driver is processed).
94 * Note: mandatory.
95 * @finup: Combination of @update and @final. This function is effectively a
96 * combination of @update and @final calls issued in sequence. As some
97 * hardware cannot do @update and @final separately, this callback was
98 * added to allow such hardware to be used at least by IPsec. Data
99 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
100 * at this point.
101 * Note: optional.
102 * @digest: Combination of @init and @update and @final. This function
103 * effectively behaves as the entire chain of operations, @init,
104 * @update and @final issued in sequence. Just like @finup, this was
105 * added for hardware which cannot do even the @finup, but can only do
106 * the whole transformation in one run. Data processing can happen
107 * synchronously [SHASH] or asynchronously [AHASH] at this point.
108 * @setkey: Set optional key used by the hashing algorithm. Intended to push
109 * optional key used by the hashing algorithm from upper layers into
110 * the driver. This function can store the key in the transformation
111 * context or can outright program it into the hardware. In the former
112 * case, one must be careful to program the key into the hardware at
113 * appropriate time and one must be careful that .setkey() can be
114 * called multiple times during the existence of the transformation
115 * object. Not all hashing algorithms do implement this function as it
116 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
117 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
118 * this function. This function must be called before any other of the
119 * @init, @update, @final, @finup, @digest is called. No data
120 * processing happens at this point.
121 * @export: Export partial state of the transformation. This function dumps the
122 * entire state of the ongoing transformation into a provided block of
123 * data so it can be @import 'ed back later on. This is useful in case
124 * you want to save partial result of the transformation after
125 * processing certain amount of data and reload this partial result
126 * multiple times later on for multiple re-use. No data processing
127 * happens at this point.
128 * @import: Import partial state of the transformation. This function loads the
129 * entire state of the ongoing transformation from a provided block of
130 * data so the transformation can continue from this point onward. No
131 * data processing happens at this point.
132 * @halg: see struct hash_alg_common
133 */
134 struct ahash_alg {
135 int (*init)(struct ahash_request *req);
136 int (*update)(struct ahash_request *req);
137 int (*final)(struct ahash_request *req);
138 int (*finup)(struct ahash_request *req);
139 int (*digest)(struct ahash_request *req);
140 int (*export)(struct ahash_request *req, void *out);
141 int (*import)(struct ahash_request *req, const void *in);
142 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
143 unsigned int keylen);
144
145 struct hash_alg_common halg;
146 };
147
148 struct shash_desc {
149 struct crypto_shash *tfm;
150 u32 flags;
151
152 void *__ctx[] CRYPTO_MINALIGN_ATTR;
153 };
154
155 #define SHASH_DESC_ON_STACK(shash, ctx) \
156 char __##shash##_desc[sizeof(struct shash_desc) + \
157 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
158 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
159
160 /**
161 * struct shash_alg - synchronous message digest definition
162 * @init: see struct ahash_alg
163 * @update: see struct ahash_alg
164 * @final: see struct ahash_alg
165 * @finup: see struct ahash_alg
166 * @digest: see struct ahash_alg
167 * @export: see struct ahash_alg
168 * @import: see struct ahash_alg
169 * @setkey: see struct ahash_alg
170 * @digestsize: see struct ahash_alg
171 * @statesize: see struct ahash_alg
172 * @descsize: Size of the operational state for the message digest. This state
173 * size is the memory size that needs to be allocated for
174 * shash_desc.__ctx
175 * @base: internally used
176 */
177 struct shash_alg {
178 int (*init)(struct shash_desc *desc);
179 int (*update)(struct shash_desc *desc, const u8 *data,
180 unsigned int len);
181 int (*final)(struct shash_desc *desc, u8 *out);
182 int (*finup)(struct shash_desc *desc, const u8 *data,
183 unsigned int len, u8 *out);
184 int (*digest)(struct shash_desc *desc, const u8 *data,
185 unsigned int len, u8 *out);
186 int (*export)(struct shash_desc *desc, void *out);
187 int (*import)(struct shash_desc *desc, const void *in);
188 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
189 unsigned int keylen);
190
191 unsigned int descsize;
192
193 /* These fields must match hash_alg_common. */
194 unsigned int digestsize
195 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
196 unsigned int statesize;
197
198 struct crypto_alg base;
199 };
200
201 struct crypto_ahash {
202 int (*init)(struct ahash_request *req);
203 int (*update)(struct ahash_request *req);
204 int (*final)(struct ahash_request *req);
205 int (*finup)(struct ahash_request *req);
206 int (*digest)(struct ahash_request *req);
207 int (*export)(struct ahash_request *req, void *out);
208 int (*import)(struct ahash_request *req, const void *in);
209 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
210 unsigned int keylen);
211
212 unsigned int reqsize;
213 bool has_setkey;
214 struct crypto_tfm base;
215 };
216
217 struct crypto_shash {
218 unsigned int descsize;
219 struct crypto_tfm base;
220 };
221
222 /**
223 * DOC: Asynchronous Message Digest API
224 *
225 * The asynchronous message digest API is used with the ciphers of type
226 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
227 *
228 * The asynchronous cipher operation discussion provided for the
229 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
230 */
231
232 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
233 {
234 return container_of(tfm, struct crypto_ahash, base);
235 }
236
237 /**
238 * crypto_alloc_ahash() - allocate ahash cipher handle
239 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
240 * ahash cipher
241 * @type: specifies the type of the cipher
242 * @mask: specifies the mask for the cipher
243 *
244 * Allocate a cipher handle for an ahash. The returned struct
245 * crypto_ahash is the cipher handle that is required for any subsequent
246 * API invocation for that ahash.
247 *
248 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
249 * of an error, PTR_ERR() returns the error code.
250 */
251 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
252 u32 mask);
253
254 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
255 {
256 return &tfm->base;
257 }
258
259 /**
260 * crypto_free_ahash() - zeroize and free the ahash handle
261 * @tfm: cipher handle to be freed
262 */
263 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
264 {
265 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
266 }
267
268 /**
269 * crypto_has_ahash() - Search for the availability of an ahash.
270 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
271 * ahash
272 * @type: specifies the type of the ahash
273 * @mask: specifies the mask for the ahash
274 *
275 * Return: true when the ahash is known to the kernel crypto API; false
276 * otherwise
277 */
278 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
279
280 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
281 {
282 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
283 }
284
285 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
286 {
287 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
288 }
289
290 static inline unsigned int crypto_ahash_alignmask(
291 struct crypto_ahash *tfm)
292 {
293 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
294 }
295
296 /**
297 * crypto_ahash_blocksize() - obtain block size for cipher
298 * @tfm: cipher handle
299 *
300 * The block size for the message digest cipher referenced with the cipher
301 * handle is returned.
302 *
303 * Return: block size of cipher
304 */
305 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
306 {
307 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
308 }
309
310 static inline struct hash_alg_common *__crypto_hash_alg_common(
311 struct crypto_alg *alg)
312 {
313 return container_of(alg, struct hash_alg_common, base);
314 }
315
316 static inline struct hash_alg_common *crypto_hash_alg_common(
317 struct crypto_ahash *tfm)
318 {
319 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
320 }
321
322 /**
323 * crypto_ahash_digestsize() - obtain message digest size
324 * @tfm: cipher handle
325 *
326 * The size for the message digest created by the message digest cipher
327 * referenced with the cipher handle is returned.
328 *
329 *
330 * Return: message digest size of cipher
331 */
332 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
333 {
334 return crypto_hash_alg_common(tfm)->digestsize;
335 }
336
337 /**
338 * crypto_ahash_statesize() - obtain size of the ahash state
339 * @tfm: cipher handle
340 *
341 * Return the size of the ahash state. With the crypto_ahash_export()
342 * function, the caller can export the state into a buffer whose size is
343 * defined with this function.
344 *
345 * Return: size of the ahash state
346 */
347 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
348 {
349 return crypto_hash_alg_common(tfm)->statesize;
350 }
351
352 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
353 {
354 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
355 }
356
357 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
358 {
359 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
360 }
361
362 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
363 {
364 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
365 }
366
367 /**
368 * crypto_ahash_reqtfm() - obtain cipher handle from request
369 * @req: asynchronous request handle that contains the reference to the ahash
370 * cipher handle
371 *
372 * Return the ahash cipher handle that is registered with the asynchronous
373 * request handle ahash_request.
374 *
375 * Return: ahash cipher handle
376 */
377 static inline struct crypto_ahash *crypto_ahash_reqtfm(
378 struct ahash_request *req)
379 {
380 return __crypto_ahash_cast(req->base.tfm);
381 }
382
383 /**
384 * crypto_ahash_reqsize() - obtain size of the request data structure
385 * @tfm: cipher handle
386 *
387 * Return: size of the request data
388 */
389 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
390 {
391 return tfm->reqsize;
392 }
393
394 static inline void *ahash_request_ctx(struct ahash_request *req)
395 {
396 return req->__ctx;
397 }
398
399 /**
400 * crypto_ahash_setkey - set key for cipher handle
401 * @tfm: cipher handle
402 * @key: buffer holding the key
403 * @keylen: length of the key in bytes
404 *
405 * The caller provided key is set for the ahash cipher. The cipher
406 * handle must point to a keyed hash in order for this function to succeed.
407 *
408 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
409 */
410 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
411 unsigned int keylen);
412
413 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
414 {
415 return tfm->has_setkey;
416 }
417
418 /**
419 * crypto_ahash_finup() - update and finalize message digest
420 * @req: reference to the ahash_request handle that holds all information
421 * needed to perform the cipher operation
422 *
423 * This function is a "short-hand" for the function calls of
424 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
425 * meaning as discussed for those separate functions.
426 *
427 * Return: see crypto_ahash_final()
428 */
429 int crypto_ahash_finup(struct ahash_request *req);
430
431 /**
432 * crypto_ahash_final() - calculate message digest
433 * @req: reference to the ahash_request handle that holds all information
434 * needed to perform the cipher operation
435 *
436 * Finalize the message digest operation and create the message digest
437 * based on all data added to the cipher handle. The message digest is placed
438 * into the output buffer registered with the ahash_request handle.
439 *
440 * Return:
441 * 0 if the message digest was successfully calculated;
442 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
443 * -EBUSY if queue is full and request should be resubmitted later;
444 * other < 0 if an error occurred
445 */
446 int crypto_ahash_final(struct ahash_request *req);
447
448 /**
449 * crypto_ahash_digest() - calculate message digest for a buffer
450 * @req: reference to the ahash_request handle that holds all information
451 * needed to perform the cipher operation
452 *
453 * This function is a "short-hand" for the function calls of crypto_ahash_init,
454 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
455 * meaning as discussed for those separate three functions.
456 *
457 * Return: see crypto_ahash_final()
458 */
459 int crypto_ahash_digest(struct ahash_request *req);
460
461 /**
462 * crypto_ahash_export() - extract current message digest state
463 * @req: reference to the ahash_request handle whose state is exported
464 * @out: output buffer of sufficient size that can hold the hash state
465 *
466 * This function exports the hash state of the ahash_request handle into the
467 * caller-allocated output buffer out which must have sufficient size (e.g. by
468 * calling crypto_ahash_statesize()).
469 *
470 * Return: 0 if the export was successful; < 0 if an error occurred
471 */
472 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
473 {
474 return crypto_ahash_reqtfm(req)->export(req, out);
475 }
476
477 /**
478 * crypto_ahash_import() - import message digest state
479 * @req: reference to ahash_request handle the state is imported into
480 * @in: buffer holding the state
481 *
482 * This function imports the hash state into the ahash_request handle from the
483 * input buffer. That buffer should have been generated with the
484 * crypto_ahash_export function.
485 *
486 * Return: 0 if the import was successful; < 0 if an error occurred
487 */
488 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
489 {
490 return crypto_ahash_reqtfm(req)->import(req, in);
491 }
492
493 /**
494 * crypto_ahash_init() - (re)initialize message digest handle
495 * @req: ahash_request handle that already is initialized with all necessary
496 * data using the ahash_request_* API functions
497 *
498 * The call (re-)initializes the message digest referenced by the ahash_request
499 * handle. Any potentially existing state created by previous operations is
500 * discarded.
501 *
502 * Return: see crypto_ahash_final()
503 */
504 static inline int crypto_ahash_init(struct ahash_request *req)
505 {
506 return crypto_ahash_reqtfm(req)->init(req);
507 }
508
509 /**
510 * crypto_ahash_update() - add data to message digest for processing
511 * @req: ahash_request handle that was previously initialized with the
512 * crypto_ahash_init call.
513 *
514 * Updates the message digest state of the &ahash_request handle. The input data
515 * is pointed to by the scatter/gather list registered in the &ahash_request
516 * handle
517 *
518 * Return: see crypto_ahash_final()
519 */
520 static inline int crypto_ahash_update(struct ahash_request *req)
521 {
522 return crypto_ahash_reqtfm(req)->update(req);
523 }
524
525 /**
526 * DOC: Asynchronous Hash Request Handle
527 *
528 * The &ahash_request data structure contains all pointers to data
529 * required for the asynchronous cipher operation. This includes the cipher
530 * handle (which can be used by multiple &ahash_request instances), pointer
531 * to plaintext and the message digest output buffer, asynchronous callback
532 * function, etc. It acts as a handle to the ahash_request_* API calls in a
533 * similar way as ahash handle to the crypto_ahash_* API calls.
534 */
535
536 /**
537 * ahash_request_set_tfm() - update cipher handle reference in request
538 * @req: request handle to be modified
539 * @tfm: cipher handle that shall be added to the request handle
540 *
541 * Allow the caller to replace the existing ahash handle in the request
542 * data structure with a different one.
543 */
544 static inline void ahash_request_set_tfm(struct ahash_request *req,
545 struct crypto_ahash *tfm)
546 {
547 req->base.tfm = crypto_ahash_tfm(tfm);
548 }
549
550 /**
551 * ahash_request_alloc() - allocate request data structure
552 * @tfm: cipher handle to be registered with the request
553 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
554 *
555 * Allocate the request data structure that must be used with the ahash
556 * message digest API calls. During
557 * the allocation, the provided ahash handle
558 * is registered in the request data structure.
559 *
560 * Return: allocated request handle in case of success, or NULL if out of memory
561 */
562 static inline struct ahash_request *ahash_request_alloc(
563 struct crypto_ahash *tfm, gfp_t gfp)
564 {
565 struct ahash_request *req;
566
567 req = kmalloc(sizeof(struct ahash_request) +
568 crypto_ahash_reqsize(tfm), gfp);
569
570 if (likely(req))
571 ahash_request_set_tfm(req, tfm);
572
573 return req;
574 }
575
576 /**
577 * ahash_request_free() - zeroize and free the request data structure
578 * @req: request data structure cipher handle to be freed
579 */
580 static inline void ahash_request_free(struct ahash_request *req)
581 {
582 kzfree(req);
583 }
584
585 static inline void ahash_request_zero(struct ahash_request *req)
586 {
587 memzero_explicit(req, sizeof(*req) +
588 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
589 }
590
591 static inline struct ahash_request *ahash_request_cast(
592 struct crypto_async_request *req)
593 {
594 return container_of(req, struct ahash_request, base);
595 }
596
597 /**
598 * ahash_request_set_callback() - set asynchronous callback function
599 * @req: request handle
600 * @flags: specify zero or an ORing of the flags
601 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
602 * increase the wait queue beyond the initial maximum size;
603 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
604 * @compl: callback function pointer to be registered with the request handle
605 * @data: The data pointer refers to memory that is not used by the kernel
606 * crypto API, but provided to the callback function for it to use. Here,
607 * the caller can provide a reference to memory the callback function can
608 * operate on. As the callback function is invoked asynchronously to the
609 * related functionality, it may need to access data structures of the
610 * related functionality which can be referenced using this pointer. The
611 * callback function can access the memory via the "data" field in the
612 * &crypto_async_request data structure provided to the callback function.
613 *
614 * This function allows setting the callback function that is triggered once
615 * the cipher operation completes.
616 *
617 * The callback function is registered with the &ahash_request handle and
618 * must comply with the following template::
619 *
620 * void callback_function(struct crypto_async_request *req, int error)
621 */
622 static inline void ahash_request_set_callback(struct ahash_request *req,
623 u32 flags,
624 crypto_completion_t compl,
625 void *data)
626 {
627 req->base.complete = compl;
628 req->base.data = data;
629 req->base.flags = flags;
630 }
631
632 /**
633 * ahash_request_set_crypt() - set data buffers
634 * @req: ahash_request handle to be updated
635 * @src: source scatter/gather list
636 * @result: buffer that is filled with the message digest -- the caller must
637 * ensure that the buffer has sufficient space by, for example, calling
638 * crypto_ahash_digestsize()
639 * @nbytes: number of bytes to process from the source scatter/gather list
640 *
641 * By using this call, the caller references the source scatter/gather list.
642 * The source scatter/gather list points to the data the message digest is to
643 * be calculated for.
644 */
645 static inline void ahash_request_set_crypt(struct ahash_request *req,
646 struct scatterlist *src, u8 *result,
647 unsigned int nbytes)
648 {
649 req->src = src;
650 req->nbytes = nbytes;
651 req->result = result;
652 }
653
654 /**
655 * DOC: Synchronous Message Digest API
656 *
657 * The synchronous message digest API is used with the ciphers of type
658 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
659 *
660 * The message digest API is able to maintain state information for the
661 * caller.
662 *
663 * The synchronous message digest API can store user-related context in in its
664 * shash_desc request data structure.
665 */
666
667 /**
668 * crypto_alloc_shash() - allocate message digest handle
669 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
670 * message digest cipher
671 * @type: specifies the type of the cipher
672 * @mask: specifies the mask for the cipher
673 *
674 * Allocate a cipher handle for a message digest. The returned &struct
675 * crypto_shash is the cipher handle that is required for any subsequent
676 * API invocation for that message digest.
677 *
678 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
679 * of an error, PTR_ERR() returns the error code.
680 */
681 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
682 u32 mask);
683
684 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
685 {
686 return &tfm->base;
687 }
688
689 /**
690 * crypto_free_shash() - zeroize and free the message digest handle
691 * @tfm: cipher handle to be freed
692 */
693 static inline void crypto_free_shash(struct crypto_shash *tfm)
694 {
695 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
696 }
697
698 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
699 {
700 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
701 }
702
703 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
704 {
705 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
706 }
707
708 static inline unsigned int crypto_shash_alignmask(
709 struct crypto_shash *tfm)
710 {
711 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
712 }
713
714 /**
715 * crypto_shash_blocksize() - obtain block size for cipher
716 * @tfm: cipher handle
717 *
718 * The block size for the message digest cipher referenced with the cipher
719 * handle is returned.
720 *
721 * Return: block size of cipher
722 */
723 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
724 {
725 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
726 }
727
728 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
729 {
730 return container_of(alg, struct shash_alg, base);
731 }
732
733 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
734 {
735 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
736 }
737
738 /**
739 * crypto_shash_digestsize() - obtain message digest size
740 * @tfm: cipher handle
741 *
742 * The size for the message digest created by the message digest cipher
743 * referenced with the cipher handle is returned.
744 *
745 * Return: digest size of cipher
746 */
747 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
748 {
749 return crypto_shash_alg(tfm)->digestsize;
750 }
751
752 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
753 {
754 return crypto_shash_alg(tfm)->statesize;
755 }
756
757 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
758 {
759 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
760 }
761
762 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
763 {
764 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
765 }
766
767 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
768 {
769 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
770 }
771
772 /**
773 * crypto_shash_descsize() - obtain the operational state size
774 * @tfm: cipher handle
775 *
776 * The size of the operational state the cipher needs during operation is
777 * returned for the hash referenced with the cipher handle. This size is
778 * required to calculate the memory requirements to allow the caller allocating
779 * sufficient memory for operational state.
780 *
781 * The operational state is defined with struct shash_desc where the size of
782 * that data structure is to be calculated as
783 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
784 *
785 * Return: size of the operational state
786 */
787 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
788 {
789 return tfm->descsize;
790 }
791
792 static inline void *shash_desc_ctx(struct shash_desc *desc)
793 {
794 return desc->__ctx;
795 }
796
797 /**
798 * crypto_shash_setkey() - set key for message digest
799 * @tfm: cipher handle
800 * @key: buffer holding the key
801 * @keylen: length of the key in bytes
802 *
803 * The caller provided key is set for the keyed message digest cipher. The
804 * cipher handle must point to a keyed message digest cipher in order for this
805 * function to succeed.
806 *
807 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
808 */
809 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
810 unsigned int keylen);
811
812 /**
813 * crypto_shash_digest() - calculate message digest for buffer
814 * @desc: see crypto_shash_final()
815 * @data: see crypto_shash_update()
816 * @len: see crypto_shash_update()
817 * @out: see crypto_shash_final()
818 *
819 * This function is a "short-hand" for the function calls of crypto_shash_init,
820 * crypto_shash_update and crypto_shash_final. The parameters have the same
821 * meaning as discussed for those separate three functions.
822 *
823 * Return: 0 if the message digest creation was successful; < 0 if an error
824 * occurred
825 */
826 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
827 unsigned int len, u8 *out);
828
829 /**
830 * crypto_shash_export() - extract operational state for message digest
831 * @desc: reference to the operational state handle whose state is exported
832 * @out: output buffer of sufficient size that can hold the hash state
833 *
834 * This function exports the hash state of the operational state handle into the
835 * caller-allocated output buffer out which must have sufficient size (e.g. by
836 * calling crypto_shash_descsize).
837 *
838 * Return: 0 if the export creation was successful; < 0 if an error occurred
839 */
840 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
841 {
842 return crypto_shash_alg(desc->tfm)->export(desc, out);
843 }
844
845 /**
846 * crypto_shash_import() - import operational state
847 * @desc: reference to the operational state handle the state imported into
848 * @in: buffer holding the state
849 *
850 * This function imports the hash state into the operational state handle from
851 * the input buffer. That buffer should have been generated with the
852 * crypto_ahash_export function.
853 *
854 * Return: 0 if the import was successful; < 0 if an error occurred
855 */
856 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
857 {
858 return crypto_shash_alg(desc->tfm)->import(desc, in);
859 }
860
861 /**
862 * crypto_shash_init() - (re)initialize message digest
863 * @desc: operational state handle that is already filled
864 *
865 * The call (re-)initializes the message digest referenced by the
866 * operational state handle. Any potentially existing state created by
867 * previous operations is discarded.
868 *
869 * Return: 0 if the message digest initialization was successful; < 0 if an
870 * error occurred
871 */
872 static inline int crypto_shash_init(struct shash_desc *desc)
873 {
874 return crypto_shash_alg(desc->tfm)->init(desc);
875 }
876
877 /**
878 * crypto_shash_update() - add data to message digest for processing
879 * @desc: operational state handle that is already initialized
880 * @data: input data to be added to the message digest
881 * @len: length of the input data
882 *
883 * Updates the message digest state of the operational state handle.
884 *
885 * Return: 0 if the message digest update was successful; < 0 if an error
886 * occurred
887 */
888 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
889 unsigned int len);
890
891 /**
892 * crypto_shash_final() - calculate message digest
893 * @desc: operational state handle that is already filled with data
894 * @out: output buffer filled with the message digest
895 *
896 * Finalize the message digest operation and create the message digest
897 * based on all data added to the cipher handle. The message digest is placed
898 * into the output buffer. The caller must ensure that the output buffer is
899 * large enough by using crypto_shash_digestsize.
900 *
901 * Return: 0 if the message digest creation was successful; < 0 if an error
902 * occurred
903 */
904 int crypto_shash_final(struct shash_desc *desc, u8 *out);
905
906 /**
907 * crypto_shash_finup() - calculate message digest of buffer
908 * @desc: see crypto_shash_final()
909 * @data: see crypto_shash_update()
910 * @len: see crypto_shash_update()
911 * @out: see crypto_shash_final()
912 *
913 * This function is a "short-hand" for the function calls of
914 * crypto_shash_update and crypto_shash_final. The parameters have the same
915 * meaning as discussed for those separate functions.
916 *
917 * Return: 0 if the message digest creation was successful; < 0 if an error
918 * occurred
919 */
920 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
921 unsigned int len, u8 *out);
922
923 static inline void shash_desc_zero(struct shash_desc *desc)
924 {
925 memzero_explicit(desc,
926 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
927 }
928
929 #endif /* _CRYPTO_HASH_H */